Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

С. В. Шибаев

ПРОМЫСЛОВАЯ ИХТИОЛОГИЯ

Учебно-методическое пособие по изучению дисциплины для студентов, обучающихся в бакалавриате по направлению подготовки 35.03.08 Водные биоресурсы и аквакультура

Рецензент

кандидат биологических наук, старший преподаватель кафедры водных биоресурсов и аквакультуры ФГБОУ ВО «КГТУ» Е. А. Масюткина.

Шибаев, С. В. Промысловая ихтиология: учеб.-методич. пособие по изучению дисциплины для студ. бакалавриата по напр. подгот. 35.03.08 Водные биоресурсы и аквакультура / **С. В. Шибаев.** – Калининград: Изд-во ФГБОУ ВО «КГТУ», 2022. – 14 с.

В учебно-методическом пособии по изучению дисциплины «Промысловая ихтиология» представлены учебно-методические рекомендации по освоению тем лекционного курса, включающие подробный план лекций по каждой изучаемой теме.

Табл. 1, список лит. – 6 наименований

Локальный электронный методический материал. Учебно-методическое пособие по изучению дисциплины. Рекомендовано к использованию в учебном процессе методической комиссией института рыболовства и аквакультуры ФГБОУ ВО «Калининградский государственный технический университет» «29» июня 2022 г., протокол № 5

УДК 502

© Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2022 г. © Шибаев С.В., 2022 г.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ЗАНЯТИЯМ	7
ТЕМАТИЧЕСКИЙ ПЛАН ЗАНЯТИЙ	8
ЗАКЛЮЧЕНИЕ	12
СПИСОК РЕКОМЕНДОВАННЫХ ИСТОЧНИКОВ	13

ВВЕДЕНИЕ

Учебно-методическое пособие разработано для направления подготовки 35.03.08 Водные биоресурсы и аквакультура (для очной и заочной форм обучения) по дисциплине «Промысловая ихтиология», входящей в модуль «Ихтиология и рыбоводство» обязательной части.

Целью освоения дисциплины «Промысловая ихтиология» является формирование знаний, умений и навыков по основополагающим методам анализа эксплуатируемых популяций гидробионтов и разработке мер по их сохранению и рациональному использованию водных биоресурсов.

В результате изучения дисциплины студент должен:

знать:

- закономерности динамики популяций промысловых гидробионтов, методы анализа промысловых популяций гидробионтов;

уметь:

- определять биологические параметры популяций гидробионтов, прогнозировать последствия антропогенных воздействий на водные экосистемы и участвовать в разработке рекомендаций по их рациональному использованию;
- участвовать в рыбохозяйственном мониторинге, охране водных биоресурсов, рыбохозяйственной экспертизе;

владеть:

- методами оценки биологических параметров рыб, промысловобиологических параметров эксплуатируемых запасов, научных исследований в области водных биоресурсов и аквакультуры, компьютерными технологиями в рыбном хозяйстве.

При изучении дисциплины используются базовые знания и навыки, полученные в процессе освоения образовательной программы бакалавриата дисциплины «Экология», «Гидробиология», «Ихтиология», «Информационные технологии в рыбном хозяйстве», «Методы рыбохозяйственных исследований», «Сырьевая база рыбной промышленности» и т.д.

Студенты, приступающие к изучению данной дисциплины для успешного ее освоения, должны иметь представления о математических моделях описывающих состояние популяций, об особенностях функционирования популяций под воздействием промысла и уметь математически выражать структурнобиологические параметры промысловых популяций.

Дисциплина «Промысловая ихтиология» формирует компетенции используемые студентами в дальнейшей профессиональной деятельности, а также является базой при изучении таких дисциплин как «Марикультура», «Рыбохозяйственный мониторинг», «Специальные методы выращивания рыб», «Ветеринарно-санитарная экспертиза» и т.д., при подготовке выпускной квалификационной работы и в дальнейшей профессиональной деятельности.

Текущий контроль усвоения дисциплины осуществляется через систему тестирования. Тестовые задания используются для оценки освоения всех тем дисциплины студентами очной и заочной формы обучения. Тесты сформированы на основе материалов лекций и вопросов рассмотренных в рамках лабораторных занятий. Тестирование обучающихся проводится на лабораторных занятиях (в течение 10-15 минут, в зависимости от уровня сложности материала) после рассмотрения на лекциях соответствующих тем. Тестирование проводится с помощью компьютерной программы Indigo (база тестов располагается на сервере кафедры).

Положительная оценка («отлично», «хорошо» или «удовлетворительно») выставляется программой автоматически, в зависимости от количества правильных ответов.

Градация оценок:

- «отлично» свыше 85 %;
- «хорошо» более 75%, но не выше 85%;
- «удовлетворительно» свыше 65%, но не более 75%.

Итоговая аттестация по дисциплине предусмотрена в виде:

очная форма, седьмой семестр – экзамен;

заочная форма, восьмой семестр – экзамен.

Условием допуска студента к экзамену являются прохождение всех тестов на оценку не ниже «удовлетворительно», а также выполнение и защита лабораторных работ.

Система оценивания результатов обучения при промежуточной аттестации включает в себя системы оценок: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» (таблица).

Таблица – Система оценок и критерии выставления оценки

Критерий	Оценка				
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»	
	тельно»	тельно»			
Системность	Обладает частич-	Обладает мини-	Обладает	Обладает полно-	
и полнота	ными и разрознен-	мальным набо-	набором зна-	той знаний и си-	
знаний в от-	ными знаниями,	ром знаний, не-	ний, достаточ-	стемным	
ношении изу-	которые не может	обходимым для	ным для си-	взглядом на изу-	
чаемых объ-	научно корректно	системного	стемного	чаемый объект	
ектов	связывать между	взгляда на изуча-	взгляда на изу-		
	собой (только не-	емый объект	чаемый объект		
	которые из кото-				
	рых может связы-				
	вать между собой)				

Критерий	Оценка					
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»		
	тельно»	тельно»				
Работа с ин-	Не в состоянии	Может найти не-	Может найти,	Может найти,		
формацией	находить необхо-	обходимую ин-	интерпретиро-	систематизиро-		
	димую информа-	формацию в рам-	вать и система-	вать необходи-		
	цию, либо в состо-	ках поставленной	тизировать не-	мую информа-		
	янии находить от-	задачи	обходимую	цию, а также вы-		
	дельные фрагмен-		информацию в	явить новые, до-		
	ты информации в		рамках постав-	полнительные		
	рамках поставлен-		ленной задачи	источники ин-		
	ной задачи			формации в рам-		
				ках поставленной		
				задачи		
Научное	Не может делать	В состоянии	В состоянии	В состоянии		
осмысление	научно корректных	осуществлять	осуществлять	осуществлять си-		
изучаемого	выводов из имею-	научно коррект-	систематиче-	стематический и		
явления, про-	щихся у него све-	ный анализ	ский и научно	научно коррект-		
цесса, объ-	дений, в состоянии	предоставленной	корректный	ный анализ		
екта	проанализировать	информации	анализ предо-	предоставленной		
	только некоторые		ставленной	информации, во-		
	из имеющихся у		информации,	влекает в иссле-		
	него сведений		вовлекает в ис-	дование новые		
			следование но-	релевантные по-		
			вые релевант-	ставленной зада-		
			ные задаче	че данные, пред-		
			данные	лагает новые ра-		
				курсы постав-		
				ленной задачи		
Освоение	В состоянии ре-	В состоянии ре-	В состоянии	Не только владе-		
стандартных	шать только фраг-	шать поставлен-	решать постав-	ет алгоритмом и		
алгоритмов	менты постав-	ные задачи в со-	ленные задачи	понимает его ос-		
решения	ленной задачи в	ответствии с за-	в соответствии	новы, но и пред-		
профессио-	соответствии с зад-	данным алгорит-	с заданным ал-	лагает новые ре-		
нальных за-	анным алгоритмом,	MOM	горитмом, по-	шения в рамках		
дач	не освоил предло-		нимает основы	поставленной за-		
	женный алгоритм,		предложенного	дачи		
	допускает ошибки		алгоритма			

Учебно-методическое пособие состоит из:

введения, где указаны: шифр, наименование направления подготовки (специальности); дисциплина учебного плана, для изучения которой оно предназначено; цель и планируемые результаты освоения дисциплины; место дисциплины в структуре ОПОП ВО; виды текущего контроля, последовательности

его проведения, критерии и нормы оценки (отметки); форма проведения промежуточной аттестации; условия допуска к экзамену, критерии и нормы оценки (текущей и промежуточной аттестации);

основной части, которая содержит методические рекомендации к занятиям; тематический план лекционных занятий;

заключения;

списка рекомендованных источников.

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ К ЗАНЯТИЯМ

Осваивая курс «Промысловая ихтиология», студент должен научиться работать на лекциях, лабораторных занятиях и организовывать самостоятельную работу. В начале лекции необходимо уяснить цель, которую лектор ставит перед собой и студентами. Важно внимательно слушать, отмечать наиболее существенную информацию и кратко ее конспектировать; сравнивать то, что услышано на лекции с прочитанным и усвоенным ранее материалом. По ходу лекции необходимо подчеркивать новые термины, определения, устанавливать их взаимосвязь с изученными ранее понятиями.

В рамках изучения дисциплины «Промысловая ихтиология» предусмотрены встречи с представителями российских рыбохозяйственных компаний, государственных и общественных организаций.

Лекционный материал должен быть построен таким образом, чтобы студенту стало понятно существо процессов физического и математического моделирования орудий и процессов рыболовства. Преподаватель должен рекомендовать студентам изучать разделы дисциплины путем прослушивания и конспектирования лекций.

Лабораторные работы проводятся в компьютерном классе.

В компьютерном классе студенты должны проводить лабораторные работы путем использования программного пакета «MS Office».

Порядок проведения и содержание лабораторных работ изложены в методических указаниях для студентов. Лабораторные работы построены таким образом, чтоб результаты предыдущей работы являлись основой для последующих. Контроль выполнения работ осуществляется путем их защиты.

При подготовке к лабораторным занятиям студентам необходимо не только воспользоваться литературой, рекомендованной преподавателем, но и проявить самостоятельность в отыскании новых источников, интересных фактов, статистических данных, связанных с темой лабораторного занятия.

Промысловая ихтиология — третья составная часть ихтиологической науки, наряду с общей и частной ихтиологией, которая посвящена изучению закономерностей динамики эксплуатируемых популяций

Курсовая работа является заключительным этапом изучения дисциплины. В процессе ее написания студент закрепляет теоретические знания и получает навыки решения практических задач по управлению водными биоресурсами.

Курсовая работа основывается на результатах построения и анализа промысловых моделей популяций рыб, разработке оптимального режима промысла и правил рыболовства.

Курсовая работа выполняется студентом по индивидуальному заданию.

ТЕМАТИЧЕСКИЙ ПЛАН ЗАНЯТИЙ

Тема 1. Введение. Формальная теория жизни рыб

Предмет и содержание курса. Краткая история развития и основные направления исследований в области промысловой ихтиологии. Связь с другими дисциплинами. Роль математического аппарата и моделирования. Основные типы моделей, применяемых в промысловой ихтиологии. Модели изолированных популяций, их преимущества и недостатки. Модели пополнения. Модели многовидового промысла. Задачи промысловой ихтиологии.

Взаимосвязь первопричин, определяющих динамику популяций - размножение, рост, естественная смертность, промысел. Уравнение Р. Рассела. Формальная теория жизни рыб Ф.И. Баранова. Стабильные и нестабильные популяции. Условия стабилизации численности популяций, критерии стабильности. Характер изменений возрастной структуры популяции и величины запаса в зависимости от эффективности воспроизводства и промысла. Уравнение Баранова. Основное уравнение улова.

Тема 2. Биологические основы рыболовства. Популяционные параметры

Классификация орудий рыболовства и характер их воздействия на эксплуатируемые запасы. Параметры рыболовства. Параметры орудий лова. Уловистость и селективность различных типов орудий лова. Промысловое усилие, улов на единицу промыслового усилия.

Промысловая структура популяции. Способы описания промысловой структуры популяции. Типы нерестовых популяций. Понятия «пополнение» и «остаток». Различия между нерестовой и промысловой структурами. Возраст пополнения, возраст вступления в эксплуатацию, предельный возраст жизни рыбы в промысловой стадии, промысловый и эксплуатируемый запас. Внутрипопуляционные и внешние факторы, определяющие промысловую структуру.

Понятие о популяционных параметрах. Статические параметры – численность, биомасса, плотность, структура. Динамические параметры – рождае-

мость, рост, естественная смертность, промысловая смертность. Способы выражения, формальное описание, способы определение. Понятие о структуре популяций. Собственная и экологическая структура популяций. Понятие о промысловой структуре. Возрастная структура популяций. Кривые выживания, населения, улова. Способы построения кривых выживания – когортный, статический, виртуальные, методом осреднения структур. Анализ структуры нестабильных популяций.

Тема 3. Смертность рыб

Понятие смертности. Способы выражения, единицы измерения. Мгновенный коэффициент смертности, действительный коэффициент смертности. Коэффициент выживания. Связь между основными показателями. Основное уравнение смертности.

Понятие и способы выражения естественной смертности, факторы ее определяющие. Возрастная динамика естественной смертности и ее влияние на возрастную структуру популяций. Методические подходы к определению естественной смертности. Методы Ф.И. Баранова, П.В. Тюрина, Р. Бивертона и С. Холта.

Понятие промысловой смертности и способы ее выражения. Показатели промыслового воздействия: геометрическая интенсивность лова, интенсивность лова, промысловое усилие, интенсивность вылова и коэффициент эксплуатации, уловистость. Взаимосвязь показателей. Методы оценки промысловой смертности.

Тема 4. Виртуально-популяционный анализ

Теоретические основы виртуально-популяционного анализа. Метод А.Н. Державина (1922). Понятие виртуальной популяции. Математическое выражение основных параметров VPA. Метод Мэрфи. Метод Галланда. Сепарабельный анализ SVPA. Понятие о многовидовом анализе. Методы настройки. Основные подходы к анализу получаемых результатов.

Тема 5. Воспроизводство и пополнение стада рыб. Рост и продуктив- ность популяций

Термины и понятия, используемые в промысловой ихтиологии: рождаемость, эффективность нереста, пополнение, соотношение пополнения и остатка. Экологические факторы, определяющие эффективность воспроизводства. Показатели воспроизводительной способности популяций (индивидуальная и популяционная плодовитость, видовая плодовитость, пререпродуктивный и пострепродуктивный периоды, возраст созревания) и их зависимость от популяционных параметров для различных экологических групп рыб. Воздействие

лимитирующих факторов в различных экосистемах - реках, озерах, водохранилищах, морях.

Модели "запас-пополнение", теоретические подходы К. Бэра, Ф.И. Баранова, У. Рикера, Р. Бивертона и С. Холта. Модели запас-пополнение. Методы исследования пополнения.

Индивидуальный линейный и весовой рост, факторы его определяющие. Способы выражения. Сравнительный анализ различных моделей роста. Преимущества и недостатки. Источники информации для определения параметров роста. Стабильный нестабильный рост. Способы получения кривых роста.

Возрастная динамика ихтиомассы, возраст кульминации, зависимость от характера промысла и естественной смертности.

Понятие о росте популяции. Типы роста популяций: J и S-образный рост. Кривая Йорта.

Продуктивность популяции. Естественная и промысловая продуктивность. Методы определения продукции. Изменение продукции популяции в процессе ее роста. Понятие уравновешенного улова.

Специфика продукционных моделей. Сравнительный анализ моделей Шефера, Фокса, Пелла-Томлинсона. Преимущества и недостатки. Использование продукционных моделей в целях прогнозирования вылова рыбы. Особенности сбора первичной информации для составления продукционных моделей.

Тема 6. Аналитические промысловые модели

Понятие об аналитических промысловых моделях. Принципы построения. Модель Ф.И. Баранова: исходные данные, построение модели, расчетные параметры, методы анализа, преимущества и недостатки. Модель Бивертона-Холта: исходные данные, построение модели, расчетные параметры, методы анализа, преимущества и недостатки. Модель Рикера: исходные данные, построение модели, расчетные параметры, методы анализа, преимущества и недостатки. Преимущества и недостатки аналитических моделей. Развитие аналитических моделей.

Тема 7. Влияние интенсивности и селективности на параметры попу- ляции

Общие положения. Параметры системы «запас-промысел»: параметры популяции, параметры промысла. Закономерности изменения структуры популяции под воздействие промысла. Влияние интенсивности промысла на популяционные параметры и результаты промысла. Влияние селективности промысла на популяционные параметры и результаты промысла. Характерные формы кривых зависимостей популяционных параметров от параметров промысла. Максимальный уравновешенный улов.

Тема 8. Общие закономерности динамики эксплуатируемых популя- ций рыб

Совместное влияние интенсивности и селективности промысла на популяционные параметры и результаты промысла. Изоплетные диаграммы. Правила построения и методы анализа. Общие закономерности динамики эксплуатируемых популяций и их анализ с помощью изоплетных диаграмм. Понятие эвметрического улова. Кривая эвметрического улова. Зависимость формы эвметрической кривой и изоплетной диаграммы от собственных параметров популяции. Правило достижения максимального улова. Особенности селективного промысла, его преимущества, недостатки и воздействие на популяцию. Факторы, определяющие возможность существования стабильного улова.

Тема 9. Концепция перелова

Общие положения. Концепция Гейнке и ее критика. Абстрактный подход Ф.И. Баранова. Современное понимание перелова. Классификация переловов. Экономический перелов: перелов по улову на единицу промыслового усилия, перелов по качеству продукции, какометрический перелов. Исторические причины возникновения экономического перелова. Биологический перелов: перелов по пополнению, перелов по росту, экосистемный перелов. Предотвращение переловов.

Тема 10. Оптимальный улов

Общие положения. Понятие максимального уравновешенного улова. Методы оценки. Преимущества и недостатки критерия максимального уравновешенного улова. Максимальный экономический улов. Преимущества и недостатки. Критерий F 0.1. Понятие оптимального улова. Критерии оптимальности. Динамика системы «запас-промысел» и устойчивость. Формальная схема оценки оптимального улова. Этапы оценки. Методы обеспечения достижения оптимального улова.

Тема 11 **Биологические основы регулирования рыболовства. Основы промыслового прогнозирования**

Основные положения. Формирование представления о теоретических основах регулирования рыболовства: подходы К. Бэра, Ф.И. Баранова, П.В. Тюрина, Г.В. Никольского. Современные меры регулирования рыболовства и их биологический смысл. Законодательная основа регулирования рыболовства. Основные нормативные акты.

Понятие о прогнозировании. Краткосрочное, среднесрочное и долгосрочное прогнозирование. Прогнозируемые показатели. Общий допустимый улов (ОДУ) и возможный улов (ВУ). Методы расчетов ОДУ и ВУ. Регрессионный,

продукционный и биостатистический прогноз. Использование виртуальнопопуляционного анализа для целей прогнозирования.

ЗАКЛЮЧЕНИЕ

В результате освоения дисциплины у студента формируются знания и навыки использования аналитических и статистических методов оценки популяций водных гидробионтов и разработки оптимальных планов осуществления рыболовства с учетом состояния промысловых популяций.

СПИСОК РЕКОМЕНДОВАННЫХ ИСТОЧНИКОВ

Основная литература:

1. Промысловая ихтиология: учеб. / С. В. Шибаев; рец. : А. Г. Архипов, А. И. Литвиненко, Г. А. Москул. - 2-е изд., перераб. - Калининград : Аксиос, 2014. - 535 с.

Дополнительная литература:

- 1. Практикум по промысловой ихтиологии: учеб. пособие / С. В. Шибаев. Калининград: Аксиос, 2015. 320 с.: рис., табл. Библиогр.: с. 293.
- 2. Засосов А.В. Теоретические основы рыболовства. М.: Пищевая пром-сть, 1970.- 292 с.
- 3. Математические методы в биологии / . Кемерово : Кемеровский государственный университет, 2012. 196 с. (ЭБС «Университетская библиотека онлайн»)
- 4. Братусь, А.С. Динамические системы и модели биологии / А.С. Братусь, А.С. Новожилов, А.П. Платонов. М.: Физматлит, 2009. 400 с. (ЭБС «Университетская библиотека онлайн»)
- 5. Войниканис-Мирский В.Н. Техника промышленного рыболовства. М.: Легкая и пищевая пром-сть, 1983. 487 с.

Локальный электронный методический материал

Сергей Вадимович Шибаев

ПРОМЫСЛОВАЯ ИХТИОЛОГИЯ

Редактор И. Голубева

Локальное электронное издание

Уч.-изд. л. 1,0. Печ. л. 0,9

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 236022, Калининград, Советский проспект, 1