Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Е. Ю. Заболотнова С. А. Калинина

ОЗНАКОМИТЕЛЬНАЯ ПРАКТИКА

Учебно-методическое пособие для студентов, обучающихся в бакалавриате по направлению подготовки 09.03.03 — Прикладная информатика (профиль «Прикладная информатика в экономике») на очной и заочной формах обучения

Рецензент:

кандидат экономических наук,

и. о. заведующего кафедрой прикладной информатики ФГБОУ ВО «Калининградский государственный технический университет» М. В. Соловей

Заболотнова, Е. Ю.

Ознакомительная практика: учеб.-метод. пособие для студентов, обучающихся на бакалавриате по направлению подготовки 09.03.03 — Прикладная информатика (профиль «Прикладная информатика в экономике») на очной и заочной формах обучения / **Е. Ю. Заболотнова**, **С. А. Калинина**. — Калининград: Изд-во ФГБОУ ВО «КГТУ», 2023. — 26 с.

В учебно-методическом пособии приведены задания и содержание отчетов по ознакомительной практике для студентов очной и заочной форм обучения.

Табл. 6, рис. 5, список лит. – 4 наименования

Пособие подготовлено в соответствии с требованиями утвержденной рабочей программы «Учебная практика — ознакомительная» направления подготовки 09.03.03 — Прикладная информатика.

Учебно-методическое пособие рассмотрено и одобрено в качестве локального электронного методического материала кафедрой прикладной информатики Института цифровых технологий ФГБОУ ВО «Калининградский государственный технический университет» 19 сентября 2022 г., протокол № 3.

Учебно-методическое пособие по изучению дисциплины рекомендовано к использованию в качестве локального электронного методического материала в учебном процессе методической комиссией ИЦТ 17 января 2023 г., протокол N 11.

© Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2023 г. © Заболотнова Е. Ю., Калинина С. А., 2023 г.

Оглавление

Введение4	
Вадание на ознакомительную практику для студентов очной формы обучения. 5	
Порядок оформления отчета и защита ознакомительной практики для студентов	
очной формы обучения8	
Задание на ознакомительную практику для студентов	
заочной формы обучения9	
Порядок оформления отчета и защита ознакомительной практики	
для студентов заочной формы обучения20	
Список литературы22	
Приложение 1	
Приложение 2	

Введение

Целью учебной практики является закрепление и расширение теоретических знаний и практических навыков, получаемых студентами в ходе учебного процесса. После первого курса практика нацелена на освоение студентами основ программирования на алгоритмическом языке Python, закрепление навыков работы с файлами, разработку программ на основе графического интерфейса и методов и принципов объектно-ориентированного программирования.

Учебная — ознакомительная практика входит в состав обязательной части основной профессиональной образовательной программы бакалавриата и проводится после теоретического обучения и экзаменационной сессии во втором семестре. Трудоемкость учебной — ознакомительной практики составляет 3 зачетные единицы (ЗЕТ), 108 академических часов (81 астр. часа) контактной работы, продолжительность практики — 2 недели. Форма аттестации по практикам — дифференцированный зачет (зачет с оценкой).

Задание на ознакомительную практику для студентов очной формы обучения

Написать программу для прохождения тестирования по теоретическому материалу дисциплины «Программирование». Тема для тестирования совпадает с темой из первой части курсовой работы студента:

- 1. Арифметические операции в Python. Операции над целыми и вещественными числами.
 - 2. Оператор присваивания в Python. Ввод данных.
 - 3. Вывод данных. Форматы вывода.
- 4. Функции в Python. Глобальные и локальные переменные. Создание функции.
- 5. Логический тип данных в Python. Операции отношения. Логические операции.
 - 6. Условный оператор в Python.
 - 7. Циклы с заданным числом повторений и циклы по условию.
- 8. Списки в Python. Операции со списками и основные методы списков.
 - 9. Списки списков в Python (матрицы). Создание и обработка.
 - 10. Строки в Python. Операции со строками и основные методы строк.
 - 11. Кортежи в Python. Операции с кортежами и методы кортежей.
 - 12. Словари в Python. Операции со словарями и методы словарей.
 - 13. Работа с файлами.
 - 14. Модуль graph. Создание графических примитивов.
 - 15. Модуль graph. Создание анимированных изображений.
 - 16. Понятие ООП. Основные принципы ООП.
 - 17. Описание классов. Атрибуты и методы класса. Экземпляры класса.
 - 18. Реализация принципов ООП в Python.
- 19. Событийно-ориентированное программирование. Программы с графическим интерфейсом.
- 20. Модуль tkinter. Создание компонентов (виджетов): кнопка, метка (надпись), текст однострочный и многострочный. Свойства и методы этих виджетов.
- 21. Модуль tkinter. Создание компонентов (виджетов): рамка, флажки и радиокнопки, списки, шкала, окно верхнего уровня. Свойства и методы этих виджетов.
 - 22. Модуль tkinter. Менеджеры геометрии.
 - 23. Модуль tkinter. Метод bind. Типы переменных и события.
 - 24. Исключения. Обработка исключений.

Тест должен состоять из 10 вопросов для выбора одного (или нескольких) правильных ответов. Количество предложенных вариантов ответа на вопрос должно быть не менее трех. Формулировки вопросов и ответов на них хранятся в тестовом файле.

Вопросы и варианты ответов студент придумывает самостоятельно.

Не допускается, чтобы верными были все первые (вторые или третьи) ответы в тесте. Возможен случайный выбор вопросов из файла и случайное расположение вариантов ответов на экране. По желанию студента можно ввести временное ограничение на выполнение каждого вопроса или всего теста полностью.

Программа работает с пользовательским графическим интерфейсом (GUI), который должен содержать следующие элементы, в скобках указано название виджета для реализации:

Название дисциплины: Программирование (метка);

Название темы: смотри первую часть своей курсовой работы (метка);

Кнопки для начала и завершения тестирования;

Номер и текст вопроса (метка или текстовое поле);

Варианты ответов (метки или текстовые поля);

Выбор правильного ответа (ответов) можно реализовать через радиокнопки или флажки или путем ввода номера правильного ответа в текстовое поле.

По окончании теста программа должна вывести правильные ответы и ответы студента, возможно обозначение цветом или иным способом правильных и неправильных ответов студента, подсчитать количество правильных ответов и набранный балл по результатам теста (1 балл за один верный ответ).

Дизайн макета GUI определяется студентом самостоятельно. Ниже приведены примеры реализации программ тестирования.

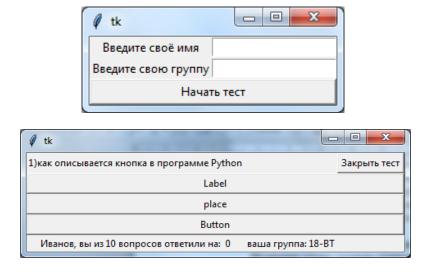


Рисунок 1. Пример работы Программы 1

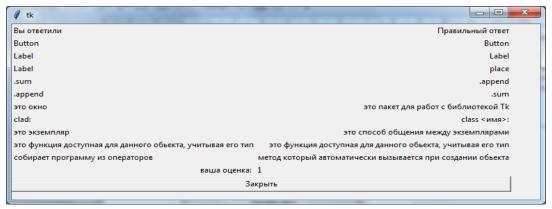


Рисунок 1. Продолжение

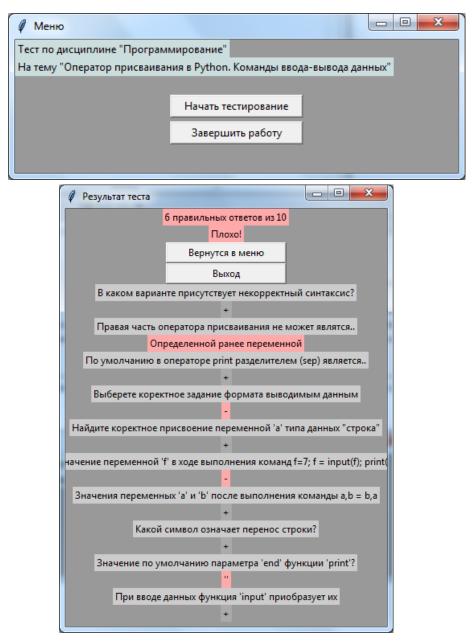


Рисунок 2. Пример работы Программы 2

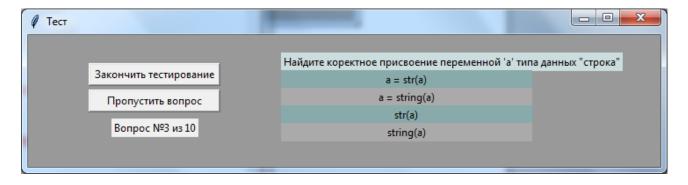


Рисунок 2. Продолжение

Порядок оформления отчета и защита ознакомительной практики для студентов очной формы обучения

Результаты практики оформляются в виде отчета, который имеет следующую <u>структуру</u>:

- Титульный лист.
- Индивидуальное задание на практику.
- Введение.
- Основная часть: постановка задачи.
- Описание классов, используемых при разработке программы.
- Макет GUI с описанием используемых виджетов.
- Описание событий и связанных с ними методов.
- Текст программы.
- Содержимое тестового файла с вопросами и правильными ответами.
 - Скриншоты выполнения программы.
 - Заключение.
 - Список использованных источников.

В Приложении 1 приведен пример оформления титульного листа отчета, а в Приложении 2 — индивидуальное задание на ознакомительную практику, в которое нужно занести сведения о студенте и соответствующие даты.

Промежуточная аттестация по практике проводится руководителем (руководителями) практики от университета в сроки, предусмотренные календарным учебным графиком и приказом о направлении на практику. Промежуточная аттестация по практике проходит в форме собеседования обучающегося с руководителем практики (защита результатов прохождения практики). Результаты промежуточной аттестации обучающегося оцениваются дифференцированно в зависимости от соответствия представленной программы и отчета требованиям индивидуального задания.

При выставлении оценки учитывается структура и дизайн графического интерфейса программы тестирования, содержание вопросов и правильных ответов на них, а также порядок оформления отчета.

Задание на ознакомительную практику для студентов заочной формы обучения

Задание 1. Тема: Графика в Python

Согласно своему варианту написать программу на языке Python, формирующую указанное изображение с использованием графических примитивов (минимум пять простейших фигур). Цветовую гамму и размер выбрать самостоятельно, допускается собственный рисунок.

Таблица 1. Перечень заданий по вариантам

№ варианта	Задание
0	Домик
1	Цветок
2	Машина
3	Велосипед
4	Пирамидка
5	Кукла
6	Кубик
7	Снеговик
8	Светофор
9	Бабочка

Примеры:

Задача 1. Нарисовать флаг и шарик с помощью графических примитивов:

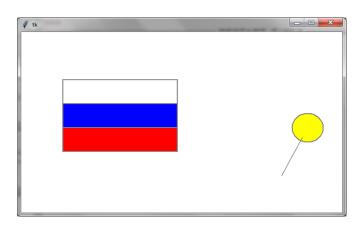


Рисунок 3. Результат работы программы задания 1

Методические рекомендации к задаче 1:

Рекомендуется для размещения объектов на холсте предварительно представить их координаты на черновике, с учетом того, что значение координаты у возрастает при перемещении вниз. Порядок изображения и расположения объектов зависит только от вас. Обратите внимание, что заливка используется только для замкнутых фигур, таких как круг или многоугольник.

Пример программы:

```
# Подключаем графический модуль
       fromgraphimport *
       # Устанавливаем ширину и высоту рабочей области окна
        # Устанавливаем координаты области рисования
        windowSize (800, 600)
       canvasSize (700, 500)
       # Устанавливаем толщину и цвет пера
        penColor ("grey")
        penSize (2)
        # Устанавливаем цвета заливки и
       # рисуем прямоугольники с координатами противолежащих углов
       brushColor ("white")
       rectangle (80, 100, 300, 150)
       brushColor ("blue")
       rectangle (80, 150, 300, 200)
       brushColor ("red")
       rectangle (80, 200, 300, 250)
       # Устанавливаем цвет заливки и
       # рисуем окружность с центром в точке (х , у) установленного
радиуса
       brushColor ("yellow")
       circle (550, 200, 30)
       # Рисуем линию между точками с координатами
       Line (500, 300, 540, 220)
       # Запускаем основной цикл обработки сообщений
       run()
```

Модуль graph — это набор функций, который представляет собой «обёртку» для создания графических программ на языке Python на основе виджета Canvas библиотеки Tkinter. Скачать модуль graph и файлы для его установки можно в ЭОИС в разделе данной практической работы или в Интернете на официальном сайте языка Python.

В таблицах 2 и 3 приведены функции организации окон и команды рисования геометрических фигур.

Таблица 2. Функции для работы с окнами

Работа с окном		
Действие	Функция	Пример
Объект главного окна	mainWindow ()	
Ширина и высота рабочей	windowSize (width,	windowSize (800,
области окна	height)	600)
Объект области рисования	convec ()	
(холст)	canvas ()	
Начало координат (х, у)	convecDos (v. v.)	
области рисования	canvasPos (x, y)	
Ширина и высота области	canvasSize (width,	canvasSize (700,
рисования	height)	500)
Диапазоны математической	viewCoords (x1, x2, y1,	
декартовой системы	y2)	
координат	y2)	
Запускает основной цикл		
обработки сообщений;	run ()	
последняя строчка		
Закрывает графическое окно	close ()	
True, если точка с		print (pointInView
координатами (х, у) находится	pointInView (x,y)	(980, 80))
в пределах области рисования		(900, 00))
True, если окружность с		
центром в точке (х, у) радиуса	circleInView (x, y,r)	
r находится в пределах	circiciii view (x, y,i)	
области рисования		

Таблица 3. Команды для создания графических примитивов

Команды для рисования геометрических фигур			
Действие Функция Пример			
Толщина пера	penSize (width)	penSize (5)	
Цвет пера (см. Таблицу	penColor (color)	penColor ("blue")	
HTML цветов)	penColor (r, g, b)	penColor (178, 34, 34)	

Продолжение таблицы 3

Команды для рисования геометрических фигур			
Действие	Функция	Пример	
Цвет заливки (см. Таблицу	brushColor (color)		
НТМ цветов)	brushColor (r, g, b)		
Точка цвета с	point (x, y)	point (100, 100, 'red')	
координатами (х, у)	point (x, y, color)	_	
Перейти в точку, заданную	moveTo (pos)	pos = (120,45)	
координатами (х, у) или	moveTo (x, y)	moveTo (pos)	
кортежем pos= (x, y) из			
этих координат			
Линия из текущего	lineTo (pos)		
положения в точку, с	lineTo(x, y)		
координатами (х, у) или			
кортежем pos= (x, y) из			
этих координат			
Линия между точками	line (x1, y1, x2, y2)		
(х1, у1) и (х2, у2)			
Ломаная линия,	polyline (p)	d=[(80,30), (130,30),	
составленная из точек,		(130,160), (80,80)]	
представленных списком		polyline (d)	
кортежей координат			
Многоугольник (замкнутая	polygon (points)	polygon(d)	
ломаная линия)			
Прямоугольник с	rectangle (x1, y1, x2,	rectangle (10, 20, 60,	
координатами	y2)	50)	
противолежащих углов			
(х1, у1) и (х2, у2)			
Окружность с центром в	circle (x, y, r)	circle (200, 100, 50)	
точке (x, y) радиусом r			
Овал (вписанный в	oval (x1, y1, x2, y2)	Oval (100,50,400,200)	
прямоугольник с точками			
(х1, у1) и (х2, у2))			
Текст с точки (х, у)	label ("Текст", x, y)	label ("Учимся	
		рисовать", 50, 50,	
		font='20')	
Рисунок из файла	image (x, y, fileName)	image (50, 50,	
(загружаются рисунки)		'c:/LP.gif')	
формата GIF)			

Таблица 4. Таблица HTML цветов

Формат Color	HEX – шестнадцатеричный формат	RGB – формат Красный, Зеленый, Голубой
Black	#000000	0, 0, 0
Gray	#808080	128, 128, 128
Silver	#C0C0C0	192, 192, 192
White	#FFFFFF	255, 255, 255
Fuchsia	#FF00FF	255, 0, 255
Purple	#800080	128, 0, 128
Red	#FF0000	255, 0, 0
Maroon	#800000	128, 0, 0
Yellow	#FFFF00	255, 255, 0
Olive	#808000	128, 128, 0
Lime	#00FF00	0, 255, 0
Green	#008000	0, 128, 0
Aqua	#00FFFF	0, 255, 255
Teal	#008080	0, 128, 128
Blue	#0000FF	0, 0, 255
Navy	#000080	0, 0, 128

Задание 2. Тема: Анимация в Python

Используя результаты предыдущей работы, напишите на языке Python программу анимации для вашего графического объекта. Перемещение управляется клавишами стрелками. Траекторию и завершение движения определите по варианту.

Таблица 5. Перечень заданий по вариантам

$N_{\underline{0}}$	Золония			
варианта	Задания			
0.	Движение от верхнего правого угла поля к нижнему левому,			
0.	заканчивается при достижении левого края поля			
1.	Движение по полю налево и направо с разной скоростью,			
1.	заканчивается при достижении края поля			
2	Движение по полю вверх и вниз с разной скоростью,			
۷.	заканчивается при достижении края поля			

№ варианта	Задания		
3.	Движение от левого нижнего угла поля к правому верхнему, заканчивается при нажатии клавиши ESC		
4.	Движение по полю в разных направлениях, заканчивается только при достижении нижнего края поля		
5.	Движение от верхнего правого угла поля к нижнему левому с разной скоростью, заканчивается при нажатии клавиши ESC		
6.	Движение по полю снизу вверх, заканчивается при достижении края поля		
7.	Движение только по диагоналям поля, заканчивается при нажатии клавиши ESC		
8.	Движение в любых направлениях, заканчивается при нажатии клавиши ESC		
9.	Движение от левого верхнего угла поля к правому нижнему, заканчивается при достижении правого края поля		

Примеры:

Пример 2. Организовать «полёт» шарика:

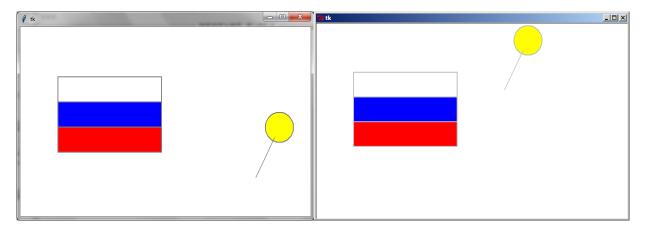


Рисунок 4. Результат работы программы задания 2

Создание анимации

Анимация (англ. animation) – оживление изображения на экране. Технология создания анимации:

- рисуем объект в точке (x, y);
- выполняем задержку на несколько миллисекунд;
- стираем объект;
- изменяем координаты (x, y);
- переходим к шагу 1.

Фрагменты рисунка нужно определить как объекты, которые потом можно перерисовывать: $obj = \phi$ ункция для рисования объекта.

Таблица 6. Функции для работы с графическими объектами

	кции для работы с графичес	скими объектами
Действие	Функция	Пример
Определение объекта	obj = функция для	shar = circle $(x, y, 30)$
	рисования объекта	
Функция возвращает х-	xCoord(obj)	x1=xcoord(shar)
координату левого		
верхнего угла		
прямоугольника		
Функция возвращает у-	yCoord(obj)	y1=ycoord(square)
координату левого		
верхнего угла		
прямоугольника		
Установить для объекта	changeCoords (obj, pos)	pos= [(10,100), (50,100)]
obj новые координаты		changeCoords (linia, pos)
противоположных углов		
прямоугольника, (х1,у1)		
и (х2,у2), в который		
вписано изображение		
объекта		
Установить для	changePenColor (obj,	changePenColor (h, "red")
объекта obj новый цвет	color)	
контура color		
Установить для	changtFillColor (obj,	changtFillColor (h, "black")
объекта obj новый цвет	color)	
заливки color		
Установить для	changeProperty (obj,)	changeProperty (linia,
объекта овј новые		fill="green")
свойства		
Переместить левый	moveObjecTo (obj, x, y)	moveObjecTo (linia, 10, 10)
верхний угол объекта		
obj в точку c		
координатами (х, у)		
Переместить объект обј	moveObjectBy (obj, dx,	moveObjectBy (linia, 10, 10)
на вектор (dx, dy)	dy)	
Удалить объект по	deleteObject (obj)	deleteObject (l)
ссылке		

Обработчики событий области рисования

Чтобы организовать срабатывание (вызов) функции через определенные промежутки времени, применяют «обработчик события». Событие — это изменение состояния программы или некоторое действие пользователя.

onTimer (fn, time) – установить функцию fn, которая будет вызываться по таймеру каждые time миллисекунд.

onKey (key) onKey (fn) onKey (key, fn) – установить функцию fn как обработчик нажатия клавиши с символьным обозначением key.

Если функция не указана, обработчик нажатия этой клавиши отключается; если не указана клавиша, устанавливается один обработчик на все клавиши; функция fn должна принимать один параметр — блок данных о событии.

Для того чтобы выяснить коды и символьные обозначения клавиш, можно использовать такую программу:

```
import tkinter as tk
                                                       Key Press Event:
                                                         event.char: ц
                                                         event.keysym: odiaeresis
def keyPress (event):
                                                         event.keycode: 87
                                                         event.keysym_num: 246
  print ("Key Press Event:")
                                                       Key Press Event:
  print (" event.char:", event.char)
                                                         event.char:
                                                         event.keysym: Alt L
  print (" event.keysym:", event.keysym)
                                                         event.keycode: 18
                                                         event.keysym num: 65513
  print (" event.keycode:", event.keycode)
                                                       Key Press Event:
                                                         event.char:
  print (" event.keysym_num:",
                                                         event.keysym: Shift_L
event.keysym_num)
                                                         event.keycode: 16
                                                         event.keysym num: 65505
                                                       Key Press Event:
                                                         event.char: w
root = tk.Tk()
                                                         event.keysym: w
                                                         event.keycode: 87
root.bind ("<KeyPress>", __keyPress)
                                                         event.keysym_num: 119
tk.mainloop()
```

Методические рекомендации к задаче 2:

Рисунки определяются как объекты, с которыми работает программа.

- В программе используются три функции:
 - 1) изменения координат объектов при фиксации определенных клавиш,
 - 2) перемещения объектов,
 - 3) проверки выхода объектов за границы рисунка.
- В программе применяют «обработчик события» (обработчик нажатия клавиши) и функцию, которая будет вызываться по таймеру каждые time миллисекунд.

Пример программы:

```
from graph import *
canvasSize (700, 500)
windowSize (800, 600)
# Функция определения шагов перемещения (dx и dy)
     при нажатии на клавиши – стрелки или клавишу пробел
# Функция закрывает окно при нажатии на клавишу ESC
defkeyPressed (event):
  global dx, dy
  if event.keycode == VK_LEFT:
    dx = -5; dy = 0
elifevent.keycode == VK_RIGHT:
    dx = 5; dy = 0
elifevent.keycode == VK_UP:
    dx = 0; dy = -5
elifevent.keycode == VK_DOWN:
    dx = 0; dy = 5
elifevent.keycode == VK_SPACE:
    dx = dy = 0
elifevent.keycode == VK_ESCAPE:
    close()
# Функция перемещения объектов
defupdate():
moveObjectBy(shar, dx, dy)
moveObjectBy(linia, dx, dy)
# Функция проверки выхода фигуры за край поля
def end():
  if 0>min (coords(shar)) or 600<max(coords(shar)):
    print ('Шарик улетел')
close()
#Основная программа
penColor("grey")
penSize(2)
brushColor("white")
rectangle(80, 100, 300, 150)
brushColor("blue")
rectangle(80, 150, 300, 200)
brushColor("red")
rectangle(80, 200, 300, 250)
# Определяем начальное положение фигур
x = 550; y = 200
# Задаем нулевые значения шагов изменения координат
dx = 0; dy = 0
brushColor("yellow")
# Определяем объекты для анимации
shar = circle(x, y, 30)
linia = line(x-50, y+100, x-10, y+20)
# Выполняем функцию как обработчик нажатия клавиш keyPressed
onKey (keyPressed)
# Определяем функции update и end,
     которые будет вызываться по таймеру каждые 50 миллисекунд
onTimer (update, 50)
onTimer (end, 50)
run()
```

Создание объекта для последующей анимации

```
from graph import *
Brush Color ("red")
obj=circle(60,60,30)
brush Color ("green")
obj0 = rectangle (40,120,160,480)
obj1 = line (300,200,100,700)
run()
```

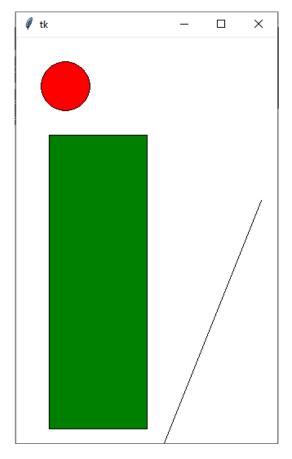


Рисунок 5. Результат работы программы создания объектов для анимации

Ниже приведены примеры фрагментов программы с элементами анимации:

Перемещение объекта на координаты:

from graph import * windowSize(400,400) brushColor("red") obj=circle (60,60,30) moveObjectTo(obj,200,200)

Изменение цвета заливки объекта:

from graph import * windowSize(400,400) brushColor("red") obj=circle(60,60,30) changeFillColor (obj,"blue")

```
Изменения цвета контура объекта:
```

```
from graph import *
penSize(2)
windowSize(400,400)
brushColor("red")
obj=circle(60,60,30)
changePenColo r(obj,"blue")
```

Перемещение объекта по диагоналям:

```
from graph import *
def keyPressed(event):
  global dx,dy
if event.keycode == VK_LEFT: dx=-5; dy=-5
elif event.keycode == VK_RIGHT: dx=5; dy=5
elif event.keycode == VK_UP: dx=5; dy=-5
elif event.keycode == VK_DOWN: dx=-5; dy=5
def update():
  moveObjectBy(obj,dx,dy)
dx=0
dy=0
windowSize(400,400)
brushColor("red")
obj=circle(60,60,30)
onKey(keyPressed)
onTimer(update, 30)
```

Перемещение объекта по горизонтали и вертикали:

```
from graph import *
defkeyPressed(event):
globaldx,dy
  if event.keycode == VK_LEFT: dx=-5; dy=0
elif event.keycode == VK_RIGHT: dx=5; dy=0
elif event.keycode == VK_UP: dx=0; dy=-5
elif event.keycode == VK_DOWN: dx=0; dy=5
def update():
  moveObjectBy(obj,dx,dy)
dx=0
dy=0
windowSize(400,400)
brushColor("red")
obj=circle(60,60,30)
onKey(keyPressed)
onTimer(update, 30)
```

Порядок оформления отчета и защита ознакомительной практики для студентов заочной формы обучения

Ниже приведен макет отчета по ознакомительной практике для студентов заочной формы обучения:

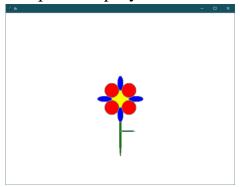
Введение

Ознакомительная практика по получению первичных профессиональных умений и навыков входит в состав вариативной части образовательной программы бакалавриата и проводится после теоретического обучения и экзаменационной сессии второго семестра.

Целью ознакомительной практики студентов является закрепление и расширение теоретических знаний и практических навыков, получаемых студентом во время учебного процесса. После первого курса практика нацелена на освоение основ программирования на алгоритмическом языке Python, в частности работа с графическим пользовательским интерфейсом на примере индивидуального задания.

Задание 1

Тема: Графика в Python

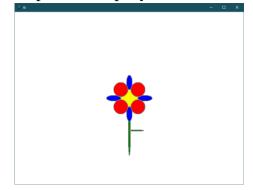

Контрольные вопросы:

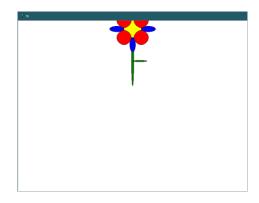
- 1. Какие средства языка предназначены для изображения простейших фигур?
 - 2. Как задать цвет и толщину линий?
 - 3. Варианты задания цвета объекта?
 - 4. Для каких фигур можно выполнить заливку и как задать цвет заливки?
 - 5. Как представлены координаты точек на холсте?
 - 6. Как определить область рисования?

Задание 1. Согласно своему варианту написать программу на языке Python, формирующую указанное изображение с использованием графических примитивов (простейших фигур). Допускается собственный рисунок. Цветовую гамму и размер выбрать самостоятельно.

Изооражение согласно варианту
Ответы на вопросы:
Программа:
#Выполнил студент группы 2ЗИЭ

Скриншот результата:


Задание 2


Tema: Анимация в Python Контрольные вопросы:

- 1. Что понимают под объектом при создании анимации?
- 2. Какие средства языка предназначены для перемещения объектов?
- 3. Что такое «обработчики событий области рисования»?
- 4. Какие координаты объекта определяет функция coords (obj)?
- 5. Как задать шаг изменения координат при перемещении объекта?
- 6. Как завершить работу программы?

Ответы на вопросы:	
Программа:	
#Выполнил студент группы 2ЗИЭ	

Скриншоты результатов:

Заключение

Результат ознакомительной практики:

Получение навыков практического применения, полученных в процессе обучения знаний элементов языка Python

Промежуточная аттестация по практике проводится руководителем (руководителями) практики от университета в сроки, предусмотренные календарным учебным графиком и приказом о направлении на практику. Промежуточная аттестация по практике проходит в форме собеседования обучающегося с руководителем практики (защиты результатов прохождения практики). Результаты промежуточной аттестации обучающегося оцениваются дифференцированно в зависимости от соответствия представленной программы и отчета требованиям индивидуального задания.

Список литературы

- 1. Хахаев, И. А. Практикум по алгоритмизации и программированию на Python: курс: учебное пособие: [16+] / И. А. Хахаев. 2-е изд., исправ. Москва: Национальный Открытый Университет «ИНТУИТ», 2016. 179 с.: ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=429256 (дата обращения: 30.03.2022). Библиогр. в кн. Текст: электронный.
- 2. Буйначев, С. К. Основы программирования на языке Python: учебное пособие / С. К. Буйначев, Н. Ю. Боклаг; Уральский федеральный университет им. первого Президента России Б. Н. Ельцина. Екатеринбург: Издательство Уральского университета, 2014. 92 с.: табл., ил. Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=275962 (дата обращения: 30.03.2022). Библиогр. в кн. ISBN 978-5-7996-1198-9. Текст: электронный.
- 3. Сузи, Р. А. Язык программирования Python: учебное пособие: [16+] / Р. А. Сузи. 2-е изд., испр. Москва : Интернет-Университет Информационных Технологий (ИНТУИТ) : Бином. Лаборатория знаний, 2007. 327 с. (Основы информационных технологий). Режим доступа: по подписке. URL: https://biblioclub.ru/index.php?page=book&id=233288 (дата обращения: 30.03.2022). ISBN 978-5-9556-0109-0. Текст : электронный.
- 4. Лекция 14. Разработка приложений с графическим интерфейсом пользователя Библиотека Tkinter Текст: [Электронный ресурс]; Режим доступа: http://python.inr.ru/s1914.pdf (дата обращения: 24.04.2022).

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Калининградский государственный технический университет»

Институт цифровых технологий

Кафедра прикладной информатики

ОТЧЕТ

по учебной ознакомительной практике База практики: ФГБОУ ВО КГТУ кафедра прикладной информатики (наименование предприятия)

	Выполнил студент группы	
	,	
	Форма обучения _	, курс
	Подпись	(И.О. Фамилия)
Руководитель практики от предпри	ятия	_
(при наличии)	Подпись	(И.О. Фамилия)
Руководитель практики от кафедры	[
Сокращенное наименование кафедры	Подпись	(И.О. Фамилия)
Отчет защищен с оценкой		
Лата защиты отчета		

Калининград 202 _

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования

«Калини	нградски	ий государст	гвенный те	хнически	й универси	тет»		
Кафедра		прикладной информатики						
					УТВ	ВЕРЖ	ЕРЖДАЮ	
		Зав. кафо	едрой		/		/	
			«	»		20	Г.	
		Индивиду						
на ознакомител	• •	•	•	-				
умений и на			-	•	навыков н	аучн	0-	
	ИС	следователи	ьской деят	ельности				
		(вид	д, тип практики)					
студента						_ ,		
		(Ф.И.О. полн	юстью)				(группа)	
Направление		09.0)3.03 Прик.	падная ин	форматика	,		
подготовки								
(специальность)								
Место прохожде	ния							
практики:								
		ФГБОУ	ВО КГТУ,	кафедра 1	ПИ			
		236022 K	Салинингра	д, Советс	кий проспе	ект 1		
За время прохож	дения							
практики:	c	«	» ию	RH	20)	Γ.	
•	по	*	» ИЮ	ЯП	20)	Γ.	
					U \			

студент должен выполнить следующие виды работ (заданий):

No	Содержание практики	Рабочий график		
п/п	(наименование работ/заданий)	практики		
1	Получение индивидуальных заданий студентами			
2	Выполнение индивидуального задания: разработка программы для тестирования по заданной теме на основе GUI на алгоритмическом языке Python			
3	Подготовка отчета по учебной практике, защита практики			

Планируемые результаты практики

Код и наименование компетенции.	Результаты обучения, соотнесенные с
Индикаторы достижения компетенции	компетенциями/индикаторами
тидикаторы достижения компетенции	достижения компетенции
ПКС-8: Способен осуществлять и	Должен знать:
обосновывать выбор проектных решений	- стандартные критерии выбора проектных
по видам обеспечения	решений;
информационных систем:	- базовые синтаксические конструкции языка С;
ПКС-8.3: Формирование	- структуру типовой программы на языке С;
первичных профессиональных умений и	- специфические особенности языка С в
	_
навыков в осуществлении и обосновании	реализации подпрограмм, организации
выбора проектных решений	ввода/вывода, работе с типами данных;
HICO O C	- структуру обзоров научной литературы и
ПКС-9: Способен программировать	электронных информационных ресурсов.
приложения и создавать	Должен уметь:
программные прототипы решения	- оперировать механизмами выбора проектных
прикладных задач:	решений;
ПКС-9.4: Формирование	- конструировать программы на языке С,
первичных профессиональных умений и	реализующие типовые алгоритмы обработки
навыков программирования приложений	информации;
и создания программных прототипов	- работать с механизмами подпрограмм на
решения прикладных задач	языке С;
ПКС-12: Способен готовить обзоры	- использовать известные механизмы
научной литературы и электронных	подготовки обзоров научной литературы и
информационно-образовательных	электронных информационных ресурсов.
ресурсов для профессиональной	Должен владеть:
деятельности:	- стандартами в области информационных
ПКС-12.3: Формирование	технологий по осуществлению и обоснованию
первичных профессиональных умений и	выбора проектных решений;
навыков подготовки обзоров научной	- механизмами поиска учебной литературы по
литературы и	изучаемым языкам программирования;
электронных информационных	- типовыми механизмами отладки программ
ресурсов	на языке С;
Polypool	- стандартными механизмами формирования
	агрегатных вычислений в сложных отчетах;
	- методиками и рекомендациями по подготовке
	обзоров научной литературы и электронных
	информационных ресурсов.
	Должен приобрести опыт:
	- на примере практических задач по
	осуществлению и обоснованию выбора
	проектных решений;
	- создания на языке С типовых программ
	обработки информации;
	- самостоятельного освоения новых языков
	программирования;
	- подготовки обзоров научной литературы и
	электронных информационных ресурсов

Руководител	Ь					
практики от						
университета	ı					
	_	(подпись)		(Фамилия И.О., дол	іжность)	
Руководител	Ь					
практики от						
профильной						
организации						
	_	(подпись)		(Фамилия И.О., дол	іжность)	
Практикант						
- -	(подпись)			(телефон, E-mail)		
- -						
		«	>>	июля	20	Γ.

Локальный электронный методический материал

Елена Юрьевна Заболотнова Светлана Александровна Калинина

ОЗНАКОМИТЕЛЬНАЯ ПРАКТИКА

Редактор М. А. Дмитриева

Уч.-изд. л. 0,8. Печ. л. 1,7.

Издательство Федерального государственного бюджетного образовательного учреждения высшего образования «Калининградский государственный технический университет». 236022, Калининград, Советский проспект, 1.