Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

В. А. Наумов

ГАЗОГИДРОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ПРИ ПРОИЗВОДСТВЕ ИЗДЕЛИЙ МАШИНОСТРОЕНИЯ

Учебно-методическое пособие по изучению дисциплины для студентов, обучающихся в магистратуре по направлению подготовки 15.04.01 Машиностроение

Калининград Издательство ФГБОУ ВО «КГТУ» 2022

Рецензент

доктор технических наук, профессор кафедры инжиниринга технологического оборудования ФГБОУ ВО «Калининградский государственный технический университет»

О. В. Агеев

Наумов, В. А.

Газогидродинамические процессы изделий при производстве машиностроения: учеб.-метод. пособие по изучению дисциплины для студентов магистратуры направлению 15.04.01 ПО подготовки Машиностроение / В. А. Наумов. – Калининград: ФГБОУ ВО «КГТУ», 2022. – 18 c.

Учебно-методическое пособие по изучению дисциплины, которые включают тематический план занятий, методические указания по выполнению студентами самостоятельной работы, вопросы для самоконтроля по темам, оценочные средства и критерии оценивания.

Табл. 1, рис. 1, список лит. – 12 наименований

Учебное пособие рассмотрено и рекомендовано к изданию в качестве локального электронного методического материала кафедрой инжиниринга технологического оборудования 21 апреля 2022 г., протокол № 3

Учебно-методическое пособие по изучению дисциплины рекомендовано к изданию в качестве локального электронного методического материала методической комиссией института агроинженерии и пищевых систем ФГБОУ ВО «Калининградский государственный технический университет» 31 октября 2022 г., протокол № 11

УДК 628.1:681.5

© Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2022 г.

© Наумов В. А., 2022 г.

ОГЛАВЛЕНИЕ

Введение	4
1 Тематический план занятий	8
2 Методические указания по выполнению самостоятельной работы	
студентов	14
3 Библиографический список	15
Приложение А. Виды насосов по принципу действия и конструкции	16
Приложение Б. Экзаменационные вопросы	17

ВВЕДЕНИЕ

Дисциплина «Газогидродинамические процессы при производстве изделий машиностроения» входит в состав основной профессиональной образовательной программы магистратуры по направлению подготовки 15.04.01 Машиностроение.

Целью дисциплины является формирование у обучающихся основных понятий по газогидродинамическим процессам при производстве изделий машиностроения.

В результате освоения дисциплины студент должен: знать:

- основные закономерности гидромеханики и газодинамики, применяемые при производстве изделий машиностроения;
- принципы подготовки и проведения технологических экспериментов в газодинамической среде;
- основные положения теории гидромеханического подобия;

уметь:

- использовать основные закономерности гидромеханики и газодинамики для совершенствования технологии и средства машиностроительных производств;
- применять модели гидромеханики и газодинамики для повышения энергетической эффективности производства изделий машиностроения.
- рассчитывать значения критериев подобия технологических процессов машиностроительного производства;

владеть:

- навыками гидравлического расчета течений жидкостей и газов, применяемых в машиностроении, в том числе для активного контроля параметров производственных процессов;
- методом газодинамического расчета высокоскоростных течений машиностроительного производства;
- методикой применения теории гидромеханического подобия при выполнении технологических экспериментов.

При реализации дисциплины «Газогидродинамические процессы при производстве изделий машиностроения» организуется практическая подготовка путем проведения практических занятий, предусматривающих участие обучающихся в выполнении отдельных элементов работ, связанных с будущей профессиональной деятельностью.

Для оценки результатов освоения дисциплины используются:

- оценочные средства текущего контроля успеваемости;
- оценочные средства для промежуточной аттестации по дисциплине.

К оценочным средствам текущего контроля успеваемости относятся:

- задания и вопросы для практических занятий;
- задания для курсовой работы;
- В соответствии с учебным планом по дисциплине «Газогидродинамические процессы при производстве изделий

машиностроения» предусмотрено выполнение практических работ. Перед началом выполнения работы обучающиеся изучают задание, и после методических указаний преподавателя приступают к его выполнению. Защита работы проводится либо на очередном практическом занятии, либо в часы индивидуальных или групповых консультаций преподавателя. Обучающийся, защитивший работу с ответами на вопросы, получает оценку «зачтено» за данную практическую работу.

Задание для выполнения курсовой работы обучающиеся получают в начале семестра. Целью выполнения курсовой работы является формирование компетенций, связанных с профессиональной деятельностью, систематизация знаний, умений, навыков, полученных при изучении теоретического курса. При этом обучающемуся дается возможность самостоятельного решения отдельных вопросов, он знакомится с комплексом направлений применения теории в профессиональной деятельности. Основная часть пояснительной записки курсовой работы состоит из пяти частей:

- 1. Расчет параметров газовой смеси.
- 2. Расчет зависимости массового расхода компрессора от давления.
- 3. Расчет газодинамической характеристики трубопровода.
- 4. Расчет параметров рабочей точки компрессорной системы.
- 5. Расчет и построение профилей газодинамических переменных.

В течение семестра преподаватель осуществляет текущий контроль выполнения разделов курсовой работы на практических занятиях.

Промежуточная аттестация по дисциплине «Газогидродинамические процессы при производстве изделий машиностроения» проводится в форме защиты курсовой работы, экзамена.

Система оценивания результатов защиты курсовой работы, экзамена включает в себя следующие оценки: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Критерии выставления оценки представлены в табл. 1.

Выполненная курсовая работа представляется для проверки на кафедру инжиниринга технологического оборудования не позднее, чем за неделю до даты проведения промежуточной аттестации по дисциплине. После проверки курсовая работа допускается к защите или отправляется на доработку. Если курсовая работа отправлена на доработку, следует устранить все замечания, указанные преподавателем, и повторно сдать его на проверку. Если курсовая работа допущена к защите, студент должен быть готовым дать все необходимые пояснения по расчетам, графикам и содержанию работы. По результатам защиты выставляется оценка, при этом учитываются правильность выполнения заданий, оформление работы, а также качество защиты.

К оценочным средствам для промежуточной аттестации по дисциплине, проводимой в форме экзамена, относятся экзаменационные вопросы. Экзаменационный билет содержит два теоретических вопроса. Список экзаменационных вопросов представлен в приложении Б.

Условия допуска к экзамену для студентов:

- 1. Выполненные и защищенные в полном объеме практические работы, предусмотренные программой.
- 2. Выполненная и защищенная на положительную оценку («удовлетворительно», «хорошо», «отлично») курсовая работа.

Оценка за курсовую работу учитывается при выставлении экзаменационной оценки.

При необходимости для обучающихся-инвалидов или обучающихся с OB3 предоставляется дополнительное время для подготовки ответа с учетом их индивидуальных психофизических особенностей.

Порядок и правила текущего контроля успеваемости и промежуточной аттестации по дисциплине преподаватель сообщает обучающимся в начале учебного семестра.

Для успешного освоения дисциплины «Газогидродинамические процессы при производстве изделий машиностроения» в учебно-методическом пособии по изучению дисциплины приводится краткое содержание каждой лекционной и практической темы занятия.

Таблица 1 – Система и критерии оценивания

Система оценок Критерий	«Не зачтено»	«Зачтено»		
ripin opini	«неудовлетворительно»	«удовлетворительно»	«хорошо»	«отлично»
Системность и	Обладает частичными и	Обладает	Обладает набором знаний,	Обладает полнотой знаний и
полнота знаний в	разрозненными знаниями,	минимальным	достаточным для	системным взглядом на
отношении	которые не может корректно	набором знаний,	системного взгляда на	изучаемый объект
изучаемых объектов	связывать между собой	необходимым для	изучаемый объект	
	(только некоторые из которых	системного взгляда на		
	может связывать между	изучаемый объект		
	собой)			
Работа с	Не в состоянии находить	Может найти	Может найти,	Может найти, систематизировать
информацией	необходимую информацию,	необходимую	интерпретировать и	необходимую информацию, а
	либо в состоянии находить	информацию в рамках	систематизировать	также выявить новые,
	отдельные фрагменты	поставленной задачи	необходимую	дополнительные источники
	информации в рамках		информацию в рамках	информации в рамках
	поставленной задачи		поставленной задачи	поставленной задачи
Осмысление	Не может делать корректных	В состоянии	В состоянии осуществлять	В состоянии осуществлять
изучаемого явления,	выводов из имеющихся у него	осуществлять	систематический	систематический и корректный
процесса, объекта	сведений, в состоянии	корректный анализ	корректный анализ	анализ предоставленной
	проанализировать только	предоставленной	предоставленной	информации, вовлекает в
	некоторые из имеющихся у	информации	информации, вовлекает в	исследование новые релевантные
	него сведений		исследование новые	поставленной задаче данные,
			релевантные задаче	предлагает новые ракурсы
			данные	поставленной задачи
Освоение	В состоянии решать только	В состоянии решать	В состоянии решать	Не только владеет алгоритмом и
стандартных	фрагменты поставленной	поставленные задачи	поставленные задачи в	понимает его основы, но и
алгоритмов решения	задачи в соответствии с	в соответствии с	соответствии с заданным	предлагает новые решения в
профессиональных	заданным алгоритмом, не	заданным алгоритмом	алгоритмом, понимает	рамках поставленной задачи
задач	освоил предложенный		основы предложенного	
	алгоритм, допускает ошибки		алгоритма	

1 Тематический план занятий

Тема 1. Введение. Модели механики жидкости и газа в машиностроении

Ключевые вопросы темы

- 1. Цель и задачи дисциплины. Место дисциплины в структуре образовательной программы.
- 2. Основные свойства жидкостей и газов.
- 3. Основные типы и свойства плазмы.
- 4. Механика жидкости газа и плазмы, ее составные части.
- 5. Модели гидромеханики и гидравлики в машиностроении.
- 6. Модели газодинамики в машиностроении.
- 7. Модели плазмы в машиностроении.
 - Предусмотрены занятия лекционного (лекции) типа.
 - Вопросы для самоконтроля по теме:
- 1. В чем различие между гидромеханикой и гидравликой?
- 2. В чем различие между гидромеханикой и газовой динамикой?
- 3. Какой газ называется совершенным?
- 4. Запишите уравнение состояния совершенного газа.
- 5. Какая жидкость называется идеальной?
- 6. Что такое модуль объемной упругости?
- 7. Как определяется касательное напряжение в ньютоновской жидкости?
- 8. Что такое коэффициент динамической вязкости?
- 9. Что такое плазма?
- 10. Назовите виды плазмы.
- 11. Приведите примеры гидравлических расчетов, применяемых в машиностроении.
- 12. Приведите примеры газодинамических расчетов, применяемых в машиностроении.

Тема 2. Газодинамические расчеты в задачах машиностроения

Ключевые вопросы темы

- 1. Одномерное уравнение динамики течения газа в канале. Число Маха. Дозвуковое и сверхзвуковое течение.
- 2. Параметры газовой смеси. Молярная масса. Газовая постоянная. Коэффициент динамической вязкости.
- 3. Зависимость массового расхода компрессора от давления. Нагрузочная характеристика водокольцевого компрессора.
- 4. Газодинамическая характеристика трубопровода.
- 5. Параметры рабочей точки компрессорной системы.
- 6. Профили газодинамических переменных вдоль трубопровода.

Предусмотрены занятия лекционного (лекции) и семинарского (практические занятия) типов.

Тема практической работы 1. Расчет параметров газовой смеси и зависимости массового расхода компрессора от давления.

Цель работы: получение практических умений и навыков расчета параметров газовой смеси и зависимости массового расхода компрессора от давления.

Тема практической работы 2. Расчет газодинамической характеристики трубопровода и параметров рабочей точки компрессорной системы.

Цель работы: получение практических умений и навыков расчета газодинамической характеристики трубопровода и параметров рабочей точки компрессорной системы.

Вопросы для самоконтроля по теме:

- 1. Напишите одномерное уравнение динамики течения газа в канале.
- 2. Поясните смысл этого уравнения на примере сопла Лаваля.
- 3. Как упростится это уравнение для канала постоянного сечения?
- 4. Что такое число Маха?
- 5. Как найти скорость звука в газовой смеси?
- 6. Как найти молярную массу газовой смеси?
- 7. Что такое газовая постоянная?
- 8. Напишите уравнение адиабатического процесса в совершенном газе.
- 9. Как найти коэффициент динамической вязкости газовой смеси?
- 10. Как зависит массовый расход компрессора от давления?
- 11. Начертите примерный вид нагрузочной характеристики водокольцевого компрессора.
- 12. Что такое газодинамическая характеристика трубопровода?
- 13. Как находится газодинамическая характеристика трубопровода?
- 14. Как определить параметры рабочей точки компрессорной системы?
- 15. Начертите примерный вид профилей давления и скорости вдоль оси трубопровода постоянного диаметра при дозвуковом течении газа.
- 16. Начертите примерный вид профилей давления и скорости вдоль оси трубопровода постоянного диаметра при сверхзвуковом течении газа.

Тема 3. Гидравлические расчеты в задачах машиностроения

Ключевые вопросы темы

- 1. Уравнение Бернулли. Применение для течений капельной жидкости в трубопроводе и для газов при невысоких скоростях.
- 2. Гидравлические потери напора по длине трубопровода и в местных сопротивлениях при ламинарном режиме течения.
- 3. Гидравлические потери напора по длине трубопровода и в местных сопротивлениях при турбулентном режиме течения.
- 4. Методы гидравлического расчета течения жидкости в простом трубопроводе без ветвления.
- 5. Трубопроводы с ветвлением: с концевой раздачей, с несколькими источниками, с параллельными участками, с кольцевым участком.

Предусмотрены занятия лекционного (лекции) и семинарского (практические занятия) типов.

Тема практической работы 3. Гидравлический расчет течения жидкости в простом трубопроводе при ламинарном режиме течения.

Цель работы: получение практических умений и навыков гидравлического расчета течения жидкости в простом трубопроводе технологических машин при ламинарном режиме течения.

Тема практической работы 4. Гидравлический расчет течения жидкости в простом трубопроводе при турбулентном режиме течения.

Цель работы: получение практических умений и навыков гидравлического расчета течения жидкости в простом трубопроводе технологических машин при турбулентном режиме течения.

Тема практической работы 5. Гидравлический расчет течения жидкости в трубопроводе с ветвлением.

Цель работы: получение практических умений и навыков гидравлического расчета течения жидкости в трубопроводе с ветвлением технологических машин.

- 1. Напишите уравнение Бернулли для течения капельной жидкости в трубопроводе.
- 2. Назовите физический смысл слагаемых в этом уравнении.
- 3. Напишите уравнение Бернулли для течения газа в трубопроводе.
- 4. Какой напор отсутствует в уравнении Бернулли для течения газа в трубопроводе?
- 5. Назовите условие применения уравнения Бернулли для течений газа.
- 6. Как определить режим течения жидкости в трубопроводе?
- 7. Напишите формулу Дарси-Вейсбаха для расчета потерь напора по длине трубопровода.
- 8. Как найти коэффициент потерь напора по длине трубопровода при ламинарном режиме течения?
- 9. Как найти коэффициент потерь напора по длине трубопровода при турбулентном режиме течения?
- 10. Какие существуют области сопротивления при турбулентном режиме течения в трубопроводе? Чем они определяются?
- 11. Как найти потери напора в местных гидравлических сопротивлениях?
- 12. Приведите примеры коэффициентов потерь в местных гидравлических сопротивлениях.
- 13. Какие существуют методы гидравлического расчета течения жидкости в простом трубопроводе без ветвления?
- 14. Приведите пример схемы трубопровода с концевой раздачей, с несколькими источниками.
- 15. Приведите пример схемы трубопровода с параллельными участками, с кольцевым участком.

Тема 4. Насосы, компрессоры, гидро- и пневмопривод в машиностроении

Ключевые вопросы темы

- 1. Классификация насосов, применяемых в машиностроении. Технические параметры. Номинальные и фактические значения.
- 2. Лопастные насосы. Рабочие характеристики центробежных насосов. Осевые насосы. Коэффициент быстроходности.
- 3. Объемные насосы. Поршневые и плунжерные насосы. Винтовые и шестеренные насосы. Преимущества и недостатки.
- 4. Определение рабочей точки насосной установки.
- 5. Основные типы компрессоров, применяемых в машиностроении. Водокольцевые компрессоры. Центробежные компрессоры. Поршневые компрессоры.
- 6. Гидропривод. Структурно-элементная схема. Рабочие циклы гидроприводов технологических машин.
- 7. Пневмопривод. Основные элементы пневмопривода. Функциональные схемы. Рабочие циклы пневмопривода технологических машин.

Предусмотрены занятия лекционного (лекции) и семинарского (практические занятия) типов.

Тема практической работы 6. Определение параметров рабочей точки насосной установки.

Цель работы: получение практических умений и навыков определения параметров рабочей точки насосных установок различных типов.

Тема практической работы 7. Расчет гидросистемы объемного гидропривода.

Цель работы: получение практических умений и навыков расчета гидросистемы объемного гидропривода.

- 1. На какие две большие группы делятся насосы по характеру преобладающих сил?
- 2. Назовите типы насосов, относящиеся к динамическим.
- 3. Назовите типы насосов, относящиеся к объемным.
- 4. Поясните принцип действия центробежных насосов.
- 5. Поясните принцип действия поршневых насосов.
- 6. Поясните принцип действия шестеренных насосов.
- 7. Поясните принцип действия винтовых насосов.
- 8. Что такое подача насоса?
- 9. Что такое напор насоса?
- 10. Как найти КПД насоса?
- 11. Почему фактические значения параметров работы насосов могут отличаться от номинальных (паспортных)?
- 12. Приведите вид рабочих характеристик центробежных насосов.
- 13. В чем отличие рабочих характеристик осевых насосов?

- 14. Как зависят параметры работы центробежного насоса от частоты вращения рабочего колеса?
- 15. Назовите характерную особенность нагрузочных характеристик объемных насосов.
- 16. Для чего в машиностроении применяют шестеренные насосы?
- 17. Что такое коэффициент быстроходности насоса?
- 18. Как определить рабочую точку насосной установки?
- 19. Назовите основные типы компрессоров, применяемых в машиностроении.
- 20. Поясните принцип действия водокольцевых компрессоров.
- 21. Центробежные компрессоры. Поршневые компрессоры.
- 22. Что такое объемный гидропривод?
- 23. Приведите пример структурно-элементной схемы гидропривода.
- 24. Рабочие циклы гидроприводов технологических машин.
- 25. Назовите основные элементы пневмопривода.
- 26. Что такое рабочие циклы пневмопривода технологических машин?

Тема 5. Агрегаты гидравлических систем в машиностроении *Ключевые вопросы темы*

- 1. Агрегаты распределения жидкости. Золотниковые распределители. Гидродинамические силы потока жидкости в золотнике. Плоские золотники. Крановые распределители. Клапанные распределители.
- 2. Предохранительные и редукционные клапаны. Клапаны пластинчатого типа. Диафрагменные клапаны. Дифференциальные клапаны. Редукционные клапаны постоянного давления.
- 3. Дроссельные регулирующие устройства. Расчет диафрагменного дросселя. Распространенные схемы дроссельного регулирования.
- 4. Вспомогательные гидроагрегаты. Синхронизаторы движения узлов. Ограничители расхода жидкости. Гидравлические реле выдержки времени. Гидравлические аккумуляторы. Жидкостные пружины.
- 5. Гидравлические усилители. Крановые и клапанные распределители. Гидроусилители с многокаскадным усилением. Золотники с плоским распределительным элементом. Устройства типа сопло-заслонка. Предусмотрены занятия лекционного (лекции) типа.

peggemerpensi sansirini siekanomiere (siekami)

- 1. Назовите типы агрегатов распределения жидкости.
- 2. Поясните устройство золотниковых распределителей.
- 3. Поясните устройство крановых распределителей.
- 4. Поясните устройство клапанных распределителей.
- 5. Для чего нужны редукционные клапаны?
- 6. Поясните устройство клапанов пластинчатого типа.
- 7. Поясните устройство диафрагменных клапанов.
- 8. Поясните устройство дифференциальных клапанов.

- 9. Что собой представляют редукционные клапаны постоянного давления?
- 10. Назовите типы дроссельных регулирующих устройств.
- 11. Приведите примеры схем дроссельного регулирования.
- 12. Для чего служат синхронизаторы движения узлов?
- 13. Поясните устройство ограничителей расхода жидкости.
- 14. Поясните устройство гидравлического реле выдержки времени.
- 15. Гидравлические аккумуляторы. Жидкостные пружины.
- 16. Назовите типы гидравлических усилителей.
- 17. Приведите примеры схемы гидравлических усилителей.
- 18. Как работают устройства усиления типа сопло-заслонка? Предусмотрены занятия лекционного (лекции) типа.

Тема 6. Применение системы уравнений Навье-Стокса в машиностроении. Гидромеханическое подобие

Ключевые вопросы темы

- 1. Система уравнений Навье-Стокса в размерной форме.
- 2. Начальные и граничные условия к уравнениям Навье-Стокса.
- 3. Система уравнений Навье-Стокса в безразмерной форме.
- 4. Числа и критерии подобия.
- 5. Условия гидромеханического подобия.
- 6. Пи-теорема размерностей.
- 7. Примеры применения системы уравнений Навье-Стокса в машиностроении.

Предусмотрены занятия лекционного (лекции) типа.

- 1. Какие уравнения входят в систему Навье-Стокса?
- 2. Из каких фундаментальных физических законов выводятся уравнения Навье-Стокса?
- 3. В чем отличие уравнений Навье-Стокса для жидкостей и для газов?
- 4. Как упрощаются уравнения Навье-Стокса для стационарных течений?
- 5. Какие граничные и начальные условия необходимо задать к уравнениям Навье-Стокса?
- 6. Зачем уравнения Навье-Стокса приводят к безразмерной форме?
- 7. Как определить число Эйлера?
- 8. Как определить число Фруда?
- 9. Как определить число Струхала?
- 10. В чем различие понятий числа подобия и критерии подобия?
- 11. Назовите условия гидромеханического подобия течений.
- 12. Сформулируйте Пи-теорему размерностей.
- 13. Приведите примеры применения системы уравнений Навье-Стокса в машиностроении.

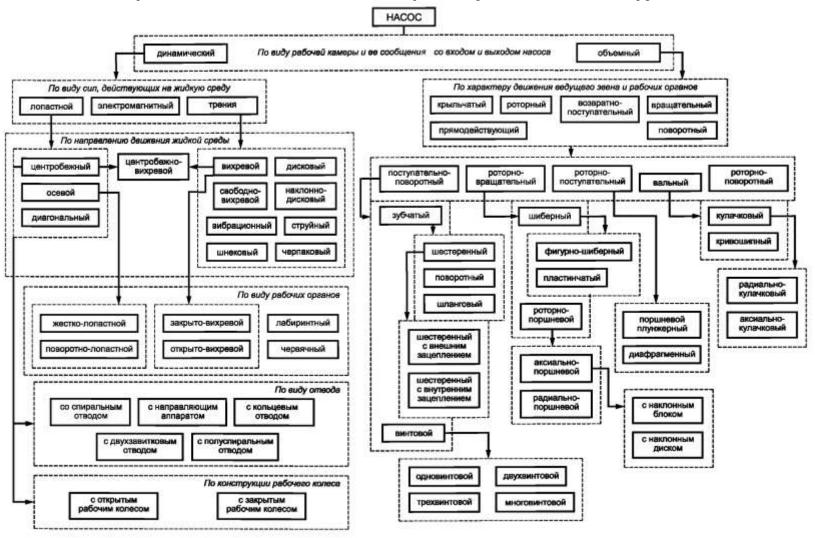
2 Методические указания по выполнению самостоятельной работы студентов

Самостоятельная работа студентов является обязательной частью образовательного процесса. Наряду с изучением лекционного материала необходимо самостоятельно более подробно рассмотреть указанные в данном пособии темы. Подготовка к практическим занятиям заключается в изучении теоретического материала с использованием учебнометодических пособий в области прикладной математики. Только после этого можно приступать к выполнению практических заданий.

После проработки теоретического материала, выполнения практической работы нужно ответить на вопросы для самоконтроля. Ответы должны быть развернутыми, опираться на данные из учебнометодических пособий, дополнительной литературы, материалов исследований и своего опыта.

При освоении данной дисциплины студент должен выполнить курсовую работу, пройти тестирование.

При выполнении курсовой работы следует придерживаться следующих правил:


- исходные данные должны полностью соответствовать варианту;
- все решения необходимо сопровождать пояснениями и подробными вычислениями.

Курсовую работу рекомендуется начинать выполнять сразу после прослушивания необходимого теоретического материала на лекциях, выполнения соответствующих заданий на практических занятиях.

3 Библиографический список

- 1. ГОСТ Р 8.770-2011. Коэффициент динамической вязкости сжатого газа с известным компонентным составом. Метод расчетного определения. Москва: Стандартинформ, 2012. 24 с.
- 2. ГОСТ ISO 17769-1-2014. Насосы жидкостные и установки. Основные термины, определения, количественные величины, буквенные обозначения и единицы измерения. Москва: Стандартинформ, 2015.— 69 с.
- 3. ГОСТ 33967-2016. Насосы центробежные для перекачивания вязких жидкостей. Поправки к рабочим характеристикам. Москва: Стандартинформ, 2017. 18 с.
- 4. Маталин, А. А. Технология машиностроения: учебник / А. А. Маталин. Санкт-Петербург: Лань, 2010. 512 с.
- 5. Башта, Т. М. Машиностроительная гидравлика: учебник / Т. М. Башта. Москва: Машиностроение, 1971. 672 с.
- 6. Абрамович, Г. Н. Прикладная газовая динамика: учебник / Г. Н. Абрамович. Москва: Наука, 1976. 888 с.
- 7. Лойцянский, Л. Г. Механика жидкости и газа: учебник / Л. Г. Лойцянский. Москва: Наука, 1978. 736 с.
- 8. Сергель, О. С. Прикладная гидрогазодинамика: учебник / О. С. Сергель. Москва: Машиностроение, 1981. 374 с.
- 9. Юдаев, Б. Н. Теплопередача: учебник / Б. Н. Юдаев. Москва: Высшая школа, 1981. 319 с.
- 10. Нитусов, В. В. Гидрогазодинамика: учеб. пособие / В. В. Нитусов, В. Г. Грибин. Москва: МЭИ, 2007. 79 с.
- 11. Дорошенко, В. А. Объемный гидро- и пневмопривод: учеб. пособие / В. А. Дорошенко. Екатеринбург: Изд-во Урал. ун-та, 2019. 196 с.
- 12. Моргунов, К. П. Основы теории гидропривода: учеб. пособие / К. П. Моргунов, Ю. К. Ивановский. Москва: Изд-во Лань, 2022. 200 с.

Приложение А. Виды насосов по принципу действия и конструкции

ВОПРОСЫ ДЛЯ ПРОВЕДЕНИЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 1. Основные свойства жидкостей и газов.
- 2. Основные типы и свойства плазмы.
- 3. Механика жидкости газа и плазмы, ее составные части.
- 4. Модели гидромеханики и гидравлики в машиностроении.
- 5. Модели газодинамики в машиностроении.
- 6. Модели плазмы в машиностроении.
- 7. Одномерное уравнение динамики течения газа в канале. Число Маха.
- 8. Расчет параметров газовой смеси.
- 9. Зависимость массового расхода компрессора от давления.
- 10. Газодинамическая характеристика трубопровода.
- 11. Параметры рабочей точки компрессорной системы.
- 12. Профили газодинамических переменных вдоль трубопровода.
- 13. Уравнение Бернулли капельной жидкости и для газов при невысоких скоростях.
- 14. Гидравлические потери напора по длине трубопровода и в местных сопротивлениях.
- 15. Методы гидравлического расчета течения жидкости в простом трубопроводе без ветвления.
- 16. Применение в машиностроении трубопроводов с ветвлением.
- 17. Классификация насосов, применяемых в машиностроении.
- 18. Технические параметры насосов.
- 19. Номинальные и фактические значения.
- 20. Рабочие характеристики центробежных насосов.
- 21. Осевые насосы. Коэффициент быстроходности.
- 22. Объемные насосы. Поршневые и плунжерные насосы.
- 23. Объемные насосы. Винтовые и шестеренные насосы.
- 24. Основные типы компрессоров, применяемых в машиностроении.
- 25. Гидропривод. Структурно-элементная схема и назначение.
- 26. Пневмопривод. Основные элементы и назначение.
- 27. Агрегаты распределения жидкости.
- 28. Предохранительные и редукционные клапаны.
- 29. Дроссельные регулирующие устройства.
- 30. Гидравлические усилители.
- 31. Вспомогательные гидроагрегаты.
- 32. Система уравнений Навье-Стокса в размерной форме.
- 33. Начальные и граничные условия к уравнениям Навье-Стокса.
- 34. Система уравнений Навье-Стокса в безразмерной форме.
- 35. Числа и критерии подобия. Условия гидромеханического подобия.
- 36. Пи-теорема размерностей.
- 37. Примеры применения системы уравнений Навье-Стокса в машиностроении.

Локальный электронный методический материал

Владимир Аркадьевич Наумов

ГАЗОГИДРОДИНАМИЧЕСКИЕ ПРОЦЕССЫ ПРИ ПРОИЗВОДСТВЕ ИЗДЕЛИЙ МАШИНОСТРОЕНИЯ

Редактор Е. Билко

Уч.-изд. л. 1,5. Печ. л. 1,1