

# Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Начальник УРОПСП

Фонд оценочных средств (приложение к рабочей программе модуля) «ТЕХНОЛОГИЯ СУДОСТРОЕНИЯ»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

#### 26.03.02КОРАБЛЕСТРОЕНИЕ, ОКЕАНОТЕХНИКА И СИСТЕМОТЕХНИКА ОБЪЕКТОВ МОРСКОЙ ИНФРАСТРУКТУРЫ

Профиль программы **«КОРАБЛЕСТРОЕНИЕ»** 

ИНСТИТУТ РАЗРАБОТЧИК морских технологий, энергетики и строительства

кафедра кораблестроения

#### 1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными индикаторами достижения компетенций

|                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Код и наименование компетенции                                                                                                                                                                                                                                                                                                                                                                                                                       | Индикаторы<br>достижения<br>компетенции                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Дисциплина              | Результаты обучения (владения, умения и знания), соотнесенные с компетенциями/индикаторами достижения компетенции                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ПКС-1 Выполнение проектно- конструкторской документации и подготовка документов при техническом сопровождении производства судов, плавучих сооружений, аппаратов и их составных частей;  ПКС-2 Разработка и модернизация проектов, техническое сопровождение производства судов, плавучих сооружений, аппаратов и их составных частей;  ПКС-4 Организация строительства (ремонта) корабля (судна) по двум и более взаимосвязанным направлениям работ | ПКС-1.3 Проработка проектно-конструкторской документации в процессе строительства, модернизации судов, плавучих сооружений, аппаратов и их составных частей;  ПКС-2.1 Разработка и согласование комплектов технологической документации при проведении теоретических и экспериментальных исследований для создания проектов новых образцов судов, плавучих сооружений, аппаратов и их составных частей;  ПКС-4.3 Организация проведения отдельных этапов швартовных и ходовых испытаний корабля (судна) | Технология судостроения | Знать: - методы технологической проработки проектируемых судов (кораблей), средств океанотехники, их корпусных конструкций, устройств, систем и оборудования; -методы обеспечения технологичности и ремонтопригодности судостроительной техники, уровня унификации и стандартизации; - содержание, методы проектирования, планирования и контроля качества технологических процессов изготовления морской техники; - средства технологического оснащения постройки морской техники, методы обеспечения ее эффективного применения.  Уметь: - проектировать прогрессивные технологические процессы изготовления и испытания морской техники; - выполнять обоснование выбора средств технологического оснащения.  Владеть: - методами технического контроля качества выполнения технологических операций при изготовлении элементов морской техники |

## 2 ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПОЭТАПНОГО ФОРМИРОВАНИЯ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ (ТЕКУЩИЙ КОНТРОЛЬ) И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 2.1 Для оценки результатов освоения дисциплины используются:
- оценочные средства текущего контроля успеваемости;
- оценочные средства для промежуточной аттестации по дисциплине.
- 2.2 К оценочным средствам текущего контроля успеваемости относятся:
- типовые задания экспресс-контроля по отдельным темам;
- типовые задания и контрольные вопросы по лабораторным работам;
- тестовые задания по дисциплине.
- 2.3 К оценочным средствам для промежуточной аттестации по дисциплине, проводимой в форме зачёта и экзамена, относятся:
  - вопросы и/или задания по контрольным работам;
  - контрольные вопросы по дисциплины;
- промежуточная аттестация в форме зачета проходит по результатам прохождения всех видов текущего контроля успеваемости;
  - типовые задания и контрольные вопросы по курсовому проекту;
  - экзаменационные вопросы.

#### 3 ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

3.1 Задания для экспресс-контроля используются для оценки освоения дисциплины студентами (Приложение №1). Экспресс-контроль обучающихся проводится на занятиях после рассмотрения на лекциях базовых тем дисциплины:

Задание №1 по теме – «Плазовые работы»;

Задание №2 по теме – «Предварительная обработка металла и его резка»;

Задание №3 по теме – «Предварительная сборка и сварка судовых корпусных конструкций»;

Задание №4 по теме – «Сборочно-сварочные работы на стапеле и спуска судов на воду»;

Задание №5 по теме – «Подготовка и монтаж судового насыщения при достроечных работах»;

Задание №6 по теме – «Испытания и сдача судов»;

3.2 Типовые задания и контрольные вопросы по лабораторным работам, предусмотренным рабочей программой дисциплины приведены в приложении №2. Целью

выполнения таких работ также является углубление полученных теоретических знаний и приобретение практических навыков в проектировании и выполнении всех этапов создания судна. Оценка результатов выполнения задания по каждой лабораторной работе производится при представлении студентом отчета по лабораторной работе, демонстрации преподавателю исполнения необходимых расчетов и графических построений, а также на основании ответов студента на вопросы по тематике работы. Студент, выполнивший задание и продемонстрировавший знание использованных им средств и приемов разработки элементов технологии и анализа полученных результатов получает по лабораторной работе оценку «зачтено».

3.3 Курсовой проект по технологии постройки морской техники выполняется по индивидуальному заданию для очной формы обучения в седьмом семестре, для заочной формы обучения в восьмом семестре. Целью проекта является формирование умений и навыков, необходимых для проектирования технологических процессов изготовления морской техники. Задание, предполагает применение и закрепление знаний в области технологии судостроения, полученных при освоении дисциплины и во время учебной и производственной практик.

Типовое содержание задания на курсовое проектирование, порядок выполнения и приемки проекта, требования к его оформлению и типовая структура проекта с перечнем основных вопросов приведенных в приложении №3.

Подробные указания по выполнению разделов курсового проекта содержатся в методических указаниях по курсовому проектированию для бакалавров по направлению подготовки 26.03.02.

3.4 Тестовые задания по дисциплине представлены в приложении №7, ключи правильных ответов – в приложении №8.

#### 4 ОЦЕНОЧНЫЕ СРЕДСТВА ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

- 4.1 В соответствии с учебным планом заочной формы обучения по дисциплине предусмотрена контрольная работа. В приложении №4 представлены вопросы по контрольным работам по дисциплине.
- 4.2 Промежуточная аттестация по дисциплине проводится в шестом семестре в форме зачета. Контрольные вопросы по дисциплине, которые при необходимости могут быть использованы для промежуточной аттестации содержатся в приложении №5. Допуск к зачету выставляется студенту, успешно выполнившему лабораторные работы первого семестра

обучения и получившему положительные оценки по результатам экспресс-контроля знаний. Промежуточная аттестация проходит по результатам прохождения всех видов текущего контроля успеваемости.

- 4.3 Промежуточная аттестация по дисциплине проводится в форме экзамена для очной формы обучения в седьмом семестре. К экзамену допускаются студенты:
- положительно аттестованные по результатам освоения дисциплины в седьмом семестре;
- получившие положительную оценку по результатам лабораторного практикума в седьмом семестре;
  - получившие положительную оценку по курсовому проекту.

В приложении № 6 приведены экзаменационные вопросы по дисциплине в седьмом семестре. Экзаменационный билет содержит три экзаменационных вопроса.

4.4 Экзаменационная оценка («отлично», «хорошо», «удовлетворительно» или «неудовлетворительно») является экспертной и зависит от уровня освоения студентом тем дисциплины: наличная и существенности ошибок, допущенных студентом при ответе на экзаменационные вопросы.

При промежуточной аттестации по дисциплине учитываются оценки студента по лабораторному практикуму и курсовой работе.

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 - балльную (процентную) систему и правило перевода оценок в пятибалльную систему.

Таблица 4 – Система оценок и критерии выставления оценки

| Система        | 2                    | 3              | 4                | 5                  |
|----------------|----------------------|----------------|------------------|--------------------|
| оценок         | 0-40%                | 41-60%         | 61-80 %          | 81-100 %           |
|                | «неудовлетворитель-  | «удовлетвори-  | //уорошо\\       | «отлично»          |
|                | но»                  | тельно»        | «хорошо»         | «отлично»          |
| Критерий       | «не зачтено»         |                | «зачтено»        |                    |
| 1. Системность | Обладает частичными  | Обладает       | Обладает         | Обладает полнотой  |
| и полнота      | и разрозненными      | минимальным    | набором знаний,  | знаний и системным |
| знаний в       | знаниями, которые не | набором        | достаточным для  | взглядом на        |
| отношении      | может научно-        | знаний,        | системного       | изучаемый объект   |
| изучаемых      | корректно связывать  | необходимым    | взгляда на       |                    |
| объектов       | между собой (только  | для системного | изучаемый объект |                    |
|                | некоторые из которых | взгляда на     |                  |                    |
|                | может связывать      | изучаемый      |                  |                    |
|                | между собой)         | объект         |                  |                    |

| оценок Критерий 2. Работа с информацией | 0-40%  «неудовлетворительно»  «не зачтено»  Не в состоянии находить необходимую информацию, либо в состоянии находить отдельные фрагменты информации в рамках поставленной задачи  Не может делать научно корректных | 41-60% «удовлетворительно»  Может найти необходимую информацию в рамках поставленной задачи  В состоянии осуществлять | 61-80 %  «хорошо»  «зачтено»  Может найти, интерпретировать и систематизироват ь необходимую информацию в рамках поставленной задачи  В состоянии | 81-100 %  «отлично»  Может найти, систематизировать необходимую информацию, а также выявить новые, дополнительные источники информации в рамках поставленной задачи  В состоянии |
|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Работа с информацией                 | но»  «не зачтено»  Не в состоянии находить необходимую информацию, либо в состоянии находить отдельные фрагменты информации в рамках поставленной задачи  Не может делать                                            | тельно»  Может найти необходимую информацию в рамках поставленной задачи  В состоянии                                 | «зачтено» Может найти, интерпретировать и систематизироват ь необходимую информацию в рамках поставленной задачи В состоянии                      | Может найти, систематизировать необходимую информацию, а также выявить новые, дополнительные источники информации в рамках поставленной задачи В состоянии                       |
| 2. Работа с информацией                 | Не в состоянии находить необходимую информацию, либо в состоянии находить отдельные фрагменты информации в рамках поставленной задачи  Не может делать                                                               | необходимую информацию в рамках поставленной задачи В состоянии                                                       | Может найти, интерпретировать и систематизироват ь необходимую информацию в рамках поставленной задачи  В состоянии                               | систематизировать необходимую информацию, а также выявить новые, дополнительные источники информации в рамках поставленной задачи  В состоянии                                   |
| информацией                             | находить необходимую информацию, либо в состоянии находить отдельные фрагменты информации в рамках поставленной задачи  Не может делать                                                                              | необходимую информацию в рамках поставленной задачи В состоянии                                                       | интерпретировать и систематизироват ь необходимую информацию в рамках поставленной задачи  В состоянии                                            | систематизировать необходимую информацию, а также выявить новые, дополнительные источники информации в рамках поставленной задачи  В состоянии                                   |
|                                         | , ,                                                                                                                                                                                                                  |                                                                                                                       | В состоянии                                                                                                                                       | рамках<br>поставленной<br>задачи<br>В состоянии                                                                                                                                  |
|                                         | , ,                                                                                                                                                                                                                  |                                                                                                                       |                                                                                                                                                   |                                                                                                                                                                                  |
| 3. Научное                              | научно корректных                                                                                                                                                                                                    | осуществлять                                                                                                          | l                                                                                                                                                 | İ                                                                                                                                                                                |
| осмысление                              |                                                                                                                                                                                                                      | •                                                                                                                     | осуществлять                                                                                                                                      | осуществлять                                                                                                                                                                     |
| изучаемого                              | выводов из имеющихся                                                                                                                                                                                                 | научно                                                                                                                | систематический и                                                                                                                                 | систематический и                                                                                                                                                                |
| явления,                                | у него сведений, в                                                                                                                                                                                                   | корректный                                                                                                            | научно                                                                                                                                            | научно-корректный                                                                                                                                                                |
| процесса,                               | СОСТОЯНИИ                                                                                                                                                                                                            | анализ                                                                                                                | корректный                                                                                                                                        | анализ                                                                                                                                                                           |
| объекта                                 | проанализировать                                                                                                                                                                                                     | предоставленн ой информации                                                                                           | анализ<br>предоставленной                                                                                                                         | предоставленной информации,                                                                                                                                                      |
|                                         | только некоторые из имеющихся у него сведений                                                                                                                                                                        | ои информации                                                                                                         | предоставленной информации, вовлекает в исследование новые релевантные задаче данные                                                              | информации,<br>вовлекает в<br>исследование новые<br>релевантные<br>поставленной<br>задаче данные,<br>предлагает новые<br>ракурсы<br>поставленной<br>задачи                       |
| 4. Освоение                             | В состоянии решать                                                                                                                                                                                                   | В состоянии                                                                                                           | В состоянии                                                                                                                                       | Не только владеет                                                                                                                                                                |
| стандартных                             | только фрагменты                                                                                                                                                                                                     | решать                                                                                                                | решать                                                                                                                                            | алгоритмом и                                                                                                                                                                     |
| алгоритмов                              | поставленной задачи в                                                                                                                                                                                                | поставленные                                                                                                          | поставленные                                                                                                                                      | понимает его                                                                                                                                                                     |
| решения                                 | соответствии с                                                                                                                                                                                                       | задачи в                                                                                                              | задачи в                                                                                                                                          | основы, но и                                                                                                                                                                     |
| профессиональ<br>ных задач              | заданным алгоритмом, не освоил предложенный алгоритм, допускает ошибки                                                                                                                                               | соответствии с заданным алгоритмом                                                                                    | соответствии с заданным алгоритмом, понимает основы предложенного алгоритма                                                                       | предлагает новые решения в рамках поставленной задачи                                                                                                                            |

#### 5 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Технология судостроения» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 26.03.02 Кораблестроение, океанотехника и системотехника морской инфраструктуры (профиль «Кораблестроение»).

Фонд оценочных средств рассмотрен и одобрен на заседании кафедры кораблестроения (протокол № 6а от 25.04.2022 г.)

Заведующий кафедрой

С.В. Дятченко

Приложение № 1

#### ТИПОВЫЕ ЗАДАНИЯ ЭКСПРЕСС-КОНТРОЛЯ ПО ДИСЦИПЛИНЕ «ТЕХНОЛОГИЯ СУДОСТРОЕНИЯ»

Задание №1 по теме «Плазовые работы»

#### Вариант 1

- 1. Назначение плаза, основные работы.
- 2. Основные признаки, по которым можно определить, что данный участок обшивки можно развернуть методом Егорова.

#### Вариант 2

- 1. Как проверить качество разбивки сетки на плазе.
- 2. Основные признаки, по которым можно определить, что данный участок обшивки корпуса целесообразно развернуть методом Челнокова.

#### Вариант 3

- 1. Основная исходная документация для разбивки плаза.
- 2. Основные признаки, по которым можно определить, что данный участок обшивки корпуса следует разворачивать методом геодезических линий.

#### Вариант 4

- 1. Последовательность действий по растяжке продольной линии на проекции корпус (плаза, кромки стрингера и др.).
  - 2. Признаки плавности кривой при работе с аналитическим плазом.

Задание №2 по теме – «Предварительная обработка металла и его резка»

#### Вариант 1

- 1. Перечислите оборудование для правки листового металла.
- 2. Перечислите оборудование для механической резки листового металла с кратким указанием области применения.

#### Вариант 2

- 1. Каков диапазон толщин обрабатываемого металла на правильных вальцах?
- 2. Опишите принцип кислородной резки металла. Укажите ограничения по применимости метода.

#### Вариант 3

- 1. Основные требования к листу металла, пригодному правке растяжением.
- 2. Принципы управления газорезательными машинами в зависимости от типа плазовой оснастки.

#### Вариант 4

- 1. Перечислите способы очистки листового металла толщиной до 4 мм.
- 2. Как согнуть парусовидный лист на вальцах?

Задание №3 по теме – «Предварительная сборка и сварка судовых корпусных конструкций»

#### Вариант 1

- 1. Технические условия деления судна на сборочные единицы-конструкции предварительной сборки и сварки.
  - 2. Классификация объектов предварительной сборки по конструктивным признакам.

#### Вариант 2

- 1. Классификация объектов предварительной сборки и сварки по технологическим признакам.
- 2. Общая характеристика сборочно-сварочного производства по оснастке и грузоподъемным средствам.

#### Вариант 3

- 1. Общая характеристика сборочно-сварочного производства по оборудованию и механизированному инструменту на стационарных местах.
- 2. Структурная схема технологического процесса предварительной сборки корпусных конструкций, типовой состав элементов.

#### Вариант 4

- 1. Структурная схема технологического процесса сварки корпусных конструкций, типовой состав элементов.
  - 2. Типы и методы выполнения сопряжений при сборке корпусных конструкций.

#### Вариант 5

- 1. Общие понятия о вариантах изготовления корпусных конструкций.
- 2. Основной состав и средства выполнения контрольных операций при предварительной сборке конструкций.

#### Вариант 6

- 1. Основные положения методики исследования корпусных операций.
- 2. Технологические особенности изготовления узлов корпусных конструкций.

#### Вариант 7

- 1. Технологические особенности сборки корпусных модуль-панелей.
- 2. Технологические особенности изготовления плоскостных секций корпуса.

#### Вариант 8

- 1.Состав оборудования и технологические операции на механизированных поточных линиях изготовления плоскостных конструкций.
  - 2. Технологическая характеристика типов полуобъемных секций.

#### Вариант 9

- 1. Технологические особенности изготовления полуобъемных секций по наружной общивке.
- 2. Технологические особенности изготовления днищевых секций на настиле двойного дна.

#### Вариант 10

- 1. Технологическая характеристика объемных высокобортных секций.
- 2. Технологические особенности изготовления высокобортных секций носовой оконечности судна.

#### Вариант 11

- 1. Основные типы универсальных сборочно-сварочных постелей для сборки полуобъемных секций, конструктивные особенности.
  - 2. Особенности изготовления блоков надстроек.

#### Вариант 12

- 1. Технологические особенности изготовления конструкций из легких сплавов.
- 2. Сварка конструкций из сплавов и их соединение со стальными конструкциями.

Задание №4 по теме – «Сборочно-сварочные работы на стапеле и спуск судов на воду»

#### Вариант 1

- 1. Способы формирования корпусов судов на стапеле.
- 2. Основное оборудование стапельного производства.

#### Вариант 2

- 1. Основные требования к технологической подготовке стапельного производства.
- 2. Классификация стапельных работ.

#### Вариант 3

- 1. Общие правила разбивки корпуса судна на построечные элементы.
- 2. Основные типы и виды стапельной оснастки.

#### Вариант 4

1. Учет конструктивных и технологических факторов при разбивке корпуса на построечные элементы.

2. Принципиальная схема расчета количества опорных устройств на стапеле.

#### Вариант 5

- 1. Типовые схемы расположения стапельных опорных устройств.
- 2. Конструкция универсального кильблока.

#### Вариант 6

- 1. Виды и типы наружных стапельных лесов.
- 2. Основные виды проверочных работ на стапеле.

#### Вариант 7

- 1. Проверочные работы при контроле стапельных устройств.
- 2. Проверочные работы при установке днищевой секции на стапеле.

#### Вариант 8

- 1. Проверочные работ при установке бортовой секции на стапеле.
- 2. Перечень сборочных работ при стыковке блоков корпуса судна.

#### Вариант 9

- 1. Последовательность сварки монтажного кольцевого стыка при соединении 2 построечных блоков корпуса.
  - 2. Общая технологическая характеристика спуска судов с продольного стапеля.

#### Вариант 10

- 1. Общая технологическая характеристика спуска судов с горизонтального стапеля с использованием плавучего дока.
  - 2. Теоретические положения продольного спуска судна с наклонного стапеля.

#### Вариант 11

- 1. Общая технологическая характеристика поперечного спуска судов с использованием механизированного слипа.
- 2. Принципиальная схема расчета судового устройства и тяговых тросов при поперечном спуске судов.

Задание №5 по теме – «Подготовка и монтаж судового насыщения при достроечных работах»

#### Вариант 1

- 1. Технологические требования по монтажу легких переборок и выгородок внутри помещений.
  - 2. Основной состав и технология установки доизоляционного насыщения.

#### Вариант 2

- 1. Виды изоляции, применяемые в судостроении, основные характеристики.
- 2. Состав древообделочных работ на судне.

#### Вариант 3

- 1. Понятие о модульной системе для монтажной изоляции.
- 2. Технология проведения окрасочных работ снаружи судна, характеристика покрытий.

#### Вариант 4

- 1. Технологические особенности монтажа судовой вентиляции.
- 2. Основы расчета технологических параметров гибки труб.

#### Вариант 5

- 1. Технологические особенности монтажа швартовного и якорного устройства.
- 2. Основной состав оборудования и технологического оснащения для гибки труб.

#### Вариант 6

- 1. Технология изготовления узлов судовых трубопроводов.
- 2. Технология нанесения защитного покрытия внутри помещений судна.

#### Вариант 7

- 1. Состав элементов отделки и оборудования судовых помещений.
- 2. Методы пробивки оси линии валопровода особенности монтажа судового валопровода.

#### Вариант 8

- 1. Технические требования на проведение электромонтажных работ на судне.
- 2. Технологические требования по монтажу судового двигателя и судового котла.

Задание №6 по теме – «Испытания и сдача судов»

#### Вариант 1

- 1. Основные требования к стендовым испытаниям судовых механизмов.
- 2. Основные исходные документы для проведения швартовных испытаний.

#### Вариант 2

- 1. Объекты и основные положения швартовных испытаний механизмов.
- 2. Основные проверки водонепроницаемости корпуса судна.

#### Вариант 3

- 1. Объекты и основные положения ходовых испытаний механизмов.
- 2. Состав работ по проверке соответствия главных размерений судна.

#### Вариант 4

1. Основные исходные документы для проведения ходовых испытаний.

2. Оценка правильности нанесения ватерлинии и марок углублений.

#### Вариант 5

- 1. В каких приемках принимает участие инспекция Регистра РФ, задачи приемок.
- 2. Как проверяется мощность главного двигателя при ходовых испытаниях.

#### Вариант 6

- 1. Какие документы оформляются после проведения окончательных приемок.
- 2. Основные имитационные способы испытаний эксплуатационных нагрузок на швартовах.

#### Вариант 7

- 1. Основные конструктивные элементы плавучей потоконаправляющей камеры.
- 2. Требования к испытанию рулевого устройства судна.

#### Вариант 8

- 1. Технические особенности испытаний сварных узлов на непроницаемость.
- 2. Требования к монтажу трубопроводов на судне. Установка компенсаторов.

Приложение № 2

<u>Лабораторная работа №1</u>: «Развертка поверхности корпуса судна методом Челнокова» Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями и понятиями по развертке поверхности листов наружной обшивки корпуса судна, растяжки их образующих: продольных и поперечных линий.
- 2. Ознакомиться с графо-расчетным методом Челнокова развертки криволинейных листов.
  - 3. Произвести развертку заданного листа на масштабном плазе методом Челнокова.
- 4. Произвести проверку развертки листа диагональным методом; определить погрешность развертки, необходимость введения поправок на пластические деформации при гибке.
  - 5. Произвести корректировку развертки листа.
  - 6. Оформить отчет, сделать выводы.

Контрольные вопросы:

- 1. Для чего проводятся растяжки линий и развертки поверхностей корпуса.
- 2. По каким признакам и как классифицируются линии корпуса для их растяжки.
- 3. Какие операции выполняются при развертке листа методом Челнокова?
- 4. Каковы признаки целесообразности использования методы Челнокова для развертки листа?

<u>Лабораторная работа №2</u>: «Развертка поверхности корпуса судна методом геолезических линий»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по развертке листа методом геодезических линий.
- 2. Произвести развертку заданного листа методом геодезических линий с расчетом значений отклонений в табличной форме.
- 3. Произвести проверку развертки листа диагональным методом и, при необходимости, ввести поправки на пластические деформации.
  - 4. Произвести корректировку развертки листа корпуса.
  - 5. Оформить отчет, сделать выводы.

Контрольные вопросы:

- 1. Какая проекция судоремонтного плаза принимается за базовую для построения разверток листов.
  - 2. Что такое геодезическая линия?
- 3. Каковы признаки целесообразности использования метода геодезических линий для развертки листа?
  - 4. Какие операции выполняются при развертке листа методом геодезических линий?
- 5. В каких случаях развертки листовых деталей требуются введение поправок на пластические деформации?

<u>Лабораторная работа №3</u>: «Механическая резка металла в корпусообрабатывающем производстве»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по теме занятия.
- 2. Какие виды механической резки применяются при заготовке корпусных деталей
- 3. Изучить конструкции промышленного оборудования для механической резки, включая гильотину, пресс-ножницы и др.
  - 4. Ознакомиться с конструкцией экспериментального стенда.
  - 5. Провести резку заданных образцов листового металла, обработать результаты.
  - 6. Оформить отчет по работе.

Контрольные вопросы:

- 1. Основные элементы конструкции оборудования для механической резки.
- 2. От чего зависит усилие резки на ножницах?
- 3. Для чего заточка ножей осуществляется с задним углом не равным нулю?
- 4. Какие характерные зоны образуются при резке металла?
- 5. Каковы недостатки механического способа резки?

<u>Лабораторная работа №4</u>: «Гибка листового металла на вальцах при заготовке корпусных деталей»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по теме занятия.
- 2. Ознакомиться с конструкцией макета листогибочныхвальцев.
- 3. Произвести гибку листовых заготовок для заданных значений погиби с проверкой точности по шаблонам, зафиксировать отклонения.
  - 4. Сравнить полученные отклонения погиби листов с нормативными требованиями.

5. Оформить отчет, сделать выводы.

Контрольные вопросы:

- 1. Как классифицируются гнутые листовые детали корпуса судна?
- 2. Устройство гибочных вальцев, их основные характеристики?
- 3. Какие виды холодной гибки листов можно осуществить на вальцах?
- 4. Как осуществляется выбор параметров холодной гибки?
- 5. Как контролируется форма изогнутых деталей?

<u>Лабораторная работа №5</u>: «Гибка листового металла на прессе при заготовке корпусных деталей»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по теме занятия.
- 2. Ознакомиться с конструкцией экспериментального стенда-пресса.
- 3. Произвести гибку листового металла на прессе, зафиксировать результаты гибки, их отклонения.
  - 4. Сравнить полученные отклонения гибки с нормативными требованиями.
  - 5. Оформить отчет, сделать выводы.

Контрольные вопросы:

- 1. Какие виды холодной гибки металла можно выполнить на прессе?
- 2. Конструкция лабораторной установки и ее настройка.
- 3. Как можно проконтролировать форму изогнутых деталей?
- 4. Как влияет свисающая часть листа на усилие гибки?

<u>Лабораторная работа №6</u>: «Экспериментальное исследование технологии сборки днищевой секции с анализом трудоемкости и точности разметочных и проверочных операций»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по теме лабораторной работе с типовыми технологическими элементами сборки, с расчетными формулами для размерного технологического анализа.
- 2. Изучить конструкцию макета сборочной постели и макета днищевой секции, последовательной сборки.

- 3. Собрать макет секции, выполнив при этом сбор статических данных по трудоемкости и точности разметочных, проверочных и сборочных работ.
- 4. Провести обработку полученных данных по трудоемкости и точности сборочных работ, проанализировать полученные результаты.
  - 5. Составить отчет по работе.

Контрольные вопросы:

- 1. Каков состав типовых операций и технологических комплексов приемов при сборке макета днищевой секции?
- 2. Каким образом обеспечивается достоверность результатов хронометражных наблюдений?
  - 3. Каковы фиксажные точки наблюдений при сборке?
- 4. Каков состав контролируемых параметров точности выполнения операций при изготовлении секций? На какие группы она делится?
- 5. Как оценивается координата середины поля рассеивания замыкающего звена при размерном технологическом анализе?
- 6. Каким образом выполняется оценка границ полей рассеивания вероятных значений контролируемых параметров?

<u>Лабораторная работа №7</u>: «Выбор сборочно-сварочной оснастки для сборки секций корпуса судна»

Задание по лабораторной работе:

- 1. Изучить классификационные признаки сборочно-сварочных постелей, для сборки секций корпусов судов, их виды, типы и назначение.
- 2. Ознакомиться с конструкциями и условиями применения специальных и универсальных постелей для основных типов корпусных конструкций.
- 3. Произвести технологический анализ возможного использования близких по удельным показателям сборочно-сварочных постелей для заданной секции, исходя из конструкции постели удобств работ при сборке корпусных конструкций, количества изготавливаемых секций.
- 4. Произвести выбор типа сборочно-сварочной постели графо-расчетным способом на основании удельных показателей изготовления и использования постелей.
  - 5. Оформить конструктивную схему выбранной сборочно-сварочной постели.
  - 6. Составить отчет о работе, сделать выводы.

Контрольные вопросы:

- 1. На какие типы подразделяются сборочно-сварочная оснастка для сборки секций корпуса?
  - 2. Классификация видов специальных сборочно-сварочных постелей.
  - 3. Классификация универсальных сборочно-сварочных постелей.
- 4. Приведите основные нормативные требования, предъявляемые к сборочно-сварочной оснастке.
  - 5. Особенности конструкций специальных сборочно-сварочных постелей.
  - 6. Для каких секций корпуса, используются специальные постели?
  - 7. Особенности конструкций универсальных сборочно-сварочных постелей.
- 8. Для каких конструктивных типов секций эффективно использовать универсальные постели?
  - 9. Содержание графиков, их показателей для выбора сборочно-сварочнойосанстки.

<u>Лабораторная работа №8</u>: «Правка металла растяжением при сборочных работах»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по теме занятия.
- 2. Изучить методы конструкции установок для правки используемых в промышленности.
  - 3. Провести нагружения образцов металла, зафиксировать результаты.
  - 4. Оформить отчет, сделать выводы.

Контрольные вопросы:

- 1. Какие методы правки растяжением применяются в корпусостроительном производстве?
  - 2. В чем особенности конструкций оборудования для растяжения металла?
  - 3. Ограничения для правки растяжением.
  - 4. Какие преимущества правки растяжением?
  - 5. Чем ограничено предельное удлинение металла при правке?

<u>Лабораторная работа №9</u>: «Экспериментальное исследование точности сборки формирования блоков секций»

Задание по лабораторной работе:

- 1. Изучить технические требования к проверочным работам при формировании корпуса надводных судов на построечном месте.
  - 2. Ознакомиться с техникой проведения проверочных работ.
  - 3. Провести проверочные работы точности сборки при формировании блоков секций.

4. Проанализировать полученные данные на базе технических требований к проверочным работам при формировании блока секций.

Контрольные вопросы:

- 1. Какие проверочные работы выполняются на стапеле?
- 2. Какие базовые линии и в каких случаях они наносятся на стапеле?
- 3. Какой проверочный и измерительный инструмент применяется для выполнения проверочных работ при постройке на стапеле?
- 4. Какие линии наносятся на корпусные конструкции для выполнения проверочных работ?
- 5. Перечислить основные технические требования к проверочным работам для заданной конструкции.
- 6. В какой последовательности проводятся проверочные работы для заданной конструкции.

<u>Лабораторная работа №10</u>: «Изучение свойства установочных работ и стапельной оснастки»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по состав установочных работ на стапаеле и стапельной оснасткой.
- 2. Составить технологическую последовательность установочных работ на стапеле с техническими требованиями.
- 3. Произвести подготовку к работе универсальных кильблоков, клеток, спусковых тележек.
  - 4. Определить трудоемкость установочных работ на стапеле.
  - 5. Составить отчет о работе, сделать выводы.

Контрольные вопросы:

- 1. Как отличаются составы установочных работ на стапеле от способа пуска судна?
- 2. Какие технические требования предъявляются к стационарным кильблокам?
- 3. Какие технические требования предъявляются к универсальным кильблокам?
- 4. Как рассчитывается количество спусковых тележек на горизонтальном стапеле?
- 5. Какие виды насадок и покрытий используются для продольного стапеля?
- 6. Как определяется трудоемкость установочных работ на стапеле?

<u>Лабораторная работа №11</u>: «Изучение устройств и технологии работы с лазером, теодолитом-тахеометром»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по современным промышленным методам пробивки базовых и контрольных линий.
- 2. Изучить устройство и характеристики оборудования для пробивки базовых и контрольных линий оптическими методами с помощью теодолита-тахеометра, нивелира, лазера.
- 3. Произвести подготовку теодолита-тахеометра к работе: проверить комплектность, произвести поверку и провести центрирование.
  - 4. По заданию преподавателя произвести измерения углов теодолитом.
- 5. Подготовить лазерные устройство к работе. Произвести с помощью лазера центровку судового механизма.
  - 6. Составить отчет о работе, сделать выводы.

Контрольные вопросы:

- 1. Каково назначение базовых контрольных линий и плоскостей при формировании корпусных конструкций?
- 2. Каково устройство теодолита-тахеометра и как производится его подготовка к работе?
  - 3. Как разделяются теодолиты по точности и конструкции?
  - 4. Что такое «место нуля» вертикального круга (М0) теодолита и как оно вычисляется?
  - 5. Принципиальная схема работы теодолита при измерении углов и нивелирования?
  - 6. Основные функциональные узлы лазерных устройств?
  - 7. Принципиальная схема работы лазерного устройства при центровке механизмов?

<u>Лабораторная работа №12</u>: «Разбивка и проверка стапеля с использованием оптических средств»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по проверочным работам на стапеле и нанесением базовых линий на стапеле.
  - 2. Изучить работу с теодолитом, привести в рабочее состояние.

- 3. Выполнить проверку стапеля на горизонтальность и составить карту отклонений от горизонтальности.
  - 4. Нанести базовые линии (ДП, контрольные шпангоуты и др.) на построечном месте.
  - 5. Определить трудоемкость работ по разметке базовых линий на стапеле.
  - 6. Составить отчет по работе.

Контрольные вопросы:

- 1. Какие проверочные работы выполняются на стапеле?
- 2. Какие требования к точности выполнения работ по подготовке стапеля?
- 3. Какие базовые линии и в каких случаях наносятся на стапеле?
- 4. Какой проверочных и измерительных инструмент применяется при проверке горизонтальности стапеля?
- 5. Какие преимущества при нанесении базовых линий на стапеле имеют оптические средства с обычными инструментами?

<u>Лабораторная работа №13</u>: «Экспериментальное исследование технологии формирования корпуса судна из блоков с анализом трудоемкости и точности разметочных и проверочных операций»

Задание по лабораторной работе:

- 1. Изучить основные технические сведения по проверке закладного блока на стапеле, оценить допускаемые отклонения.
  - 2. Ознакомиться с конструкцией макетов стапеля и блоков судна.
  - 3. Установить теодолит (лазер) в исходное положение, привести в рабочее состояние.
- 4. Провести установочные и проверочные работы при сборке корпуса судна из блоков на макете.
  - 5. Определить трудоемкость работ по сборке корпуса судна из блоков.
  - 6. Составить технический отчет, сделать выводы.

Контрольные вопросы:

- 1. Какие допускаются отклонения при установке закладного блока.
- 2. Как проверяется положение заказного блока корпуса судна?
- 3. Как проверяется положение носового и кормового блока со штевнями?
- 4. Какие опорные устройства используются при формировании корпуса из блоков?
- 5. Принципиальная технология сборки корпуса судна из блоков.
- 6. Из каких основных составляющих складывается общая трудоемкость сборки корпуса из блоков?

<u>Лабораторная работа №14</u>: «Проверка формы и размеров корпуса судна на стапеле с использованием оптических средств»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями по комплексу проверочных работ по корпусу судна.
  - 2. Для проведения проверочных работ привести теодолит в рабочее состояние.
- 3. Проверить положение обводов корпуса судна на стапеле в заданных сечениях плазового корпуса, зафиксировать результаты в карте обмеров.
  - 4. Построить обводы корпуса судна в заданных сечениях.
  - 5. Произвести проверку размеров судна по длине, ширине и высоте.
  - 6. Произвести проверку погиби и седловатости палубы корпуса судна.
  - 7. Составить отчет по работе, сделать выводы.

Контрольные вопросы:

- 1. Как проверяется форма корпуса судна на стапеле?
- 2. Какие отклонения допускаются при проверке поперечных сечений корпуса судна?
- 3. Как осуществляется проверка размеров корпуса судна?
- 4. Какие допускаемые отклонения регламентируются для длины, ширины и высоты судна, в зависимости от главныхразмерений?
  - 5. Как осуществляют проверку продольных и поперечных переборок в готовом судне?
- 6. Как осуществляют проверку погиби палуб, положения платформ и мостиков в готовом корпусе?

<u>Лабораторная работа №15</u>: «Экспериментальное исследование продольного спуска судна на воду с изучением спусковых устройств»

Задание по лабораторной работе:

- 1. Ознакомиться с основными теоретическими сведениями по спуску судов с наклонного (продольного) стапеля.
- 2. Изучить устройство макета продольного стапеля и схему размещения спусковых устройств.
  - 3. Изучить поведение судна в процессе спуска с наклонного стапеля.
- 4. Произвести спуски модели судна (с углов больше 3<sup>0</sup>), при которых происходит нормальный спуск без опрокидывания и соскакивания. Экспериментальным путем установить угол наклона стапеля, при котором происходит опрокидывание.

- 5. Экспериментальным путем добиться ликвидации опрокидывания судна тремя способами: установкой кормового понтона, балластировкой носовой части выдвижением спусковых дорожек. Зафиксировать результаты замеров.
- 6. Меняя угол наклона стапеля установить значение угла, при котором происходит соскакивание судна.
- 7. Экспериментальным путем добиться ликвидации соскакивания судна тремя вышеперечисленными способами.
  - 8. Оформить отчет по работе, сделать выводы.

Контрольные вопросы:

- 1. На какие основные периоды разделяют спуск судна с продольного стапеля?
- 2. Какие силы действуют на судно в каждом периоде спуска с продольного стапеля?
- 3. Из каких основных элементов состоит продольный стапель?
- 4. Каковы основные элементы спускового устройства при спуске судов с продольного стапеля? Каково их назначение?
  - 5. Какие имеются способы уменьшения сил трения?
- 6. Каковы основные причины соскакивания и опрокидывания судна при спуске с продольного стапеля?
- 7. Какие методы применяются для ликвидации соскакивания и опрокидывания судна при спуске?
- 8. Какова последовательность выполнения предспусковых и спусковых работ при спуске судна с продольного стапеля?

<u>Лабораторная работа №16</u>: «Экспериментальное исследование подъема и спуска судна с использованием механизированного слипа и с изучением спусковых устройств»

Задание по лабораторной работе:

- 1. Ознакомиться с основными теоретическими сведениями по спуску судов с механизированного слипа.
- 2. Изучить устройство макета механизированного поперечного слипа и схему размещения спусковых устройств.
- 3. Изучить методику проведения измерений усилий в тросах привода тележек слипа, состав устройств для замера усилий.
- 4. Рассчитать по заданному спусковому весу судна количество спусковых дорожек, расстояние между ними, максимальное тяговое усилие в тросах при подъеме тележки и другие параметры механизированного слипа.

- 5. Провести спуски модели судна с замером продолжительности периодов спуска, включая пересадку с горизонтальных тележек на наклонные поперечные тележки.
- 6. Экспериментальным путем определить усилия, возникающие в нитях, имитирующих тросы при подъеме и спуске судна.
  - 7. Оформить результаты работы, сделать выводы.

Контрольные вопросы:

- 1. На какие основные периоды разделяют спуск судна с механизированного слипа.
- 2. На какие периоды разделяется подъем судна через поперечный слип.
- 3. Состав конструкции наклонных дорожек механизированного слипа.
- 4. Основные элементы спускового устройства механизированного слипа.
- 5. Состав устройства для замера усилий в нитях (тросах).
- 6. Исходя из каких условий рассчитывается количество спусковых дорожек слипа.
- 7. Какие параметры входят в расчет максимального тягового усилия при подъеме тележки.

<u>Лабораторная работа №17</u>: «Экспериментальное исследование подъема и спуска судна с использованием передаточного плавучего дока и изучением его оборудования»

Задание по лабораторной работе:

- 1. Ознакомиться с общими сведениями по устройству и оборудованию плавучих передаточных доков.
- 2. Ознакомиться с моделью судна, док-моделью и его оснащением и последовательностью работ по докованию судна.
- 3. Разработать доковый чертеж для заданного судна, провести необходимые расчеты, установить опорную доковую оснастку.
- 4. Разработать технические указания на последовательность работ по вводу и выводу судна из дока.
- 5. Провести эксперимент по постановке модели судна в док-модель и его выводу с хронометражным наблюдением доковых работ, обработать данные.
  - 6. Оформить отчет, сделать выводы.

Контрольные вопросы:

- 1. Каков состав основных устройств и оборудования плавучих доков?
- 2. Что входит в состав докового чертежа, порядок его расчета и построения?
- 3. Основные требования по подготовке судна к докованию?
- 4. Основные требования по подготовке дока к докованию судна?

- 5. Какие имеются способы центровки судов в плавучих доках?
- 6. Что необходимы предпринять при осушении дока, если крен судна превысил 1.5°?
- 7. Как определяется вес балласта для создания балластирующего момента?
- 8. Каковы основные типы и конструкции кильблоков?
- 9. Каковы основные типы и конструкции доковых клеток?
- 10. Как определяется нагрузка на кильблоках и шаг установки кильблоков?
- 11. Как определяется реакция нагрузки на доковую клетку?

<u>Лабораторная работа №18</u>: «Изучение состава трубопроводных работ в цехе и при монтаже на судне»

Задание по лабораторной работе:

- 1. Ознакомиться с основными сведениями и расчетными формулами по теме работы.
- 2. Произвести расчет основных технологических параметров холодной гибки труб для заданного варианта.
  - 3. На основании проведенного расчета произвести разметку и гибку трубы.
- 4. Произвести замеры полученных результатов точности гибки и сравнить их с расчетными, определить относительную погрешность.
  - 5. Оформить отчет по работе, сделать выводы.

Контрольные вопросы:

- 1. Каковы достоинства и недостатки холодной гибки труб?
- 2. Какими деформационными явлениями сопровождается процесс холодной гибки труб?
  - 3. Какие основные параметры определяются в процессе технологических расчетов?
  - 4. Для чего нужна пробка-дорн, какие формы дорна знаете?
  - 5. Где располагается дорн в процессе гибки?
  - 6. Под действием каких сил происходит изгибание трубы при холодной гибке?
  - 7. Как рассчитываются и вводится поправка на пружинение трубы?
- 8. Для чего вводится зазор между дорном и трубой, какова его рекомендованнаявеличина?

<u>Лабораторная работа №19</u>: «Изучение механо-монтажных работ по установке линии валопровода и освоение методов пробивки оси валопровода»

Задание по лабораторной работе:

1. Ознакомиться с основными сведениями по пробивке оси валопровода судна стеклением с помощью теодолита и лазера.

- 2. Изучить технические требования на пробивку оси линии вала с помощью струны (стеклиня), ознакомиться с макетом установки.
- 3. Произвести пробивку валопровода с помощью струны, установить судовой фундамент на заданном расстоянии, определить радиус расточки дейдвудного устройства и другие параметры.
- 4. Изучить технические требования на пробивку световой оси валопровода с использованием теодолита и лазерной оснастки.
- 5. Произвести пробивку оси валопровода по заданию световым методом с помощью теодолита или лазера.
  - 6. оформить отчет, сделать выводы.

Контрольные вопросы:

- 1. Какие основные технические характеристики у зрительной трубы теодолита (невелира)?
  - 2. Чем отличается видимое увеличение от линейного?
  - 3. От каких факторов зависит точность визирования при использовании теодолита?
- 4. Какие технические условия требуются при пробивке линии валопровода с помощью струны?
- 5. Какие технические условия необходимы для пробивки оси валопровода с помощью теодолита, лазера?
  - 6. Как размечаются центры отверстий при пробивке линий струной?
- 7. Как устанавливается и выравнивается судовой фундамента относительно оси (струны) валопровода?
  - 8. От каких факторов зависит точность пробивки оси валопровода с помощью лазера.

Приложение №3

#### ЗАДАНИЕ К КУРСОВОМУ ПРОЕКТИРОВАНИЮ

#### 1. Задание на курсовое проектирование

В задании на курсовой проект указываются конкретные задачи, которые должны быть решены студентом в ходе разработки курсового проекта и исходные данные, необходимые для его выполнения. В числе задач проводятся: общее содержание проекта, наименование конструкций корпуса судна и работ, для которых должна быть спроектирована рабочая технология. Задание заключают две группы исходных данных — тип и номер технического проекта базового судна, а также производственные условия его постройки.

Первая группа данных позволяет студенту получить сведения о размерениях и форме корпуса судна, о толщинах листов обшивки, полотнищ, переборок и настилов, о системе и расположении набора корпуса, о размерах балок набора, о характеристиках сварных соединений и других особенностях конструкций корпуса судна, а также о материале, из которого он изготовлен.

Источниками таких данных являются конструктивные чертежи и другие документы технического проекта заданного судна.

Вторая группа данных включает сведения о серии и годовой программе постройки судов заданного проекта, количестве и грузоподъемности кранового оборудования, типе, размерах и количестве построечных мест, составе спуска судна на воду.

Эти данные записываются преподавателем – руководителем проекта непосредственно в задание на проектирование.

#### 2. Порядок выполнения и приемки проекта

Процесс курсового проектирования разбивается на этапы, на каждом из которых выполняется определенный раздел курсового проекта. На первом этапе разрабатываются принципиальные указания по производственному процессу постройки корпуса судна (раздел 1 проекта), второй этап посвящен разработке принципиальной технологии постройки корпуса судна (раздел 2 проекта), третьим этапом предусмотрена разработка рабочей технологии выполнения заданных работ (раздел 3 проекта).

Курсовой проект выполняется и предъявляется на проверку по этапам в установленные графиком проектирования сроки.

После приема преподавателем всех этапов курсового проекта студент комплектует и оформляет расчетно-пояснительную записку (РПЗ) и чертежи, сдает их преподавателю для окончательной проверки и допуска к защите.

Готовый проект подлежит защите перед комиссией, создаваемой кафедрой кораблестроения. Во время защиты студент должен сжато в течение 10-15 минут доложить о проекте и затем ответить на вопросы членов комиссии и других присутствующих.

Курсовой проект оценивается по четырехбальной системе («отлично», «хорошо», «удовлетворительно», «неудовлетворительно») в зависимости от качества его выполнения и защиты. Проект, получивший неудовлетворительную оценку, подлежит после исправления или доработки повторной защиты. Защищенный курсовой проект сдается на кафедру, где хранится в течении одного года.

#### 3. Требования к оформлению проекта

Общее оформление РПЗ должно соответствовать требованиям ГОСТ 2.105-68 «Общие требования к текстовым документам». Размер листов — 210х297 мм. Текст РПЗ должен быть написан пастой четким, разборчивым почерком, без помарок или напечатан. Отдельные испытания допускаются при условии аккуратного их выполнения. Изложение материала должно быть сжатым и грамотным с правильным применение технических требований и обозначений. Все формулы следует вначале записать в буквенном виде, затем дать разъяснение обозначений, указать числовые значения величин, входящих в формулу, и привести решение.

В РПЗ должны быть сделаны ссылки на все источники информации (литературу и документацию), из которых взяты те или иные данные: методы расчета, формулы, значения различных величин, нормы времени и т.д. С этой целью в конце РПЗ помещается список использованных источников информации, в котором все они пронумерованы.

Формат чертежей, основная надпись и ее содержание должны соответствовать ЕСКД ГОСТ 2.301-68 и ГОСТ 2.104-68, графическое использование чертежей – правилам судостроительного черчения.

#### 4. Указания по типовому содержанию курсового проекта

Полный перечень вопросов, охватываемых содержанием курсового проекта, приведен в нижерасположенной таблице.

#### Содержание РПЗ

|   | Номер<br>раздела и<br>подраздела           | Состав РПЗ                            | Наименование<br>графического материала |
|---|--------------------------------------------|---------------------------------------|----------------------------------------|
|   |                                            | Введение                              |                                        |
|   | 1                                          | Разработка принципиальных указаний по |                                        |
| 1 | производственному процессу постройки судов |                                       |                                        |

| 1.1 | Технологический анализ производственных<br>условий постройки судна                                         |                                                                                                                                                                                                                                       |
|-----|------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.2 | Технологический анализ конструкций корпусов судов                                                          | Эскиз мидель-шпангоута корпуса судна (в РПЗ)                                                                                                                                                                                          |
| 1.3 | Обоснование и принятие решений о схеме формирования корпуса судна и организационном методе его постройки   |                                                                                                                                                                                                                                       |
| 2   | Разработка принципиальной технологии постройки корпуса судна                                               |                                                                                                                                                                                                                                       |
| 2.1 | Разбивка корпуса судна на построечные элементы-секции, блоки секций, объемные насыщенные конструкции (ОНК) | Чертеж-схема разбивки корпуса на построечные элементы со схемой припусков                                                                                                                                                             |
| 2.2 | Обоснование схемы припусков                                                                                | Схема припусков на<br>чертеже разбивки корпуса<br>на построечные элементы                                                                                                                                                             |
| 2.3 | Принципиальные указания по технологии изготовления деталей корпусов судов                                  |                                                                                                                                                                                                                                       |
| 2.4 | Принципиальные указания по технологии изготовления узлов, секций, блоков секций                            |                                                                                                                                                                                                                                       |
| 2.5 | Принципиальные указания по технологии формирования корпусов судов на стапеле и по спуску на воду           | Схема формирования корпуса на построечном месте, схема сварки монтажных соединений корпуса и таблица сварки этих соединений на чертеже-схеме разбивки корпуса на построечные элементы. План-схема постройки судна на стапельном месте |
| 3   | Разработка рабочей технологии выполнения заданных работ                                                    |                                                                                                                                                                                                                                       |
| 3.1 | Разработка рабочего технологического документа                                                             | Рабочий чертеж заданной корпусной конструкции с таблицами режимов сварки                                                                                                                                                              |

Приложение №4

#### ВОПРОСЫ ПО КОНТРОЛЬНЫМ РАБОТАМ

**Контрольная работа: Плазовые работы. Предварительная обработка и резка** металла.

- 1. Назначение плаза, основные работы на нём.
- 2. Последовательность работ по развёртке обшивки методом Егорова.
- 3. Последовательность работ по развёртке обшивки методом Челнокова.
- 4. Последовательность работ по развёртке обшивки методом геодезических линий.
- 5. Перечислите оборудование для правки листового металла, их основные характеристики.
- 6. Перечислите оборудование для механической резки листового металла с кратким указанием области применения.
- 7. Опишите принцип кислородной резки металла. Укажите ограничения по применимости метода.
- 8. Основные требования к листовому металлу, пригодному правке растяжением.
- 9. Перечислите способы очистки листового металла толщиной до 4 мм.
- 10. Технология гибки парусовидного листа на вальцах.
- 11. Какие виды холодной гибки металла можно выполнить на прессе?
- 12. Какие виды холодной гибки листов можно осуществить на вальцах?
- 13. Устройство гибочных вальцев, их основные характеристики?
- 14. Как классифицируются гнутые листовые детали корпуса судна?
- 15. Как можно проконтролировать форму изогнутых деталей?

## Контрольная работа: Предварительная сборка и сварка судовых корпусных конструкций.

- 1. Технические условия деления судна на конструкции предварительной сборки и сварки.
- 2. Классификация объектов предварительной сборки по конструктивным и технологическим признакам.
- 3. Общая характеристика сборочно-сварочного производства по оснастке, оборудованию и механизированному инструменту на стационарных местах.

- 4. Структурная схема технологического процесса предварительной сборки корпусных конструкций, типовой состав элементов.
- 5. Структурная схема технологического процесса сварки корпусных конструкций, типовой состав элементов.
- 6. Типы и методы выполнения сопряжений при сборке корпусных конструкций.
- 7. Общие понятия о вариантах изготовления корпусных конструкций.
- 8. Основной состав и средства выполнения контрольных операций при предварительной сборке конструкций.
- 9. Технологические особенности изготовления узлов корпусных конструкций.
- 10. Технологические особенности сборки корпусных модуль-панелей.
- 11. Состав оборудования и технологические операции на механизированных поточных линиях изготовления плоскостных конструкций.
- 12. Технологические особенности изготовления полуобъемных секций по наружной общивке.
- 13. Технологические особенности изготовления днищевых секций на настиле двойного лна.
- 14. Технологические особенности изготовления высокобортных секций носовой оконечности судна.
- 15. Основные типы универсальных сборочно-сварочных постелей для сборки полуобъемных секций, конструктивные особенности.
- 16. Технологические особенности изготовления конструкций из легких сплавов.
- 17. Сварка конструкций из АМг сплавов и их соединение со стальными конструкциями.

### Контрольная работа: Сборочно-сварочные работы на стапеле и спуск судов на воду.

- 1. Способы формирования корпусов судов на стапеле, их особенности, требования.
- 2. Основное оборудование стапельного производства.
- 3. Классификация стапельных работ.
- 4. Основные типы и виды стапельной оснастки.
- 5. Учет конструктивных и технологических факторов при разбивке корпуса на построечные элементы.
- 6. Принципиальная схема расчета количества опорных устройств на стапеле.
- 7. Типовые схемы расположения стапельных опорных устройств.

- 8. Конструкция универсального кильблока.
- 9. Виды и типы наружных стапельных лесов.
- 10. Основные виды проверочных работ на стапеле.
- 11. Проверочные работы при установке днищевой секции на стапеле.
- 12. Проверочные работ при установке бортовой секции на стапеле.
- 13. Перечень сборочных работ при стыковке блоков корпуса судна.
- 14. Последовательность сварки монтажного кольцевого стыка при соединении 2 построечных блоков корпуса.
- 15. Общая технологическая характеристика спуска судов с продольного стапеля.
- 16. Общая технологическая характеристика спуска судов с горизонтального стапеля с использованием плавучего дока.
- 17. Общая технологическая характеристика поперечного спуска судов с использованием механизированного слипа.
- 18. На какие типы подразделяются сборочно-сварочная оснастка для сборки секций корпуса?
- 19. Каков состав контролируемых параметров точности выполнения операций при изготовлении секций? На какие группы она делится?

## Контрольная работа: Подготовка и монтаж судового насыщения при достроечных работах.

- 1. Технологические требования по монтажу легких переборок и выгородок внутри помещений.
- 2. Основной состав и технология установки доизоляционного насыщения.
- 3. Виды изоляции, применяемые в судостроении, основные характеристики.
- 4. Состав древообделочных работ на судне.
- 5. Понятие о модульной системе при монтаже изоляции.
- 6. Технология проведения окрасочных работ снаружи судна, характеристика покрытий.
- 7. Технологические особенности монтажа судовой вентиляции.
- 8. Основы расчета технологических параметров гибки труб.
- 9. Технологические особенности монтажа швартовного и якорного устройства.
- 10. Основной состав оборудования и технологического оснащения для гибки труб.
- 11. Технология изготовления узлов судовых трубопроводов.
- 12. Состав элементов отделки и оборудования судовых помещений.

- 13. Методы пробивки оси линии валопровода особенности монтажа судового валопровода.
- 14. Технические требования на проведение электромонтажных работ на судне.
- 15. Технологические требования по монтажу судового двигателя и судового котла.

#### Контрольная работа: Испытания и сдача судов.

- 1. Основные требования к стендовым испытаниям судовых механизмов.
- 2. Объекты и основные положения швартовных испытаний механизмов.
- 3. Основные проверки водонепроницаемости корпуса судна.
- 4. Объекты и основные положения ходовых испытаний механизмов.
- 5. Оценка правильности нанесения ватерлинии и марок углублений.
- 6. В каких приемках принимает участие инспекция Регистра РФ, задачи приемок.
- 7. Основные имитационные способы испытаний эксплуатационных нагрузок на швартовах.
- 8. Основные конструктивные элементы плавучей потоконаправляющей камеры.
- 9. Требования к испытанию рулевого устройства судна.
- 10. Требования к монтажу трубопроводов на судне. Установка компенсаторов.
- 11. Какая проекция судоремонтного плаза принимается за базовую для построения разверток листов. Что такое геодезическая линия?
- 12. В каких случаях развертки листовых деталей требуются введение поправок на пластические деформации?
- 13. Основные элементы конструкции оборудования для механической резки.
- 14. Классификация видов специальных сборочно-сварочных постелей.
- 15. Классификация универсальных сборочно-сварочных постелей.
- 16. Особенности конструкций специальных сборочно-сварочных постелей.
- 17. Особенности конструкций универсальных сборочно-сварочных постелей.

#### Контрольная работа: Корпусообрабатывающее производство и его подготовка

- 1. Судостроительный плаз, его назначение
- 2. Порядок действий при построении растяжки продольной линии на плазе (паз обшивки, стрингер и т. д.).
- 3. Алгоритм построения разверток на графическом плазе. Прверка точности построения.

- 4. Корректировка размеров развертки, полученной с плаза, на последующую поку листов.
- 5. Поясните, в чем принципы механизации (автоматизации) работ по разбивке плаза, суть параболографического метода и аналитического согласования кривых.
- 6. Плазовая оснастка и области ее применения (эскизы.шаблоны, каркасы, макеты).
- 7. Предварительная правка листового металла. Правка на вальцах и растяжением.
- 8. Способы предварительной очистки и защиты на период постройки судна стали, их возможности и оборудование.
- 9. Складирование металла и линии предварительной обработки корпусной стали, её состав.
- 10. Автоматические поточные линии тепловой резки. Управление машинами тепловой резки.
- 11. Механическая резка. Усилие резки. Уменьшение усилия вырубки на штампе.
- 12. Оборудование для механической резки листового и профильного металла.
- 13. Обработка кромок под сварку и станки для этой цели.
- 14. Три стадии гибки металла.
- 15. Влияние пружинения на точность гибки. Минимальный и максимальный радиусы гибки металла.
- 16. Гибка металла с нагревом токами высокой частоты.
- 17. Гибка металла нагревами.
- 18. Гибка листового металла на многоплунжерном прессе.
- 19. Понятие технологичности: материала, детали, конструкции.
- 20. Судостроительные корпусные стали, марки и основные технологические свойства. Испытания металлов, технологические пробы.
- 21. Алюминиево-магниевые сплавы в судостроении
- 22. Виды древесины, применяемые в судостроении.

#### Контрольная работа: Сборочно-сварочное производство.

- 1. Классификации и технологическая характеристика объектов предварительной сборки.
- 2. Структура технологического процесса изготовления секций корпусов судов.
- 3. Специальные сборочно-сварочные постели. Основные требования и характеристики.
- 4. Сборочно-сварочные стенды. Основные требования и характеристики.
- 5. Универсальные сборочно-сварочные постели. Основные требования и характеристики.

- 6. Порядок выбора сборочно-сварочной оснастки.
- 7. Оборудование и планировка некомплексно механизированных участков изготовления секций.
- 8. Технологические узлы корпусных конструкций, их типизация.
- 9. Технологические особенности изготовления балок таврового и Г образного сечений.
- 10. Технологические особенности изготовления плоских полотнищ на некомплексно механизированных участках.
- Технологические особенности изготовления плоских секций в условиях некомплексно

   механизированного производства.
- 12. Технологические особенности изготовления полуобъемных (днищевых) секций в условиях некомплексно механизированного производства.
- 13. Механизированная поточная линия изготовления плоских полотнищ. Характеристика позиций линии. Назначение и состав оборудования.
- 14. Механизированная поточная линия изготовления криволинейных секций. Характеристика позиций линии. Назначение и состав оборудования.
- 15. Технологические особенности изготовления блоков секций.
- 16. Технологические особенности изготовления объемных секций оконечностей судов.
- 17. Основные понятия о модульно-панельном способе изготовления судовых корпусных конструкций.
- 18. Особенности технологии изготовления конструкций из легких сплавов.
- 19. Методы контроля качества изготовления узлов, секций и блоков секций. Содержание работ.
- 20. Подготовка исходных данных для изготовления постелей с двоякоусеченным основанием. Этапы и содержание работ.
- 21. Разметка мест установки набора секций и их оконтуровка с использованием теодолита. Последовательность выполнения работ.
- 22. Содержание проверочных работ при сборке блока секций.
- Технолого нормировочная карта на сборку секции. Требования к содержанию и оформлению.
- 24. Методы определения фактической трудоемкости работ при изготовлении секций корпусов судов.
- 25. Последовательность и содержание проверочных работ при сборке днищевой замкнутой секции.

#### Контрольная работа: Стапельное и достроечное производства

- 1. Классификация построечных мест и их оборудование
- 2. Опорные устройства на стапеле. Схема расположения опорных устройств
- 3. Наружные и внутренние стапельные леса
- 4. Опорно-транспортные устройства на стапеле. Схема расположения опорнотранспортных устройств
- 5. Проверочные работы на стапеле. Классификация и оборудование
- Классификация и краткая характеристика сборочных работ на стапеле.
   Приспособления и инструмент.
- 7. Методы формирования корпусов судов на построечных местах. Способы организации работ
- 8. Учет технологических и конструктивных особенностей при разбивке корпуса судна на построечные элементы
- 9. Технологический процесс формирования корпуса судна из блоков
- 10. Технологический процесс установки закладной днищевой секций, проверка положения.
- 11. Технологический процесс установки бортовой и палубной секций.
- 12. Технологический процесс установки надстроек
- 13. Сварочные работы на стапеле. Классификация и оборудование
- 14. Технологические особенности сварочных работ на стапеле. Схема сварки монтажного стыка
- 15. Спуск судна на воду с использованием продольного наклонного стапеля
- 16. Спуск судна на воду с использованием механизированных средств
- 17. Спуск судов путем свободного всплытия. Комбинированный спуск судов
- 18. Крановое оборудование стапельных мест и расчет их грузоподъемности
- 19. Особенности технологий монтажа электрооборудования
- 20. Технология монтажа валопроводов, методы пробивки оси валопровода
- 21. Блочно-модульный метод формирования помещений надстроек
- 22. Модульно-панельный метод отделки и оборудования помещений
- 23. Состав элементов отделки и оборудования помещений
- 24. Технология и средства механизации процессов изоляции судовых конструкций
- 25. Виды защитных покрытий судовых корпусных конструкций
- 26. Общие принципы механизации трубопроводных работ

- 27. Технологические процессы изготовления трубопроводов судовых систем
- 28. Технологические процессы монтажа трубопроводов судовых систем на судне
- 29. Средства механизированной зачистки поверхностей судовых корпусных конструкций
- 30. Виды защитных покрытий судовых корпусных конструкций
- 31. Изготовление и монтаж труб системы судовой вентиляции
- 32. Легкие переборки и выгородки, технология их монтажа на судне
- 33. Особенности и содержание швартовных и ходовых испытаний судов
- 34. Основные требования к стендовым испытаниям судовых механизмов
- 35. Объекты и основные положения швартовых испытаний механизмов
- 36. Объекты и основные положения ходовых испытаний механизмов

Приложение №5

# КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ, КОТОРЫЕ ПРИ НЕОБХОДИМОСТИ МОГУТ БЫТЬ ИСПОЛЬЗОВАНЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

### Раздел: Корпусообрабатывающее производство и его подготовка

- 1 Судостроительный плаз, его назначение
- 2 Исходная документация для разбивки плаза, ее содержание.
- 3 Порядок действий при построении растяжки продольной линии на плазе (паз обшивки, стрингер и т. д.).
  - 4 Алгоритм построения разверток на графическом плазе. Прверка точности построения.
  - 5 Корректировка размеров развертки, полученной с плаза, на последующую постов.
  - 6 Трудоемкость и точность плазовых работ.
- 7 Поясните, в чем принципы механизации (автоматизации) работ по разбивке плаза, суть параболографического метода и аналитического согласования кривых.
  - 8 Плазовая оснастка и области ее применения (эскизы.шаблоны, каркасы, макеты).
  - 9 Предварительная правка листового металла. Правка на вальцах и растяжением.
- 10 Способы предварительной очистки и защиты на период постройки судна стали, их возможности и оборудование.
  - 11 Складирование металла и линии предварительной обработки корпусной стали.
- 12 Автоматические поточные линии тепловой резки. Управление машинами тепловой резки.
  - 13 Механическая резка. Усилие резки. Уменьшение усилия вырубки на штампе.
  - 14 Оборудование для механической резки листового и профильного металла.
  - 15 Обработка кромок под сварку и станки для этой цели.
  - 16 Три стадии гибки металла.
- 17 Влияние пружинения на точность гибки. Минимальный и максимальный радиусы гибки металла.
  - 18 Гибка металла с нагревом токами высокой частоты. Гибка металла нагревами.
  - 19 Гибка листового металла на многоплунжерном прессе.
  - 20 Основные этапы и содержание технологической подготовки производства.
  - 21 Понятие технологичности: материала, детали, конструкции.

- 22 Судостроительные корпусные стали, марки и основные технологические свойства. Испытания металлов, технологические пробы.
  - 23 Медь и медно-цинковые сплавы в судостроении и судоремонте.
  - 24 Бронзы и медно-никелевые сплавы в судостроении и судоремонте.
  - 25 Алюминиевые бронзы и латуни в судостроении.
  - 26 Алюминиево-магниевые сплавы в судостроении и судоремонте.
  - 27 Виды древесины, применяемые в судостроении.

Приложение №6

# ВОПРОСЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ (ЭКЗАМЕН) ПО ДИСЦИПЛИНЕ

### Раздел: Сборочно-сварочное производство.

- 1. Классификации и технологическая характеристика объектов предварительной сборки.
- 2. Структура технологического процесса изготовления секций корпусов судов.
- 3. Специальные сборочно-сварочные постели. Основные требования и характеристики.
- 4. Сборочно-сварочные стенды. Основные требования и характеристики.
- 5. Универсальные сборочно-сварочные постели. Основные требования и характеристики.
- 6. Методика проектирования сборочно-сварочной оснастки.
- 7. Основные понятия о расчетном проектировании технологических процессов изготовления секций корпусов судов.
- 8. Оборудование и планировка некомплексно механизированных участков изготовления секпий.
  - 9. Технологические узлы корпусных конструкций, их типизация.
  - 10. Технологические особенности изготовления балок таврового и Г образного сечений.
- 11. Технологические особенности изготовления плоских полотнищ на некомплексно механизированных участках.
- 12. Технологические особенности изготовления плоских секций в условиях некомплексно механизированного производства.
- 13. Технологические особенности изготовления полуобъемных (палубных и бортовых) секций в условиях некомплексно механизированного производства.
- 14. Технологические особенности изготовления полуобъемных (днищевых) секций в условиях некомплексно механизированного производства.
- 15. Механизированная поточная линия изготовления плоских полотнищ. Характеристика позиций линии. Назначение и состав оборудования.
- 16. Механизированная поточная линия изготовления плоских секций. Характеристика позиций линии. Назначение и состав оборудования.
- 17. Механизированная поточная линия изготовления криволинейных секций. Характеристика позиций линии. Назначение и состав оборудования.
  - 18. Технологические особенности изготовления блоков секций.
  - 19. Технологические особенности изготовления объемных секций оконечностей судов.

- 20. Основные понятия о модульно-панельном способе изготовления судовых корпусных конструкций.
  - 21. Особенности изготовления конструкций из легких сплавов.
- 22. Методы контроля качества изготовления узлов, секций и блоков секций. Содержание работ.
- 23. Подготовка исходных данных для изготовления постелей с двоякоусеченным основанием. Этапы и содержание работ.
- 24. Разметка мест установки набора секций и их оконтуровка с использованием теодолита. Последовательность выполнения работ.
  - 25. Содержание проверочных работ при сборке блока секций.
- 26. Технолого нормировочная ведомость на сборку секции. Требования к содержанию и оформлению. Используемая руководящая и нормативная документация.
- 27. Методы определения фактической трудоемкости работ при изготовлении секций корпусов судов.
- 28. Последовательность и содержание проверочных работ при сборке днищевой замкнутой секции.
- 29. Основные понятия о вариантах изготовления секций корпусов судов. Системы признаков вариантов и ограничений на них. Варианты технологических схем сборки секций и выполнения сборочных операций.

### Раздел: стапельное и достроечное производства

- 1. Технологическая документация на стапельное производство
- 2. Классификация построечных мест и их оборудование
- 3. З. Опорные устройства на стапеле. Схема расположения опорных устройств
- 4. Наружные и внутренние стапельные леса
- 5. Опорно-транспортные устройства на стапеле. Схема расположения опорнотранспортных устройств
  - 6. Проверочные работы на стапеле. Классификация и оборудование
- 7. Классификация и краткая характеристика сборочных работ на стапеле. Приспособления и инструмент
- 8. Методы формирования корпусов судов на построечных местах. Способы организации работ
- 9. Учет технологических и конструктивных особенностей при разбивке корпуса судна на построечные элементы

- 10. Технологический процесс формирования корпуса судна из блоков
- 11. Технологический процесс установки днищевых секций
- 12. Технологический процесс установки бортовых секций
- 13. Технологический процесс установки палубных перекрытий
- 14. Технологический процесс установки надстроек
- 15. Классификация стапельных работ. Пути повышения эффективности стапельного производства
  - 16. Сварочные работы на стапеле. Классификация и оборудование
- 17. Технологические особенности сварочных работ на стапеле. Схема сварки монтажного стыка
  - 18. Спуск судна на воду с использованием продольного наклонного стапеля
  - 19. Спуск судна на воду с использованием механизированных средств
  - 20. Спуск судов путем свободного всплытия. Комбинированный спуск судов
  - 21. Крановое оборудование стапельных мест и расчет их грузоподъемности
  - 22. Внутренний и внешний монтаж электрооборудования
  - 23. Содержание и этапы выполнения электромонтажных работ
  - 24. Технология монтажа валопроводов, методы пробивки оси валопровода
  - 25. Блочно-модульный метод формирования помещений надстроек
  - 26. Модульно-панельный метод отделки и оборудования помещений
- 27. Принципы модульной координации судовых помещений и элементов их отделки и оборудования
  - 28. Состав элементов отделки и оборудования помещений
  - 29. Технология и средства механизации процессов изоляции судовых конструкций
  - 30. Средства механизированной зачистки поверхностей судовых корпусных конструкций
  - 31. Виды защитных покрытий судовых корпусных конструкций
  - 32. Общие принципы механизации трубопроводных работ
  - 33. Технологические процессы изготовления трубопроводов судовых систем
  - 34. Технологические процессы монтажа трубопроводов судовых систем на судне
  - 35. Трассировка трубопроводов судовых систем
  - 36. Технология и средства механизации процессов изоляции судовых конструкций
  - 37. Средства механизированной зачистки поверхностей судовых корпусных конструкций
  - 38. Виды защитных покрытий судовых корпусных конструкций
  - 39. Изготовление и монтаж труб системы судовой вентиляции

- 40. Легкие переборки и выгородки, технология их монтажа на судне
- 41. Общая характеристика группы достроечных цехов
- 42. Особенности и содержание швартовных и ходовых испытаний судов
- 43. Назначение и этапы испытания судов и их элементов
- 44. Основные требования к стендовым испытаниям судовых механизмов
- 45. Объекты и основные положения швартовых испытаний механизмов
- 46. Объекты и основные положения ходовых испытаний механизмов
- 47. Состав работ по проверке соответствия главных размерений судна.
- 48. Основные исходные документы для проведения испытаний судов. Основной состав заключительных документов испытаний.

Приложение №7

# ТИПОВЫЕ ТЕСТОВЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ «ТЕХНОЛОГИЯ СУДОСТРОЕНИЯ»

ПКС-1: Выполнение проектно-конструкторской документации и подготовка документов при техническом сопровождении производства судов, плавучих сооружений, аппаратов и их составных частей.

Индикатор достижения компетенции ПКС-1.3: проработка проектно-конструкторской документации в процессе строительства, модернизации судов, плавучих сооружений, аппаратов и их составных частей.

ПКС-2: Разработка и модернизация проектов, техническое сопровождение производства судов, плавучих сооружений, аппаратов для их составных частей.

Индикатор достижения компетенции ПКС-2.1: разработка и согласование комплектов технологической документации при проведении теоретических и экспериментальных исследований для создания проектов новых образцов судов, плавучих сооружений, аппаратов и их составных частей.

ПКС-4: Организация строительства (ремонта) корабля (судна) по двум и более взаимосвязанным направлениям работ.

Индикатор достижения компетенции ПКС-4.3: организация проведения отдельных этапов швартовочных и ходовых испытаний корабля (судна).

## Вариант І

| 1 Производственный процесс в судостроении определяется: |                                       |
|---------------------------------------------------------|---------------------------------------|
| 1. совокупностью действий на превращение                | 2. совокупностью действий на          |
| материалов, полуфабрикатов и готовых                    | превращение полуфабрикатов в конечную |
| деталей в конечную продукцию                            | продукцию                             |
| 3. совокупностью действий на превращение                | 4. совокупностью действий на          |
| материалов в конечную продукцию                         | превращение готовых материалов в      |
|                                                         | конечную продукцию                    |

| 2 Количество частных производственных процессов по которым принято группировать |                 |
|---------------------------------------------------------------------------------|-----------------|
| общий процесс постройки судна:                                                  |                 |
| 1. 5 процессов                                                                  | 2. 7 процессов  |
| 3. 9 процессов                                                                  | 4. 10 процессов |

| 3 При контроле работ на стапеле осуществляется: |                                           |
|-------------------------------------------------|-------------------------------------------|
| 1. проверка секций на конструктивность          | 2. проверка размеров секций               |
| 3. проверка установки днищевых секций           | 4. проверка объёмов монтажных конструкций |

| 4 Под технологическим процессов в судостроении понимается: |                                      |
|------------------------------------------------------------|--------------------------------------|
| 1. часть производственного процесса,                       | 2. часть производственного процесса, |
| связанная с изменением технического                        | связанная с изменением химического   |
| состояния объекта производства                             | состава объекта производства         |

|                                             | T.                                         |
|---------------------------------------------|--------------------------------------------|
| 3. часть производственного процесса,        | 4. часть производственного процесса,       |
| связанная с изменением положения объекта    | связанная с изменением количества          |
| производства                                | составляющих объект производства           |
|                                             |                                            |
| 5 Вид производства в судостроении непосредо | ственно связанный с изготовлением судовых  |
| корпусных конструкций (СКК):                | Тъ                                         |
| 1. механомонтажный                          | 2. столярно-плотницкое                     |
| 3. сборочно-сварочное                       | 4. слесарно-корпусное                      |
|                                             |                                            |
| <del>-</del>                                | сса, выполняемая на одном производственном |
| участке (рабочем месте) называется:         | 12                                         |
| 1. операцией                                | 2. приемом                                 |
| 3. технологическим комплексом приемов       | 4. действием                               |
| <b>T</b> IC •                               |                                            |
| 7 К плиточному виду судовой изоляции относ  |                                            |
| 1. плиты теплоизоляционные пенопластовые    | 2. плиты из штапельного стекловолокна      |
| 3. пробковая крупа                          | 4. плиты минерализованные на               |
|                                             | синтетическом связующем                    |
|                                             |                                            |
| 8 Объединение нескольких последовательных   | <u> </u>                                   |
| достижение определяемой технологической ц   | ели называется:                            |
| 1. операцией                                | 2. переходом                               |
| 3. приемом                                  | 4. технологией                             |
|                                             |                                            |
| 9 Грузоподъемность кранов в паре увеличивае | ется на:                                   |
| 1. 15-20%                                   | 2. 40-50%                                  |
| 3. 100%                                     | 4. 30-40%                                  |
|                                             |                                            |
| 10 Первичный элемент сложного изделия без   | сборочных операций называется:             |
| 1. заготовка                                | 2. деталь                                  |
| 3. узел                                     | 4. изделие                                 |
|                                             |                                            |
| 11 Изделие, составные части которого собира | ются на предприятии-изготовителе для       |
| последующей укрупненной сборки определяе    | ± ±                                        |
| 1. сборочная единица                        | 2. изделие                                 |
| 3. узел                                     | 4. комплекс деталей                        |
|                                             |                                            |
| 12 Группа нескольких сборочных единиц и де  | тапей смонтипованных вместе называется.    |
| 1                                           | 2. комплекс сборочный                      |
| 1. изделие<br>3. узел                       | 1                                          |
| 3. узел                                     | 4. конструкция                             |
| 12 V muranaya arayayaya maya                | OGMEDIA :                                  |
| 13 К типовому элементу труб вентиляции отно |                                            |
| 1. двойник                                  | 2. перевод                                 |
|                                             |                                            |

| 3. изгиб                                                   | 4. отступ      |  |
|------------------------------------------------------------|----------------|--|
| 14 Способ формирования корпуса судна из секций на стапеле: |                |  |
| 1. прерывный                                               | 2. раздельный  |  |
| 3. отсечный                                                | 4. непрерывный |  |

| <b>15</b> Технологически законченная часть корпусной конструкции, состоящая из 2х и более деталей называется: |                       |
|---------------------------------------------------------------------------------------------------------------|-----------------------|
| 1. узел                                                                                                       | 2. комплекс сборочный |
| 3. изделие                                                                                                    | 4. конструкция        |

| 16 В качестве опорных устройств на стапеле используются: |                   |
|----------------------------------------------------------|-------------------|
| 1. кильблоки                                             | 2. винтовые упоры |
| 3. судовые тележки                                       | 4. клетки         |

| 17 Часть корпуса судна, отсеченная плоскостями параллельными мидель-шпангоуту и |                        |
|---------------------------------------------------------------------------------|------------------------|
| иногда палубами, состоящая из секций, узлов и деталей называется:               |                        |
| 1. изделие                                                                      | 2. конструкция корпуса |
| 3. блок секция                                                                  | 4. перекрытие          |

| 18 Техническая подготовка, заключающаяся в разработке проектной документации на |                    |
|---------------------------------------------------------------------------------|--------------------|
| судно является:                                                                 |                    |
| 1. конструкторской                                                              | 2. материальной    |
| 3. предметной                                                                   | 4. технологической |

| 19 Под насыщением корпусных конструкций понимается:                                            |                                                                                                                                             |
|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| 1. часть корпусной конструкции, полученная в результате обработки металлопроката               | 2. детали и узлы судовых устройств, систем, трубопроводов и оборудования, мелкие фундаменты, а также крепления изоляции и отделки помещений |
| 3. технологически законченная часть корпусной конструкции, состоящая из двух или более деталей | 4. изоляционные материалы и отделка помещений                                                                                               |

| 20 Блочный способ сборки судна состоит в том, что: |                                          |
|----------------------------------------------------|------------------------------------------|
| 1. корпус собирают из блок-секций и                | 2. происходит одновременная закладка по  |
| формируют его, начиная со средней части            | длине судна нескольких секций, которые в |
| судна или иногда с кормы                           | дальнейшем смыкают забойными секциями    |
| 3. корпус формируется из предварительно            | 4. корпус судна собирается по мере       |
| собранных и сваренных блок-секций или              | готовности блоков                        |
| блоков                                             |                                          |

| 21 Период спуска по определению, относящийся к продольному спуску судна со стапеля: |                                             |
|-------------------------------------------------------------------------------------|---------------------------------------------|
| 1. от момента страгивания корпуса до входа                                          | 2. от момента страгивания корпуса до начала |
| кормы в воду                                                                        | всплытия носа                               |

| 3. от момента страгивания корпуса до начала | 4. от касания кормы корпуса воды до |
|---------------------------------------------|-------------------------------------|
| всплытия кормы                              | всплытия                            |

| 22 Под припуском на секции (блоки) понимается:                                                              |                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. максимально допустимое отклонение размера секции (блока) от чертежного                                   | 2. дополнительный объем металла в поковке, предназначенный для упрощения ее формы, возможности осуществления процесса штамповки и его упрощения |
| 3. разность между действительным размером детали или секции (блока) и ее теоретическим (чертежным) размером | 4. отклонение размера секций для обеспечения монтажных работ                                                                                    |

| 23 К войлочному виду судовой изоляции относятся: |                                          |
|--------------------------------------------------|------------------------------------------|
| 1. плиты минералватные на синтетическом          | 2. пробковая крупа                       |
| связующем                                        |                                          |
| 3. плиты теплоизоляционные из пенопласта         | 4. плиты теплоизоляционные из пенопласта |
| полистирольного                                  |                                          |

| 24 Под допуском на секции (блоки) понимается: |                                           |
|-----------------------------------------------|-------------------------------------------|
| 1. максимально допустимое отклонение          | 2. дополнительный объем металла в         |
| размера секции (блока) от чертежного, при     | поковке, предназначенный для упрощения ее |
| котором постройка корпуса судна будет         | формы, возможности осуществления          |
| соответствовать установленным главным         | процесса штамповки и его упрощения        |
| размерениям                                   |                                           |
| 3. разность между действительным размером     | 4. минимальное отклонение размера секций  |
| детали или секции (блока) и ее теоретическим  | (блока) для обеспечения монтажных работ   |
| (чертежным) размером                          |                                           |

| <b>25</b> Основные признаки, по которым можно определить, что данный участок обшивки можно развернуть методом Егорова: |                                                                  |
|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1. нормаль к среднему шпангоуту не является нормалью к остальным, и прогрессы по                                       | 2. нормаль к среднему шпангоуту не является нормалью к остальным |
| нормали не равны между собой                                                                                           | пормалью к остальным                                             |
| 3. нормаль к среднему шпангоуту не является                                                                            | 4. нормаль к среднему шпангоуту является                         |
| нормалью к остальным, а прогрессы по                                                                                   | нормалью к остальным, а прогрессы по                             |
| нормали равны между собой                                                                                              | нормали равны между собой                                        |

| 26 В качестве опорных устройств на стапеле используются: |                    |
|----------------------------------------------------------|--------------------|
| 1. винтовые упоры                                        | 2. судовые тележки |
| 3. подставы                                              | 4. клетки          |

| 27 Технологическая документация, используемая для стапельного производства: |                                            |
|-----------------------------------------------------------------------------|--------------------------------------------|
| 1. технологический процесс изготовления                                     | 2. инструкция по проведению проверочных    |
| днищевых секций                                                             | работ на стапеле                           |
| 3. инструкция на постройку сборочно-                                        | 4. типовая инструкция на проведение        |
| сварочных пастелей                                                          | сборочных работ при сборке секций корпусов |
|                                                                             | судов                                      |

| 28 Спуск судна под влиянием силы тяжести происходит: |                                         |
|------------------------------------------------------|-----------------------------------------|
| 1. в строительных доках, в док-камерах, с            | 2. на слипах с помощью подъемных кранов |
| применением плавучих доков                           |                                         |
| 3. при помощи продольного и поперечного              | 4. на понтонах с плавучим доком         |
| спусков с наклонных стапелей                         |                                         |

| 29 При дуговой резке происходит:           |                                        |
|--------------------------------------------|----------------------------------------|
| 1. проплавка мощным дуговым разрядом и     | 1. проплавка мощным дуговым разрядом и |
| удаление его из зоны реза высокоскоростным | удаление его из зоны реза              |
| газовым потоком                            | высокоскоростным газовым потоком       |
| 3. сгорание металла в струе чистого        | 4. оплавление металла под воздействием |
| кислорода                                  | высокой температуры                    |

| 30 Технологическая документация, используемая для стапельного производства: |                                      |
|-----------------------------------------------------------------------------|--------------------------------------|
| 1. технологический процесс изготовления                                     | 2. инструкция на постройку сборочно- |
| днищевых секций                                                             | сварочных пастелей                   |
| 3. типовая инструкция на проведение                                         | 4. инструкция по проверке корпуса на |
| сборочных работ при сборке секций корпусов                                  | герметичность и непроницаемость      |
| судов                                                                       |                                      |

| 31 Сущность процесса плавки состоит:      |                                          |
|-------------------------------------------|------------------------------------------|
| 1. в сжатии металла на внутренних         | 2. в нанесении контуров деталей, осей их |
| поверхностях изгибаемых заготовок, и      | симметрии и центров отверстий согласно   |
| растяжении – на наружных                  | чертежу с учетом величин и расположения  |
|                                           | припусков и технологии обработки         |
| 3. в устранении неровностей с поверхности | 4. в соответствии с чертежом габаритных  |
| листов                                    | размеров                                 |

| 32 При контроле работ на стапеле осуществляется: |                                           |
|--------------------------------------------------|-------------------------------------------|
| 1. проверка секций на конструктивность           | 2. проверка установки переборок основного |
|                                                  | корпуса                                   |
| 3. проверка размеров секций                      | 4. проверка объёмов монтажных конструкций |
|                                                  |                                           |

| 33 К изделию доизоляционного насыщение относятся: |                      |
|---------------------------------------------------|----------------------|
| 1. установка талрепа                              | 2. кабельная коробка |
| 3. фундамент судовой                              | 4. лист-дублер       |

| 34 Совокупность технологических приемов, как часть операции, направленная на обработку |              |  |
|----------------------------------------------------------------------------------------|--------------|--|
| поверхности или на изменение положения собираемых элементов при одном режиме работы    |              |  |
| оборудования называется:                                                               |              |  |
| 1. операцией                                                                           | 2. переходом |  |
| 3. приемом                                                                             | 4. действием |  |

| 35 Корпусо-сборочные работы, проводимые на стапеле: |                                 |
|-----------------------------------------------------|---------------------------------|
| 1. обмеры монтажных корпусных                       | 2. установка лесов для сборки   |
| конструкций                                         |                                 |
| 3. установка лесов для сборки                       | 4. соединение кромок обшивки на |
|                                                     | электроприхватах и гребенках    |

| 36 В организационных методы постройки судна можно выделить: |                    |
|-------------------------------------------------------------|--------------------|
| 1. поточно-позиционный                                      | 2. бригадный       |
| 3. поэтапный                                                | 4. комбинированный |

| 37 Плавучий док, служащий для спуска на воду с горизонтального стапеля, называется: |                 |
|-------------------------------------------------------------------------------------|-----------------|
| 1. ремонтный                                                                        | 2. передаточный |
| 3. транспортный                                                                     | 4. строительный |

| 38 Способ формирования корпуса судна из секций на стапеле: |                  |
|------------------------------------------------------------|------------------|
| 1. прерывный                                               | 2. пирамидальный |
| 3. раздельный                                              | 4. непрерывный   |

| 39 К монтажно-достроечным работам (МДР) относятся: |                                   |
|----------------------------------------------------|-----------------------------------|
| 1. корпусо-монтажные работы                        | 2. корпусо-заготовительные работы |
| 3. механо-монтажные                                | 4. сборка секций корпусов         |

| 40 Продольный стапель представляет собой: |                                            |
|-------------------------------------------|--------------------------------------------|
| <u> </u>                                  | 2                                          |
| 1. котлован, вырытый в грунте ниже уровня | 2. сооружение с наклонной плоскостью, на   |
| воды акватории, предназначенный для       | которой закладывают и строят суда, а затем |
| ремонта и постройки судов                 | спускают их на воду                        |
| 3. сооружение, на котором судно           | 4. механизированный слип с продольным      |
| устанавливают на его горизонтальную       | положением судно                           |
| площадку, а спуск на воду производят по   |                                            |
| наклонной плоскости боком                 |                                            |

## Вариант II

| 1 Плавучий док представляет собой:         |                                           |
|--------------------------------------------|-------------------------------------------|
| 1. комплекс из механизмов, позволяющий     | 2. котлован, вырытый в грунте ниже уровня |
| осуществлять подъем и спуск судов с одного | воды акватории, предназначенный для       |
| уровня водного пусти на другой             | ремонта (осмотра, окраски) и постройки    |
|                                            | судов                                     |

| 3. подъемно-спусковое сооружение, представляющее собой искусственный бассейн типа шлюза, верхняя ступень которого находится выше уровня воды | 4. плавучее судоподъемное сооружение, в которое судно входит и выходит по воде |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| которого палодител выше уровил воды                                                                                                          |                                                                                |
|                                                                                                                                              |                                                                                |
| 2 Лиапарон толини метапла которые возмо                                                                                                      | WILO TRADUTE IIA TOUKOTIKETORUV KOUKRETIUV                                     |

| 2 Диапазон толщин металла, которые возмо | жно править на тонколистовых конкретных |
|------------------------------------------|-----------------------------------------|
| вальцах:                                 |                                         |
| 1. 1:2                                   | 2. 1:8                                  |
| 3. 1:4                                   | 4. 1:16                                 |

| 3 Спуск судна всплытием происходит:                                  |                                         |
|----------------------------------------------------------------------|-----------------------------------------|
| 1. в строительных доках, в док-камерах, с применением плавучих доков | 2. на слипах с помощью подъемных кранов |
| 3. при помощи продольного и поперечного спусков с наклонных стапелей | 4. с помощью подъемных кранов           |

| 4 Вертикальный судоподъемник - это:        |                                            |  |
|--------------------------------------------|--------------------------------------------|--|
| 1. судно технического флота,               | 2. подъемно-спусковое сооружение,          |  |
| предназначенное для подъема из воды судна, | представляющее собой искусственный         |  |
| находящегося на плаву, его ремонта (или    | бассейн типа шлюза, верхняя ступень        |  |
| транспортировки) и спуска на воду          | которого находится выше уровня воды        |  |
| 3. комплекс из механизмов, позволяющий     | 4. судно технического флота,               |  |
| осуществлять подъем и спуск судов с одного | предназначенное для подъема из воды судна, |  |
| уровня водного пусти на другой             | находящегося на плаву                      |  |

| 5 Вид производства в судостроении непосредственно связанный с изготовлением судовых |  |  |
|-------------------------------------------------------------------------------------|--|--|
| корпусных конструкций (СКК):                                                        |  |  |
| 1. механомонтажный 2. столярно-плотницкое                                           |  |  |
| 3. корпусостроительное (стапельное) 4. слесарно-корпусное                           |  |  |

| 6 Наливная док-камера - это:               |                                            |  |
|--------------------------------------------|--------------------------------------------|--|
| 1. судно технического флота,               | 2. котлован, вырытый в грунте ниже уровня  |  |
| предназначенное для подъема из воды судна, | воды акватории, предназначенный для        |  |
| находящегося на плаву, его ремонта (или    | ремонта (осмотра, окраски) и постройки     |  |
| транспортировки) и спуска на воду          | судов                                      |  |
| 3. подъемно-спусковое сооружение,          | 4. самостоятельное плавучее сооружение для |  |
| представляющее собой искусственный         | подъема и спуска судов                     |  |
| бассейн типа шлюза, верхняя ступень        |                                            |  |
| которого находится выше уровня воды на     |                                            |  |
| акватории верфи                            |                                            |  |

| 7 Принцип газокислородной резки основан на | следующих требованиях к обрабатывающему |
|--------------------------------------------|-----------------------------------------|
| металлу                                    |                                         |
| 1. высокая теплопроводность металла,       | 2. температура плавления шлака равна    |
| температура зажигания металла в кислороде  | температуре плавления обрабатываемого   |
| выше температуры его плавления             | металла                                 |

| 3.  | высокая     | теплопроводность   | металла,  | 4.   | низкая   | теплопр     | оводность | металла,    |
|-----|-------------|--------------------|-----------|------|----------|-------------|-----------|-------------|
| тем | пература за | ажигания металла в | кислороде | темі | пература | зажигания   | металла в | в кислороде |
| ЖИН | е температ  | уры его плавления  |           | жин  | е темпер | атуры его п | лавления  |             |

| 8 Полотнище, на котором осуществляется изготовление конструкции, называется: |                      |
|------------------------------------------------------------------------------|----------------------|
| 1. замыкающим 2. первостепенным                                              |                      |
| 3. базовым                                                                   | 4. наружной обшивкой |

| 9 Сборочно-сварочная оснастка, применяемая при воспроизведении прямолинейных форм, |  |  |
|------------------------------------------------------------------------------------|--|--|
| называется:                                                                        |  |  |
| 1. сборочно-сварочная постель 2. сборочно-сварочный стенд                          |  |  |
| 3. сборочно-сварочный стол 4. сборочно-сварочный кондуктор                         |  |  |

| скрытия ножей                      |  |  |  |  |
|------------------------------------|--|--|--|--|
| вертикали                          |  |  |  |  |
| клонения нижнего ножа от вертикали |  |  |  |  |
|                                    |  |  |  |  |

| 11 К сборочно-сварочным стендам можно отнести:                          |                          |  |
|-------------------------------------------------------------------------|--------------------------|--|
| 1. систему балок с металлическим настилом 2. сборочно-сварочную постель |                          |  |
| 3. металлические опоры                                                  | 4. ферменные конструкции |  |

| 12 Технолого-нормировочная карта – это:   |                                           |
|-------------------------------------------|-------------------------------------------|
| 1. своеобразный паспорт рабочего места, в | 1. своеобразный паспорт рабочего места, в |
| котором синтезируется информация о        | котором синтезируется информация о        |
| технологическом процессе, основываются    | технологическом процессе, основываются    |
| затраты на каждую операцию                | затраты на каждую операцию                |
| квалификационный состав работников        | квалификационный состав работников        |
| 3. типовая последовательность выполнения  | 3. типовая последовательность выполнения  |
| работ                                     | работ                                     |

| 13 Пазами называются соединения, расположенные |  |  |
|------------------------------------------------|--|--|
| 1. вдоль судна 2. поперек судна                |  |  |
| 3. посередине судна 4 по высоте судна          |  |  |

| 14 Жесткие прихватки имеют размер: |             |
|------------------------------------|-------------|
| 1. 8-20 мм                         | 2. 10-15 мм |
| 3. 80-90 мм                        | 4. 50-70 мм |

| 15 Признаки плавности кривой при работе с аналитическим плазом: |                                              |  |
|-----------------------------------------------------------------|----------------------------------------------|--|
| 1. изменение величин разностей 2-го и 3-го                      | 2. отсутствует чередование знака (с плюса на |  |
| порядка происходит монотонно                                    | минус) у разностей 2-го порядка              |  |

| 3. изменение величин разностей 2-го и 3-го | 4. сохраняется знак разности 3-го порядка на |
|--------------------------------------------|----------------------------------------------|
| порядка происходит монотонно, отсутствует  | значительных участках                        |
| чередование знака (с плюса на минус) у     |                                              |
| разностей 2-го порядка                     |                                              |

| 16 Дублерами листов называются             |                                           |
|--------------------------------------------|-------------------------------------------|
| 1. листы, накладывающиеся вместо других    | 2. листы, накладывающиеся поверх других   |
| листов во избежание трещин, которые нельзя | листов во избежание трещин, которые можно |
| резать                                     | резать                                    |
| 3. листы, накладывающиеся поверх других    | 4. листы, накладывающиеся вместо других   |
| листов во избежание трещин которые нельзя  | листов во избежание трещин, которые можно |
| резать                                     | резать                                    |

| 17 К изделию доизоляционного насыщение относятся: |                                           |
|---------------------------------------------------|-------------------------------------------|
| 1. установка талрепа                              | 2. кронштейн и подкрепление для установки |
|                                                   | аппаратуры                                |
| 3. фундамент судовой                              | 4. лист-дублер                            |

| 18 Исходя из среднестатистических данных, длина секции при продольной системе набора |            |  |
|--------------------------------------------------------------------------------------|------------|--|
| будет:                                                                               |            |  |
| 1. до 6 м                                                                            | 2. 6-8 м   |  |
| 3. 8-10 м                                                                            | 4. 12-14 м |  |

| 19 Спуск судна на воду, происходящий с использованием механизмов под контролем |                                |  |
|--------------------------------------------------------------------------------|--------------------------------|--|
| оператора:                                                                     |                                |  |
| 1. всплытием                                                                   | 2. механизированными способами |  |
| 3. под влиянием силы тяжести                                                   | 4. комбинированным способом    |  |

| 20 Испытания, которым подвергается корпус судна, можно подразделять на: |                                        |  |
|-------------------------------------------------------------------------|----------------------------------------|--|
| 1. предварительные, основные, контрольные                               | 2. предварительные, экспериментальные, |  |
|                                                                         | основные                               |  |
| 3. опытные, основные, контрольные                                       | 4. опытные, экспериментальные,         |  |
|                                                                         | контрольные                            |  |

| 21 К монтажно-достроечным работам (МДР) относятся: |                                   |  |
|----------------------------------------------------|-----------------------------------|--|
| 1. корпусо-достроечные работы                      | 2. корпусо-заготовительные работы |  |
| 3. корпусо-монтажные работы                        | 4. сборка секций корпусов         |  |

| 22 Для испытания корпуса на водонепроницаемость применяют следующий способ |                                |  |
|----------------------------------------------------------------------------|--------------------------------|--|
| 1. налив воды под напором и без напора 2. ультразвуковой способ            |                                |  |
| 3. гаммаграфирование                                                       | 4. простукивание сварных шипов |  |

| 23 Технологическая документация используемая для стапельного производства: |            |    |            |           |                                               |
|----------------------------------------------------------------------------|------------|----|------------|-----------|-----------------------------------------------|
| 1.                                                                         | инструкция | ПО | проведению | сварочных | 2. типовая инструкция на проведение сборочных |

| работ на стапеле                     | работ при сборке секций корпусов судов  |
|--------------------------------------|-----------------------------------------|
| 3. инструкция на постройку сборочно- | 4. технологический процесс изготовления |
| сварочных пастелей                   | днищевых секций                         |

| 24 Техническая подготовка, заключающаяся | в разработке различного типа технологий для |
|------------------------------------------|---------------------------------------------|
| обеспечения постройки судна, является:   |                                             |
| 1. конструкторской                       | 2. материальной                             |
| 3. предметной                            | 4. технологической                          |

| 25 В качестве опорных устройств на стапеле используются: |                             |
|----------------------------------------------------------|-----------------------------|
| 1. винтовые упоры 2. клетки                              |                             |
| 3. подставы                                              | 4. поперечный опорные балки |

| 26 Объединение нескольких последовательных   | трудовых действий и движений, входящих в |
|----------------------------------------------|------------------------------------------|
| технологический комплекс приемов называется: |                                          |
| 1. технологическим приемом                   | 2. переходом                             |
| 3. операцией                                 | 4. действием                             |

| 27 При контроле работ на стапеле осуществляется: |                                           |
|--------------------------------------------------|-------------------------------------------|
| 1. проверка разметки построечного места          | 2. проверка размеров секций               |
| 3. проверка секций на конструктивность           | 4. проверка объёмов монтажных конструкций |

| 28 Вид производства в судостроении непосредственно связанный с изготовлением судовых |                        |  |
|--------------------------------------------------------------------------------------|------------------------|--|
| корпусных конструкций (СКК):                                                         |                        |  |
| 1. корпусообрабатывающее                                                             | 2. столярно-плотницкое |  |
| 3. механомонтажное                                                                   | 4. слесарно-корпусное  |  |

| 29 Поперечный стапель представляет собой:   |                                            |
|---------------------------------------------|--------------------------------------------|
| 1. котлован, вырытый в грунте ниже уровня   | 2. сооружение с наклонной плоскостью, на   |
| воды акватории, предназначенный для ремонта | которой закладывают и строят суда, а затем |
| и постройки судов                           | спускают их на воду                        |
| 3. сооружение, на котором судно             | 4. механизированный слип с продольным      |
| устанавливают на его горизонтальную         | положением судно                           |
| площадку, а спуск на воду производят по     |                                            |
| наклонной плоскости боком                   |                                            |

| 30 При контроле работ на стапеле осуществляется: |                                           |
|--------------------------------------------------|-------------------------------------------|
| 1. проверка секций на конструктивность           | 2. проверка объёмов монтажных конструкций |
| 3. проверка размеров секций                      | 4. проверка усталости блоков              |

| 31 Островной способ сборки судна состоит в том, что: |                                         |
|------------------------------------------------------|-----------------------------------------|
| 1. корпус собирают из блок-секций и                  | 2. происходит одновременная закладка по |
| формируют его, начиная со средней части              | длине судна 2 или 3 секций, которые в   |
| судна или иногда с кормы                             | дальнейшем смыкают забойными секциями   |
| 3. корпус формируется из предварительно              | 4. корпус судна собирается по мере      |
| собранных и сваренных блок-секций или                | готовности блоков                       |
| блоков                                               |                                         |

| 22.10                                                                            |                                             |
|----------------------------------------------------------------------------------|---------------------------------------------|
| 32 Корпусо-сборочные работы, проводимые на                                       |                                             |
| 1. обмеры монтажных корпусных конструкций                                        | 2. установка лесов для сборки               |
| 3. причерчивание соединяемых кромок обшивки и/или концов балок                   | 4. проверка точности монтажа конструкций    |
| 33 Сущность процесса разметки состоит:                                           |                                             |
| 1. в сжатии металла на внутренних                                                | 2. в нанесении контуров деталей, осей их    |
| поверхностях изгибаемых заготовок, и                                             | симметрии и центров отверстий согласно      |
| растяжении – на наружных                                                         | чертежу с учетом величин и расположения     |
|                                                                                  | припусков и технологии обработки            |
| 3. в устранении неровностей с поверхности                                        | 4. в соответствии с чертежом габаритных     |
| листов                                                                           | размеров                                    |
| А4 П.,                                                                           |                                             |
| 34 Лёгкие металлические переборки корпуса м                                      |                                             |
| 1. плоские без набора                                                            | 2. многослойные с неметаллическим           |
| 2                                                                                | материалом                                  |
| 3. каркасные                                                                     | 4. биметаллические                          |
| 35 Способ формирования корпуса судна из сек                                      | лим па стапене.                             |
| 1. прерывный                                                                     | 2. раздельный                               |
| 3. островной                                                                     | 4. непрерывный                              |
| J. Corpositori                                                                   | nonpopulation                               |
| 36 Период спуска по определению, относящий                                       | ся к продольному спуску судна со стапеля:   |
| 1. от входа кормы корпуса судна в воду до                                        | 2. от момента страгивания корпуса до начала |
| отрыва от стапеля                                                                | всплытия носа                               |
| 3. от момента страгивания корпуса до начала                                      |                                             |
| всплытия кормы                                                                   | всплытия                                    |
|                                                                                  |                                             |
| 37 Технологически законченная часть корпуса одеталей насыщения определяется как: | судна, состоящая из деталей, узлов и        |
| 1. узел                                                                          | 2. секция корпуса                           |
| 3. изделие                                                                       | 4. конструкция корпуса                      |
|                                                                                  |                                             |
| 38 Фактор мешающий определению размеро                                           | в деталей корпуса судна на теоретическом    |
| нертеже:                                                                         |                                             |
| 1. сложность графических построений                                              | 2. мелкий масштаб чертежа                   |
| 3. высокая трудоёмкость работы                                                   | 4. большая ошибка при снятии размеров       |
| 22                                                                               |                                             |
| Электроприхватки подразделяются на:                                              | 2                                           |
| -                                                                                | 2. точечные и жесткие                       |
| 1                                                                                | 4. соединительные                           |
| 1 поменения в напражен корина в при                                              | 2 VIIIOTOK ENO HAPOTADHUDOVOTAG WASTOWN     |
| 1. помещение с чертежом корпуса судна в                                          | 2. участок где изготавливаются шаблонь      |
| натуральную величину или в масштабе 1:10                                         | деталей корпуса                             |
| 3. место на котором вычерчивается                                                | 1                                           |
| теоретический чертёж судна в натуральную                                         | -                                           |

| величину |  |
|----------|--|
|          |  |

## Вариант III

| 1 Исходя из среднестатистических данных, длина секции для больших траулеров при |            |
|---------------------------------------------------------------------------------|------------|
| поперечной системе набора будет:                                                |            |
| 1. до 6 м                                                                       | 2. 6-8 м   |
| 3. 8-10 м                                                                       | 4. 12-14 м |

| 2 Плазовая разбивка-это:                  |                                      |
|-------------------------------------------|--------------------------------------|
| 1. построение продольного разреза корпуса | 2. построение трёх проекций: «бок»,  |
| судна                                     | «полуширота», «корпус»               |
| 3. чертёж «корпус»                        | 4. поярусное построение планов жилой |
|                                           | надстройки                           |

| 3 Построение перпендикуляров сетки плаза осуществляется построением треугольников со |          |  |
|--------------------------------------------------------------------------------------|----------|--|
| сторонами:                                                                           |          |  |
| 1. 2-3-4                                                                             | 2. 3-4-5 |  |
| 2.456                                                                                | 4.5.65   |  |
| 3. 4-5-6                                                                             | 4. 5-6-7 |  |

| 4 Сборочно-сварочная оснастка, применяемая при воспроизведении криволинейных форм, |                                 |
|------------------------------------------------------------------------------------|---------------------------------|
| называется:                                                                        |                                 |
| 1. сборочно-сварочная постель                                                      | 2. сборочно-сварочный стенд     |
| 3. сборочно-сварочный стол                                                         | 4. сборочно-сварочный кондуктор |

| 5 Форму и размеры деталей корпуса судна определят по проекции |                                    |
|---------------------------------------------------------------|------------------------------------|
| 1. корпус                                                     | 2. бок                             |
| 3. полуширота                                                 | 4. совмещение «полуширота» и «бок» |

| 6 При плазменной резке происходит:                                                |                                                             |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------|
| 1. проплавка мощным дуговым разрядом и удаление его из зоны реза высокоскоростным | 2. расплавление металла при помощи тепла электрической дуги |
| газовым потоком                                                                   |                                                             |
| 3. сгорание металла в струе чистого кислорода                                     | 4. оплавление металла под воздействием                      |
|                                                                                   | высокой температуры                                         |

| 7 CAD, CAE, CAM системы предназначены для:  |                                      |  |
|---------------------------------------------|--------------------------------------|--|
| 1. комплексной автоматизации проектирования | 2. комплексной автоматизации         |  |
|                                             | проектирования, конструирования и    |  |
|                                             | изготовления изделий                 |  |
| 3. комплексной автоматизации                | 4. комплексной системой изготовления |  |
| конструирования                             | изделий                              |  |

| 8 Цех со складом металла и участком предварительной обработки листового и профильного |                           |  |
|---------------------------------------------------------------------------------------|---------------------------|--|
| проката, изготовляющий детали корпуса называется:                                     |                           |  |
| 1. корпусообрабатывающий цех                                                          | 1. сборочно-сварочный цех |  |

| ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ ВЫСШЕГО ОБРАЗОВАНИЯ (БАКАЛАВРИАТ) Версия 1 56 |  |
|-------------------------------------------------------------------------|--|
| 4. корпусный цех                                                        |  |
| полученный в результате обработки листового ют:                         |  |
| 2. деталь                                                               |  |
| 4. комплект                                                             |  |
| ледующие технологические операции:                                      |  |
| 2. обработку чугунного литья                                            |  |
| 4. сборку узлов                                                         |  |
|                                                                         |  |
| 2. четырехвалковые вальцы                                               |  |
| 4. пресс «бульдозер»                                                    |  |
| 4. 30%                                                                  |  |
|                                                                         |  |
| 2. в сжатии металла на внутренних                                       |  |
| поверхностях изгибаемых заготовок, и                                    |  |
| растяжении – на наружных                                                |  |
| 4. в удалении остатков металла, ржавчины и других включений             |  |
| и другил включении                                                      |  |
| ,                                                                       |  |
| 2. 8-20 мм                                                              |  |
| 4. 50-70 мм                                                             |  |
| методом применима при толщине металла                                   |  |
| 2. 8 мм                                                                 |  |
| 4. 12 мм                                                                |  |
| ется:                                                                   |  |
| 2. травление кислотой                                                   |  |
| 4. травление щёлочью                                                    |  |
|                                                                         |  |

| 17 Основная маркировка деталей корпуса судна включает |                                         |
|-------------------------------------------------------|-----------------------------------------|
| 1. номер заказа, марку стали, номер чертежа           | 2. название судна, номер чертежа секции |
| секции или блока и номер детали                       | или блока и номер детали                |
| 3. название судна, номер чертежа и марку стали        | 4. марку стали, номер чертежа секции и  |
|                                                       | номер детали.                           |

## 18 При контроле работ на стапеле осуществляется:

| 1. проверка установки надстройки | 2. проверка секций на конструктивность    |
|----------------------------------|-------------------------------------------|
| 3. проверка размеров секций      | 4. проверка объёмов монтажных конструкций |

| 19 Слип представляет собой:                                                  |                                                                                |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1. сооружение, состоящее из наклонной плоскости и горизонтальной площадки со | 2. металлический (или деревянный) ящик, изготовленный по обводам корпуса судна |
| стапельными местами                                                          |                                                                                |
| 3. подъемно-спусковое сооружение,                                            | 4. сооружение, состоящее из наклонной                                          |
| представляющее собой искусственный бассейн                                   | плоскости                                                                      |
| типа шлюза, верхняя ступень которого                                         |                                                                                |
| находится выше уровня воды                                                   |                                                                                |

| 20 Скорость плазменной резки углеродистой стали выше скорости газопламенной резки в: |           |
|--------------------------------------------------------------------------------------|-----------|
| 1. 2 pasa                                                                            | 2. 8 pa3  |
| 3. 4 pasa                                                                            | 4. 10 pa3 |

| 21 Период спуска по определению, относящийся к продольному спуску судна со стапеля: |                                                           |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------|
| 1. от всплытия корпуса судна до остановки                                           | 2. от момента страгивания корпуса до начала всплытия носа |
| 3. от момента страгивания корпуса до начала                                         | 4. от касания кормы корпуса воды до                       |
| всплытия кормы                                                                      | всплытия                                                  |

| 22 Сухой док представляет собой:             |                                        |
|----------------------------------------------|----------------------------------------|
| 1. железобетонное сооружение в грунте ниже   | 2. комплекс из механизмов, позволяющий |
| уровня воды акватории, предназначенный для   | осуществлять подъем и спуск судов с    |
| ремонта и постройки судов                    | одного уровня водного пусти на другой  |
| 3. судно технического флота, предназначенное | 4. береговое сооружение с подземно-    |
| для подъема из воды судна, находящегося на   | спусковым оборудованием                |
| плаву                                        |                                        |

| 23 К монтажно-достроечным работам (МДР) относятся: |                                   |
|----------------------------------------------------|-----------------------------------|
| 1. трубопроводные                                  | 2. корпусо-заготовительные работы |
| 3. корпусо-монтажные работы                        | 4. сборка секций корпусов         |

| 24 Лёгкие металлические переборки корпуса могут быть типа: |                                |
|------------------------------------------------------------|--------------------------------|
| 1. многослойные с неметаллическим материалом               | 2. плоские без набора          |
| 3. биметаллические                                         | 4. плоские с приварным набором |

| 25 Лёгкие металлические переборки корпуса могут быть типа: |                                   |
|------------------------------------------------------------|-----------------------------------|
| 1. гофрированные с трапециевидными гофрами                 | 2. многослойные с неметаллическим |
|                                                            | материалом                        |
| 3. плоские без набора                                      | 4. биметаллические                |

26 Под пневматическими работами можно подразумевать следующие операции:

| 1. сварка | 2. сверление, развертывание и зенкование |
|-----------|------------------------------------------|
|           | отверстий                                |
| 3. сборка | 4. зачистка                              |

| 27 К изделию доизоляционного насыщение относятся: |                      |
|---------------------------------------------------|----------------------|
| 1. стакан сварной                                 | 2. установка талрепа |
| 3. фундамент судовой                              | 4. лист-дублер       |

| 28 Сущность процесса гибки состоит:            |                                         |
|------------------------------------------------|-----------------------------------------|
| 1. в сжатии металла на внутренних поверхностях | 2. в сжатии металла на внутренних       |
| изгибаемых заготовок, и растяжении – на        | поверхностях изгибаемых заготовок, и    |
| наружных                                       | растяжении – на наружных                |
| 3. в устранении неровностей с поверхности      | 4. в соответствии с чертежом габаритных |
| листов                                         | размеров                                |

| 29 К типовому элементу труб вентиляции относится: |            |
|---------------------------------------------------|------------|
| 1. двойник                                        | 2. изгиб   |
| 3. отвод                                          | 4. перевод |

| 30 Корпусо-сборочные работы, проводимые на стапеле: |                                          |
|-----------------------------------------------------|------------------------------------------|
| 1. сведение и выравнивание кромок обшивки,          | 2. установка лесов для сборки            |
| настилов полотнищ и набора                          |                                          |
| 3. обмеры монтажных корпусных конструкций           | 4. проверка точности монтажа конструкций |

| 31 Технологическая документация, используемая для стапельного производства: |                                         |
|-----------------------------------------------------------------------------|-----------------------------------------|
| 1. инструкция на постройку сборочно-сварочных                               | 2. технологический процесс изготовления |
| пастелей                                                                    | днищевых секций                         |
| 3. рабочая технология изготовления корпуса судна                            | 4. типовая инструкция на проведение     |
| на стапеле                                                                  | сборочных работ при сборке секций       |
|                                                                             | корпусов судов                          |

| 32 К плиточному виду судовой изоляции относи | тся:                                     |
|----------------------------------------------|------------------------------------------|
| 1. пробковая крупа                           | 2. плиты теплоизоляционные из пенопласта |
|                                              | полистирольного                          |
| 3. плиты из штапельного стекловолокна        | 4. плиты минерализованные на             |
|                                              | синтетическом связующем                  |

| 33 Механизированный спуск судна происходит: |                                      |
|---------------------------------------------|--------------------------------------|
| 1. в строительных доках, в док-камерах, с   | 2. на слипах                         |
| применением плавучих доков                  |                                      |
| 3. при помощи продольного и поперечного     | 4. с помощью подвесной канатной дуги |
| спусков с наклонных стапелей                |                                      |

| 34 Корпусо-сборочные работы, проводимые на стапеле: |                                           |
|-----------------------------------------------------|-------------------------------------------|
| 1. обмеры монтажных корпусных конструкций           | 2. зачистка соединений в процессе и после |
|                                                     | сборки                                    |

| 3. установка лесов для сборки                                                      | 4. проверка точности монтажа конструкций |
|------------------------------------------------------------------------------------|------------------------------------------|
|                                                                                    |                                          |
| 35 Период спуска по определению относящийся к продольному спуску судна со стапеля: |                                          |

| 35 Период спуска по определению, относящийся к   | продольному спуску судна со стапеля: |
|--------------------------------------------------|--------------------------------------|
| 1. от отрыва носа корпуса от стапеля до всплытия | 2. от момента страгивания корпуса до |
|                                                  | начала всплытия носа                 |
| 3. от момента страгивания корпуса до начала      | 4. от касания кормы корпуса воды до  |
| всплытия кормы                                   | всплытия                             |

| 36 При контроле работ на стапеле осуществляется: |                               |
|--------------------------------------------------|-------------------------------|
| 1. проверка секций на конструктивность           | 2. проверка размеров секций   |
| 3. проверка установки бортовых секций            | 4. проверка объёмов монтажных |
|                                                  | конструкций                   |

| 37 К войлочному виду судовой изоляции относятся: |                                          |
|--------------------------------------------------|------------------------------------------|
| 1. плиты теплоизоляционные из пенопласта         | 2. пробковая крупа                       |
| полистирольного                                  |                                          |
| 3. маты теплозвукоизоляционные на основе         | 4. плиты теплоизоляционные из пенопласта |
| стекловолокна                                    |                                          |

| 38 Основные признаки, по которым можно определить, что данный участок обшивки можно |                                          |
|-------------------------------------------------------------------------------------|------------------------------------------|
| развернуть методом геодезических линий:                                             |                                          |
| 1. нормаль к среднему шпангоуту не является                                         | 2. нормаль к среднему шпангоуту является |
| нормалью к остальным, и прогрессы по нормали                                        | нормалью к остальным                     |
| не равны между собой                                                                |                                          |
| 3. нормаль к среднему шпангоуту является                                            | 4. нормаль к среднему шпангоуту является |
| нормалью к остальным, а прогрессы по нормали                                        | нормалью к остальным, а прогрессы по     |
| равны между собой                                                                   | нормали равны между собой                |
|                                                                                     |                                          |

| 39 Стыками называются соединения, расположенные |                    |
|-------------------------------------------------|--------------------|
| 1. вдоль судна                                  | 2. поперек судна   |
| 3. посередине судна                             | 4. по высоте судна |

| 40 Секционный способ сборки с пирамидальной схемой формирования заключается в |                                         |
|-------------------------------------------------------------------------------|-----------------------------------------|
| последовательности:                                                           |                                         |
| 1. устанавливается закладная секция в средней                                 | 2. происходит одновременная закладка по |
| части корпуса и к ней монтируется секция в                                    | длине судна 2 или 3 секций, которые в   |
| пирамидальном порядке                                                         | дальнейшем смыкают забойными секциями   |
| 3. корпус формируется из предварительно                                       | 4. корпус судна собирается по мере      |
| собранных и сваренных блок-секций или блоков                                  | готовности блоков                       |