

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе модуля)

«СИСТЕМЫ МАШИННОГО ЗРЕНИЯ В ТЕХНОЛОГИЧЕСКИХ ЛИНИЯХ И КОМПЛЕКСАХ»

основной профессиональной образовательной программы магистратуры по направлению подготовки

15.04.02 ТЕХНОЛОГИЧЕСКИЕ МАШИНЫ И ОБОРУДОВАНИЕ

ИНСТИТУТ РАЗРАБОТЧИК

агроинженерии и пищевых систем кафедра инжиниринга технологического оборудования

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование ком- петенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями
ПК-2: Способен организовывать и выполнять научно-исследовательские работы в области инжиниринга технологического оборудования	Системы машинного зрения в технологических линиях и комплексах	Знать: - принципы построения систем ма- шинного зрения на базе видео- компьютерной техники; - принципы видеокомпьютерного кон- троля операций для повышения каче- ства изготавливаемой продукции ма- шиностроения. Уметь: - использовать технологии машинного зрения для контроля технологических операций; - проводить экспериментальные ис- следования параметров и режимов технологических операций на базе си- стем машинного зрения. Владеть: - навыками монтажа и настройки про- граммного и аппаратного обеспечения машинного зрения; - навыками применения систем распо- знавания изделий машиностроения в технологических линиях и комплек- сах.

- 1.2. К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов.

Промежуточная аттестация в форме зачета проходит по результатам прохождения всех видов текущего контроля успеваемости. В отдельных случаях (при не прохождении всех видов текущего контроля) зачет может быть проведен в виде тестирования.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори- тельно»	«удовлетвори- тельно»	«хорошо»	«отлично»
Критерий	«не зачтено»		«зачтено»	
1 Системность и полнота знаний в отношении изучаемых объектов	Обладает частичными и разрозненными знаниями, которые не может научнокорректно связывать между собой (только	Обладает минимальным набором знаний, необходимым для системного	Обладает набором знаний, достаточным для системного взгляда на изучаемый объект	Обладает полнотой знаний и системным взглядом на изучаемый объект
2 Работа с ин-	некоторые из которых может связывать между собой) Не в состоянии нахо-	взгляда на изучаемый объект	Может найти, ин-	Может найти, си-
формацией	дить необходимую информацию, либо в состоянии находить отдельные фрагменты информации в рамках поставленной задачи	необходимую информацию в рамках поставленной задачи	терпретировать и систематизировать необходимую информацию в рамках поставленной задачи	стематизировать необходимую ин- формацию, а так- же выявить новые, дополнительные источники ин- формации в рам- ках поставленной задачи
3 Научное осмысление изучаемого явления, процесса, объекта	Не может делать научно корректных выводов из имеющихся у него сведений, в состоянии проанализировать только некоторые из имеющихся у него сведений	В состоянии осуществлять научно корректный анализ предоставленной информации	В состоянии осуществлять систематический и научно корректный анализ предоставленной информации, вовлекает в исследование новые релевантные задаче данные	В состоянии осуществлять систематический и научно-корректный анализ предоставленной информации, вовлекает в исследование новые релевантные поставленной задаче данные, предлагает новые ракурсы поставленной задачи
4 Освоение стандартных алгоритмов решения профессиональных задач	В состоянии решать только фрагменты поставленной задачи в соответствии с заданным алгоритмом, не освоил предложенный алгоритм, допускает ошибки	В состоянии решать поставленные задачи в соответствии с заданным алгоритмом	В состоянии решать поставленные задачи в соответствии с заданным алгоритмом, понимает основы предложенного алгоритма	Не только владеет алгоритмом и понимает его основы, но и предлагает новые решения в рамках поставленной задачи

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Компетенция ПК-2: Способен организовывать и выполнять научно-исследовательские работы в области инжиниринга технологического оборудования

Тестовые задания открытого типа:

1. Величина, определяемая в точке поверхности и в данном направлении, которая есть отношение энергетической силы света, создаваемой в данном направлении бесконечно малым
элементом поверхности, содержащим указанную точку, к площади ортогональной проекции
этого элемента поверхности на плоскость, перпендикулярную данному направлению, назы-
вается
Ответ: энергетическая яркость
2. Источник излучения, размеры которого настолько малы по сравнению с расстоянием до
приёмной части системы технического зрения, что ими можно пренебречь в вычислениях,
называется
Ответ: точечный источник
3. Источник излучения, размеры которого соизмеримы с расстоянием до приёмной части си-
стемы технического зрения, называется
Ответ: протяженный источник
4. Процесс разбиения всего анализируемого изображения на конечное число отдельных эле-
ментов, называется
Ответ: пространственная дискретизация
5. Преобразование оптического излучения в информационный поток, пригодный для реги-
страции в ЭВМ, осуществляется, осуществляется в
Ответ: приемниках оптического излучения
6. Измерить яркость изображения, его контраст, площадь изображения, которую занимают
светлые, темные и другие яркостные элементы, и определить, где на плоскости изображения
находятся отдельные области или объекты, соответствующие тем или иным диапазонам зна-
чений яркости, позволяет
Ответ: гистограмма

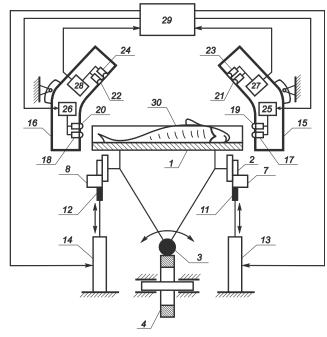
7. Восприятие объекта в рабочей зоне, формирование растрового изображения, оцифровка и
ввод изображения в ЭВМ осуществляется
Ответ: видеодатчиком
8. Основным элементом приёмной оптической системы видеокомпьютерного модуля являет-
ся
Ответ: объектив
9. Двумерная функция $g(x,y)$, задающая для каждой точки выбранной картинной плоскости
(x,y) значение g яркости (освещенности) соответствующей точки сцены, называется
Ответ: изображение
10. Хорошо реализуемым методом фильтрации изображения при "зашумлении", предусмат-
ривающим как аналоговую, так и цифровую реализацию, является
Ответ: Фурье-преобразование
11. Оптико-электронная система для автоматического анализа и регистрации изображения
контролируемого объекта в оптическом диапазоне, называется
Ответ: система технического зрения
12. Система машинного зрения, которая оказывает на контролируемый объект оптическое,
механическое или другое воздействие, не меняющее его свойства, или требует применения
вспомогательных устройств для такого воздействия, называется
Ответ: активная
13. Минимальное изменение размеров, формы, пространственного положения контролируе-
мого объекта, минимальный размер выявляемого дефекта, которые с заданной вероятностью
обнаруживается системой машинного зрения в данных условиях, называется
Ответ: чувствительность
14. Разбиение изображения на две области, одна из которых содержит все элементы изобра-
жения со значениями ниже заданного порога, а другая – все остальные, со значениями выше
этого порога, называется
Ответ: бинаризация

15. Законы цветового уравнивания, получаемые при аддитивном смешении световых пото-
ков, выражаемые простыми алгебраическими уравнениями и геометрически проиллюстриро-
ванные в трёхкоординатном цветовом пространстве, называются
Ответ: законы Грассмана
16. Аппаратно-ориентированная модель, используемая в дисплеях для аддитивного форми-
рования оттенков самосветящихся элементов объекта изображения, называется модель
Ответ: RGB
17. Любая процедура обработки изображения, при которой из одного растрового изображе-
ния формируется другое растровое изображение с измененными параметрами и характери-
стиками в соответствии с функцией преобразующего устройства, называется Ответ: фильтр
Ответ. фильтр
18. Сегментация, определяющая объект или фон по уровню яркости элемента изображения,
входящего в заданный диапазон яркостей или не входящего в этот диапазон, называется
Ответ: диапазонная пороговая
19. Одноэлементное устройство в котором используются фотонные, тепловые, волновые и
другие виды взаимодействия оптического излучения с веществом, преобразуя его в электри-
ческий сигнал, называется
Ответ: приемник излучения
20. Величина, определяющая ту часть потока излучения, которая действует на приёмник,
спектральная чувствительность которого выражается спектральной функцией относительной
световой эффективности, называется
Ответ: световой поток
21. Разбиение изображения на семантические области, которые имеют строгую корреляцию с
объектами или областями наблюдаемой трёхмерной сцены, называется
Ответ: сегментация изображения

22. Часть пространства, ограниченная прямыми, проведёнными из одной точки (вершины) ко всем точкам какой-либо замкнутой кривой, называется ______.

Ответ: телесный угол

23. Процедура обработки изображения, при которой из одного растрового изображения формируется другое растровое изображение с измененными параметрами и характеристиками в соответствии с функцией преобразующего устройства, называется .


Ответ: фильтрация изображения

24. Инерционные свойства приёмника излучения (изображения) в зависимости от частоты модуляции потока излучения, облучающего чувствительную поверхность приёмника излучения (изображения), определяет _____.

Ответ: частотная характеристика

Тестовые задания закрытого типа:

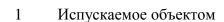
25. Соотнесите элементы видеокомпьютерного ориентатора рыбы с их обозначением на рисунке:

1	17	[1] Модулятор
2	22	[2] Вычислительный блок
3	29	[3] Фотоприемник
4	25	[4] Лазерный источник

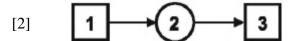
5

27

[5] Подъемное приспособление


6

14

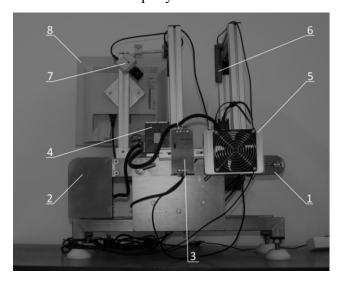

[6] Демодулятор

Ответ: 1-4; 2-3; 3-2; 4-1; 5-6; 6-5

26. Соотнесите виды излучения объекта и схемы регистрации изображения, используемые в системах технического зрения:

2 Прошедшее через объект

3 Отраженное объектом



4 Рассеянное объектом

[4] (2)—

Ответ: 1-4; 2-2; 3-3; 4-1

27. Соотнесите элементы мехатронного видеокомпьютерного модуля с их обозначением на рисунке:

1	7	[1]	Лазерный источник
2	6	[2]	Цифровая видеокамера
3	5	[3]	Блок управления шаговым приводом
4	4	[4]	Управляющая ЭВМ

Otbet: 1-2; 2-1; 3-4; 4-3

- 28. Цифровая видеокамера системы машинного зрения решает следующие задачи:
- 1 Опрос видеодатчика на основе КМОП-матрицы
- 2 Освещение рабочей зоны
- 3 Определение уровня квантования видеосигнала
- 4 Вычисление длины объекта на конвейере
- 5 Промежуточное запоминание изображения
- 6 Управление технологическим процессом
- 29. Видеодатчик формирует растровое изображение в следующих растровых форматах:
- 1 EPS (англ. Encapsulated PostScript)
- 2 TIFF (англ. Tagged Image File Format)
- 3 JPEG (англ. Joint Photographic Experts Group)
- 4 PCX (англ. Personal Computer Exchange)
- 5 CDR (англ. Corel DRAW)
- 6 GIF (англ. Graphics Interchange Format)
- 7 CDW (англ. COMPAS Document)
- 30. К оптическим параметрам систем технического зрения применяют следующие требования:
- 1 Линейное или угловое поле зрения системы
- 2 Быстродействие
- 3 Электрическая мощность
- 4 Рабочий диапазон спектра
- 5 Время автономной работы от аккумулятора
- 6 Чувствительность

- 31. К основным методам обработки изображений, используемым в системах технического зрения для задач неразрушающего контроля, относятся следующие:
- Преобразование изображений (контрастирование, коррекция цветовой гаммы, пространственная и спектральная фильтрация и др.)
- Запись и хранение изображений на внешних носителях (магнитных дисках, USBнакопителях и пр.)
- 3 Устранение паразитных и неинформативных элементов
- Управление источником подсветки рабочей зоны (лампами, светодиодами и др.)
 Выделение существенных элементов (оконтуривание,
- 5 маркировка/подсвечивание меняющихся/движущихся или статичных элементов, нанесение текстовых комментариев и пр.)
- Математическая обработка (корреляционный анализ, сравнение с шаблонами/эталонами, расчет статистических параметров и др.)
- 7 Фильтрация импульсных помех в линиях передачи данных
- 32. Установите последовательность выполнения функций видеокомпьютерного модуля при реализации технологического процесса первичной обработки рыбы:
- 1 Контроль рыбы на наличие видимых дефектов
- 2 Подсчёт количества рыбы или филе, поступающего на обработку
- 3 Измерение длины головы и хвоста
- 4 Контроль филе на наличие видимых дефектов
- 5 Наличие рыбы или филе в рабочей зоне
- 6 Контроль ориентации и местоположения рыбы в рабочей зоне
- 7 Распознавание характерных точек на тушке рыбы
- 8 Восстановление трехмерного образа тушки рыбы
- 9 Измерение длины и ширины тушки рыбы

Ответ: 5, 2, 9, 3, 1, 8, 4, 7, 6

3 ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/ КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Учебным планом для студентов очного отделения не предусмотрено выполнение контрольной работы.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Системы машинного зрения в технологических линиях и комплексах» представляет собой компонент основной профессиональной образовательной программы магистратуры по направлению подготовки 15.04.02 Технологические машины и оборудование.

Преподаватель-разработчик - Агеев О.В., д.т.н., доцент

Фонд оценочных средств рассмотрен и одобрен и.о. заведующего кафедры инжиниринга технологического оборудования

И.о. заведующего кафедрой

С.Б. Перетятко

Фонд оценочных средств рассмотрен и одобрен методической комиссией института агроинженерии и пищевых систем (протокол № 05 от 30 мая 2025 г).

Председатель методической комиссии ______ М.Н. Альшевская