

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе модуля) «ЭЛЕКТРОСНАБЖЕНИЕ»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

13.03.02 ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХНИКА

ИНСТИТУТ морских технологий, энергетики и строительства

РАЗРАБОТЧИК кафедра энергетики

1РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными индикаторами достижения компетенций

Код и наименование	ими достижения комп	Результаты обучения (владения, умения и
код и наименование компетенции	Дисциплина	знания), соотнесенные с компетенциями
ПК-2	Электроснабжение	Знать:
Способен выполнять	электроениожение	- основы систем электроснабжения городов,
разработку, обоснование и		промышленных предприятий и
оформление проектных		транспортных систем;
решений и документации с		- схемы и основное электротехническое и
использованием цифровых		коммутационное оборудование систем
технологий на всех этапах		электроснабжения;
процесса проектирования		- требования нормативных правовых актов к
электроустановок и систем		устройству узлов системы
электроснабжения объектов		электроснабжения;
капитального строительства		- типовые проектные решения по узлам
_		системы электроснабжения;
		- схемы и методы монтажа элементов
		системы электроснабжения;
		- методики и правила проведения расчетов
		для проекта системы электроснабжения
		объектов капитального строительства;
		<u>Уметь:</u>
		- рассчитывать и выбирать элементы, а
		также определять оптимальные режимы
		работы систем электроснабжения
		промышленных предприятий, городов и
		транспортных систем как в процессе их
		разработки и создания, так в процессе их
		эксплуатации; - определять схемы и методы монтажа
		элементов системы электроснабжения в
		зависимости от принятых технических
		решений рабочей документации;
		- применять программные средства для
		оформления рабочей документации систем
		электроснабжения (электроснабжение,
		освещение, заземление, кабельные и
		воздушные сети) (документов в текстовой
		форме, рабочих чертежей, спецификации
		оборудования и изделий);
		- определять перечень оборудования для
		системы электроснабжения;
		- выбирать необходимые требования к

Код и наименование компетенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями
		функционированию системы электроснабжения объекта капитального строительства; - определять варианты структурных схем системы электроснабжения объекта и выбирать оптимальную структурную схему;
		Владеть: - методиками расчета и выбора оборудования систем электроснабжения промышленных предприятий, городов и транспортных систем; - навыками выполнение расчетов, необходимых для проектирования системы
		электроснабжения; - навыками подготовки исходных данных для разработки комплекта проектной документации системы электроснабжения; - навыками разработки текстовой части и графической части проектной документации системы электроснабжения.

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов;
- задания к контрольной работе (для заочной формы обучения).

К оценочным средствам для промежуточной аттестации относятся:

- типовые задания по курсовому проекту;
- экзаменационные задания по дисциплине, представленные в виде тестовых заданий закрытого и открытого типов с ключами правильных ответов.

Промежуточная аттестация по дисциплине проводится в форме зачета, который выставляется по результатам прохождения всех видов текущего контроля успеваемости.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

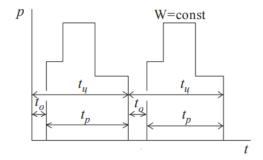
Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %

	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
Критерий	тельно»	тельно»	r	
1 Системность	Обладает частич-	Обладает	Обладает	Обладает
и полнота	ными и разрознен-	минимальным	набором знаний,	полнотой знаний
знаний в	ными знаниями,	набором знаний,	достаточным для	и системным
отношении	которые не может	необходимым для	системного	взглядом на
изучаемых	корректно связывать	системного	взгляда на	изучаемый
объектов	между собой (только	взгляда на	изучаемый	объект
00201102	некоторые из них	изучаемый объект	объект	
	может связывать	119) 11101111111111111111111111111111111	002011	
	между собой)			
2 Работа с	Не в состоянии	Может найти	Может найти, ин-	Может найти,
информацией	находить необходи-	необходимую	терпретировать и	систематизиро-
T • F ······	мую информацию,	информацию в	систематизироват	вать необходи-
	либо в состоянии	рамках	ь необходимую	мую информа-
	находить отдельные	поставленной	информацию в	цию, а также
	фрагменты инфор-	задачи	рамках	выявить новые,
	мации в рамках		поставленной	дополнительные
	поставленной задачи		задачи	источники
				информации в
				рамках постав-
				ленной задачи
3 Научное	Не может делать	В состоянии	В состоянии	В состоянии осу-
осмысление	научно корректных	осуществлять	осуществлять	ществлять систе-
изучаемого	выводов из	научно	систематический	матический и
явления,	имеющихся у него	корректный	и научно	научно-коррект-
процесса,	сведений, в	анализ	корректный	ный анализ пре-
объекта	состоянии	предоставленной	анализ	доставленной
	проанализировать	информации	предоставленной	информации,
	только некоторые из		информации,	вовлекает в ис-
	имеющихся у него		вовлекает в	следование новые
	сведений		исследование	релевантные
			новые	поставленной
			релевантные	задаче данные,
			задаче данные	предлагает новые
				ракурсы постав-
				ленной задачи
4 Освоение	В состоянии решать	В состоянии	В состоянии	Не только
стандартных	только фрагменты	решать поставлен-	решать постав-	владеет
алгоритмов	поставленной задачи	ные задачи в	ленные задачи в	алгоритмом и
решения	в соответствии с	соответствии с	соответствии с	понимает его
профессио-	заданным алгорит-	заданным	заданным	основы, но и
нальных задач	мом, не освоил	алгоритмом	алгоритмом,	предлагает новые
	предложенный		понимает основы	решения в рамках
	алгоритм, допускает		предложенного	поставленной
	ошибки		алгоритма	задачи

1.4 Оценивание тестовых заданий открытого и закрытого типа осуществляется по системе зачтено/ не зачтено» — 41-100% правильных ответов; «не зачтено» — менее

40 % правильных ответов) или пятибалльной системе (оценка «неудовлетворительно» - менее 40 % правильных ответов; оценка «удовлетворительно» - от 41 до 60 % правильных ответов; оценка «хорошо» - от 61 до 80% правильных ответов; оценка «отлично» - от 81 до 100 % правильных ответов). Для заданий открытого типа оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.


2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ПК-2:

Способен выполнять разработку, обоснование и оформление проектных решений и документации с использованием цифровых технологий на всех этапах процесса проектирования электроустановок и систем электроснабжения объектов капитального строительства

Тестовые задания открытого типа

1. Аппарат, агрегат, механизм, предназначенный для преобразования электрической энерги
в другой вид энергии, называется
Ответ: Электроприемник
2 режим работы электроприемника характеризуется небольшими по времени периодами работы и длительными паузами с отключением ЭП от сети.
Ответ: Кратковременный
3. Для электроприемников повторно-кратковременного режима указанная в паспорте мощность повторно-кратковременного режима должна быть приведена к номинальной мощности режима
Ответ: Продолжительного
4. Электрическая мощность P(t) при равномерном потреблении электроэнергии W в течение времени t называется
Ответ: Электрическая нагрузка
5. С точки зрения регулярности нагрузок индивидуальный график, представленный на
рисунке, является по виду

Ответ: Периодический

6. Длительная неизменная нагрузка элемента системы электроснабжения, которая эквивалентна ожидаемой изменяющейся нагрузке по тепловому воздействию, называется

Ответ: Расчетная нагрузка

7. Коэффициент _____ - это отношение продолжительности включения приемника в цикле $t_{\text{вкл}}$ ко всей продолжительности цикла $t_{\text{цикл}} = t_{\text{вкл}} + t_{\text{отк}}$

Ответ: Включения

8. Метод расчета электрических нагрузок, при котором в пределах расчетного узла выделяют группу ЭП с переменным и группу ЭП с практически постоянным графиком нагрузок, и для каждой группы отдельно производится расчет максимальных расчетных нагрузок групп приемников с использованием средней мощности за смену и коэффициента максимума.

Ответ: Метод упорядоченных диаграмм

9. ______ - это такое число однородных по режиму работы приемников одинаковой мощности, которое обуславливает ту же величину расчетной нагрузки, что и группа фактических различных по номинальной мощности и режиму работы приемников

Ответ: Эффективное число электроприемников

10. Поиск расчетной нагрузки, согласно методу ______, осуществляется по следующим соотношениям:

$$P_{pacu} = K_c \cdot P_{nom}; \ Q_{pacu} = P_{pacu} \cdot tg\phi; \ S_{pacu} = \sqrt{P_{pacu}^2 + Q_{pacu}^2} = \frac{P_{pacu}}{\cos \phi}$$

Ответ: Коэффициента спроса

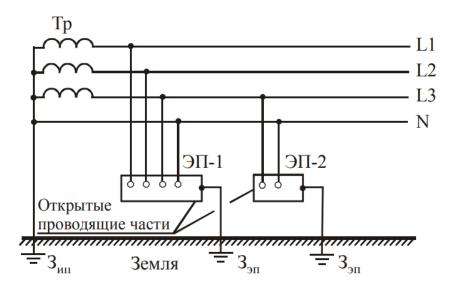
11. Поиск расчетной нагрузки, согласно методу ______, осуществляется по следующим соотношениям:

$$P_{\textit{pac4}} = K_{\phi} \cdot P_{\textit{cm}}; \ \ Q_{\textit{pac4}} = K_{\phi}' \cdot Q_{\textit{cm}} = P_{\textit{pac4}} \cdot \mathsf{tg\phi}; \ \ S_{\textit{pac4}} = \sqrt{P_{\textit{pac4}}^2 + Q_{\textit{pac4}}^2} \ ,$$

Ответ: Коэффициента формы

12. Для производств с большой ди	инамичностью технологического процесса и относительно
равномерно распределенной по пр	оизводственной площади нагрузкой расчет электрических
нагрузок выполняется по	нагрузке на единицу производственной площади

Ответ: Удельной

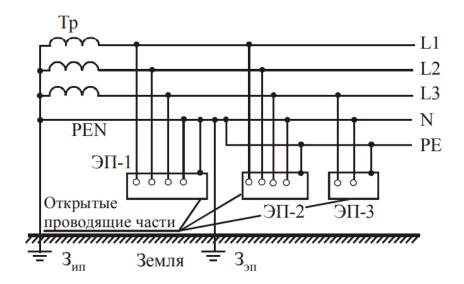

13. Определить расчетную нагрузку алюминиевого завода производительностью $100\ 000\ {\rm T}$ алюминия в год. Удельный расход электроэнергии на переменном напряжении на производство алюминия составляет $18000\ {\rm kBt}\cdot {\rm v}/{\rm T}$, расход на остальные нужды завода -5% от годового расхода на электролиз. Число часов использования максимума нагрузки составляет $8300\ {\rm v}$.

Ответ: 227,7 МВт

14. При приведении однофазных нагрузок к условной трехфазной мощности если неравномерность распределения нагрузки по фазам не выше ______, то расчет ведется как для трехфазных нагрузок (сумма всех однофазных нагрузок).

Ответ: 15 %

15. На рисунке представлена электрическая сеть с системой заземления типа


Ответ: ТТ

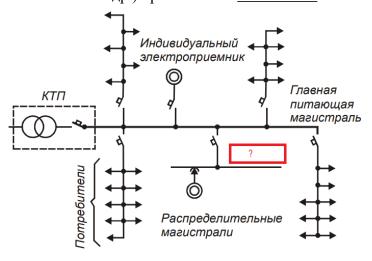
Ответ: Установившегося значения

17. Нагрузка отдельных фаз при включении однофазных $Э\Pi$ на линейное напряжение определяется как ______ нагрузок двух плеч, прилегающих к данной фазе.

Ответ: Полусумма

18. На рисунке представлена электрическая сеть с системой заземления типа

Ответ: ТN-С-Ѕ


19. В процессе однофазного короткого замыкания в сетях TN-C возникает повышение напряжения (перенапряжения) на неповрежденных фазах на ____ %

Ответ: 40

20. Среди сетей с системой заземления TN–C, TN–S, TN–C–S, IT, TT самая высокая пожаробезопасность у сетей _____

Ответ: ІТ

21. Для питания электродвигателей подъемно-транспортных устройств (кранов, кран-балок, тельферов, передаточных тележек и др.) применяются ______

Ответ: троллеи

22	- снижение разности потенциалов между доступными
одновременному прико	основению открытыми проводящими частями, сторонними
проводящими частями,	заземляющими и защитными проводниками (РЕ-проводниками), а
также РЕМ-проводника	ми путем электрического соединения этих частей между собой.

Ответ: Уравнивание потенциалов

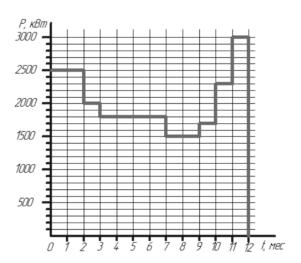
23. Преднамеренное соединение открытых проводящих частей электроустановки
напряжением до 1000 В с глухозаземленной нейтралью трансформатора в сетях трехфазного
тока называется

Ответ: Защитное зануление

Тестовые задания закрытого типа:

- 24. Данная система заземления, согласно ПУЭ, не предполагает использование устройств дифференциальной защиты
 - 1. Система TN-S
 - 2. Система ТТ
 - 3. Система TN-C
 - 4. Система TN-C-S
- 25. Категория потребителей по надежности электроснабжения, которая позволяет перерыв в питании на время оперативных переключений
 - 1. 1.
 - 2. **2.**
 - 3. 3.
 - 4. 4.
- 26. Сеть от распределительного устройства подстанции или ответвление от линии электропередачи до ВРУ. А также от ВРУ до ГРЩ и ВРЩ и до распределительных пунктов или групповых щитков
 - 1. Питающая сеть
 - 2. Групповая сеть
 - 3. Одиночная сеть
 - 4. Распределительная сеть
- 27. Число часов использования максимума активной нагрузки за год определяется по
 - 1. Суточному графику реактивной нагрузки
 - 2. Годовому графику активной нагрузки по продолжительности
 - 3. Годовому графику полной нагрузки по продолжительности
 - 4. Годовому графику потерь активной мощности

- 28. Главный недостаток сети TN-S
 - 1. Высокая стоимость
 - 2. Низкая электробезопасность
 - 3. Низкая надежность
 - 4. Высокая пожароопасность
- 29. Отличие схемы электрической сети с двухсторонним питанием от кольцевой схемы
 - 1. В схеме с двухсторонним питанием источником является одно РП, а в кольцевой схеме два РП
 - 2. В схеме с двухсторонним питанием источниками являются разные секции РП, а в кольцевой схеме одна секция РП
 - 3. В схеме с двухсторонним питанием источниками являются два РП, а в кольцевой схеме одно РП
 - 4. В схеме с двухсторонним питанием источниками являются одна секции РП, а в кольцевой схеме две секции РП
- 30. Выберите назначение силовых пунктов низковольтных распределительных сетей
 - 1. Защита линий и распредустройств
 - 2. Распределение электроэнергии
 - 3. Защита электрических установок и распределение электроэнергии
 - 4. Защита линий и трансформаторов


3 ТИПОВЫЕ ЗАДАНИЯ ДЛЯ КОНТРОЛЬНОЙ РАБОТЫ И КУРСОВОГО ПРОЕКТА

- 3.1 Учебным планом предусмотрено выполнение контрольной работы студентами заочной формы обучения. Контрольная работа состоит из следующих задач:
- **Задача 1.** Построить и изобразить индивидуальные суточные графики нагрузок работы ЭП в будний день в Excel с шагом 15 минут для:
 - Электроприемника поточного производства с периодическим графиком нагрузок: Время цикла 1,5 часа, время паузы 0,5 ч. Pmax* = 60 kBt, Pmin* = 30 kBt
 - Электроприемника цикличного производства с цикличным графиком нагрузок: Время цикла -2-2.5 часа, время работы -1.5 часа. Pmax = 50 кВт, Pmin = 10 кВт
 - Электроприемника нецикличного производства с нецикличным графиком нагрузок: Время цикла -3-3.5 часа, время работы -1-2 часа. Pmax = 70 кВт, Pmin = 10 кВт
 - Электроприемника нерегулярного производства с нерегулярным графиком нагрузок: Время цикла – 1-3.5 часа, время работы – 0.5-3 часа. Ртах = 60 кВт, Ртіп = 10 кВт

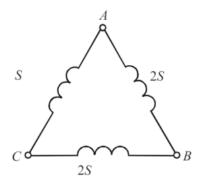
На основании суточных графиков нагрузок отдельных электроприемников построить групповой годовой график нагрузок при условии сохранения формы графика нагрузок и

снижения энергопотребление в выходные дни на 70%. Определить среднюю нагрузку, коэффициент сменности по энергоиспользованию.

Задача 2. Для годового графика активной нагрузки определить коэффициент формы Кф, коэффициент заполнения графика Кз.г и число часов использования максимальной нагрузки Та.

Задача 3.

1. Методом коэффициента спроса определить нагрузку на линию ввода печи сопротивления СШВ–3.100/9. Исходные данные об электроприемниках потребителя приведены в таблице. Напряжение сети 400 В.


Исходны	C			
наименование элек- троприемников	кол-во рабо- таю- щих ЭП	номинальная мощность одного ЭП, кВт	Суммарная установ- ленная мощность, кВт	
Электропечь	1	180	180	
Нагреватели насосов	3	27	81	
Приводы насосов	6	10	60	
Приводы затворов	14	0,1	1,4	
Тележки и механиз- мы передвижения садки	2	2,8	5,6	
Суммарный показа- тель ($K_{p,w}$ =1)	26	_	328	

2. Методом упорядоченных диаграмм определить расчетную нагрузку цеха, в котором находятся следующие нагрузки:

Наименование отделения цеха и производственного механизма	Кол-во, шт.	Установленная мощность, кВт	Ки	cos φ
Токарно-винторезный станок 1К62	5	11,25	0,14	0,5
Токарно-винторезный станок 1Б61	4	4,625	0,14	0,5
Токарно-винторезный станок 1А61617	1	4,6	0,14	0,5
Токарно-револьверный станок 1П326	3	5,475	0,14	0,5
Долбежный станок 1А420	3	3,8	0,14	0,5
Токарно-строгальный станок 7М37	3	11	0,14	0,5
Универсальный фрезерный станок 6В75	3	1,7	0,14	0,5
Горизонтально-фрезерный станок 6М80Г	1	3,525	0,14	0,5
Вертикально-фрезерный станок 6 М12П	2	12,925	0,14	0,5
Зубофрезерный станок 53301	4	0,725	0,14	0,5
Круглошлифовальный станок 3А164	1	19,45	0,14	0,5
Плоскошлифовальный станок 3740	2	12,65	0,14	0,5
Труборазрезный станок С246А	1	2,8	0,14	0.5
Преобразователь сварочный ПСО-500	2	22	0,1	0,6
Машина электросварочная МТМ-75 М	1	75 κB·A	0,3	0,6
Машина электросварочная точечная МШМ-25М	1	25 κB·A	0,3	0,6
Трансформатор сварочный СТН-350	4	25 κB·A	0,3	0,6
Кран мостовой 5 т	1	24,2	0,2	0,6
Вентилятор	3	10	0,65	0,8
Электропечь сопротивления ПИ-31	2	24	0,8	0,95
Шкаф сушильный Ш-0,5	1	1,1	0,8	0,95
Электропечь сопротивления Н-15	1	15	0,8	0,95
Электропечь сопротивления ОКБ-194А	2	19	0,8	0,95
Электропечь ванна ОП-60/15	1	22	0,8	0,95

Задача 4.

С использованием метода упорядоченных диаграмм определить расчетный ток линии, питающей группу сварочных трансформаторов со следующими паспортными данными: Sпасп = 30 кВА, ПВ = 40%, соѕф = 0,4, которые включены на линейное напряжение трехфазной сети 380/220 В. Схема включения электроприемников приведена на рисунке.

Задача 5.

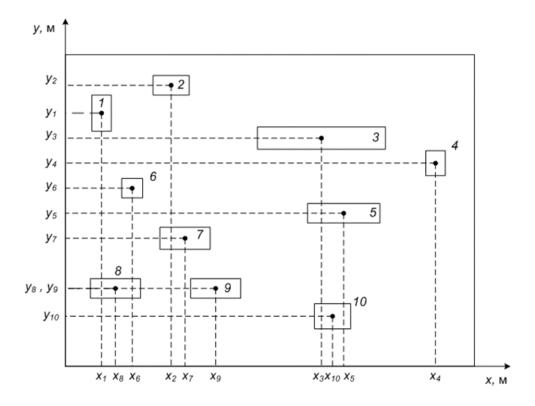
Определить расчётную нагрузку для следующих ЭП:

На фазное напряжение присоединены две регулируемые нагревательные печи мощностью по 20 кВт, $\cos \phi = 1$, ku = 0.5.

На линейное напряжение включены:

Группа 1: сварочная машина с тремя однофазными сварочными трансформаторами: $S\pi ac\pi = 500 \text{ кBA}, \Pi B = 15\%, \cos \phi = 0.4, \text{ ku} 1 = 0.35.$

 $\Gamma pynna~2$: сварочный аппарат: Sпасп = 75 кBA, ПВ = 40%, $\cos \phi = 0.5$, $\sin 2 = 0.25$. Количество аппаратов – 2.


 $\Gamma pynna\ 3$: сварочный аппарат: Sпасп = 100 кВА, ПВ = 40%, $\cos \phi = 0,4$, ku3 = 0,4. Количество аппаратов – 2.

Распределить данные ЭП по возможности равномерно (изобразить их подключение к фазам A,B,C.)

Задача 6.

Определить центр электрических нагрузок для активной нагрузки, параметры картограммы электрических нагрузок предприятия, генеральный план которого приведен на рисунке. Электрические силовые и осветительные нагрузки цехов и координаты расположения цехов на генплане приняты следующими:

Наименование цеха	Площадь цеха	Установленна я мощность, кВт	Х,м	Ү,м
Прядильный	8000	640	435	80
Ткацкий	12000	530	250	125
Красильный	6000	800	200	200
Швейная фабрика	1000	630	110	300
Механический	300	350	460	250
Инструментальный	350	950	320	340
Столярный	200	400	455	360
Заводоуправление	290	100	175	470
Склад готовых изделий	300	50	60	130
Насосная 10 кВ (СД)	100	1000	80	125

3.2 Контрольная работа оценивается по системе «зачтено / не зачтено». Качественные критерии оценивания контрольной работы приведены в таблице 3.

Таблица 3 – Критерии оценивания расчетно-графической работы

Оценка	Критерий
	Методика и порядок расчета верные. Ошибки отсутствуют, либо имеются несущественные вычислительные ошибки.
«Зачтено»	Методика и порядок расчета верные. Имеются вычислительные ошибки, обусловленные невнимательностью при расчетах, которые не привели к существенному искажению результата.
	Имеются незначительные ошибки в методологии, ошибки в промежуточных расчетах или выборе коэффициентов, обусловленные неполным пониманием принципа расчета, при этом конечный результат имеет приемлемые отклонения.
«Не зачтено»	Применена неверная методология, нарушен порядок расчета, имеется серьезная системная ошибка, обусловленные непониманием принципа расчета и приведшие к ошибочному результату.

3.3 Курсовой проект предусмотрен для студентов всех форм обучения и выполняется во втором семестре изучения дисциплины. Целью выполнения курсового проекта является формирование у студентов системы компетенций для решения профессиональных задач по проектированию систем электроснабжения.

Каждый студент выполняет курсовой проект по своему индивидуальному заданию, обозначенному двумя последними цифрами его учебного шифра в зачетной книжке (первая цифра-номер задания, вторая цифра - номер варианта). Пример задания для одного варианта приведен ниже:

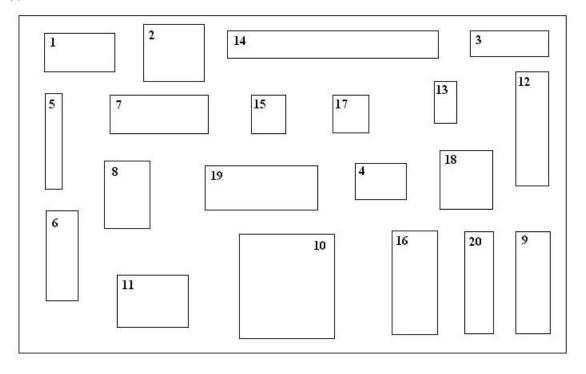


Рисунок 1. Генеральный план предприятия

Спроектировать схему электроснабжения завода (рисунок 1). Масштаб 1:500. Исходные данные приведены в таблице 4.

Таблица 4 – Исходные данные

Наименование цеха (завода)	Установленная мощность цеха, кВт по вариантам									
	1	2	3	4	5	6	7	8	9	10
Заводоуправление, СКБ и	300	500	600	280	150	300	400	250	280	410
лаборатории										
Столовая	260	400	200	220	240	260	280	280	320	190
Известегасительный цех	200	150	190	320	245	262	313	297	410	215
Материальный склад №1	30	65	123	130	132	241	56	42	42	152
Склад заполнителей	310	120	330	350	370	398	354	256	248	300
Завод изделий из ячеистых	960	700	900	800	957	687	754	235	600	600
бетонов										
Склад металла и готовой	120	200	240	360	400	150	170	190	813	651
продукции										
Компрессорная	460	320	250	270	290	313	300	290	281	320
Компрессорная (6 кВ)	400	600	700	450	350	500	600	520	900	880
Склад цемента с разгрузочным	320	260	520	420	320	330	410	265	340	340
устройством										
Бетонорастворный цех	180	300	360	420	370	350	400	250	200	170
Ремонтно-механический цех	200	420	400	300	350	420	290	250	310	500
Склад готовой продукции	80	250	90	100	110	115	120	130	140	150
завода железобетонных										
изделий										
Завод железобетонных изделий	360	200	300	400	500	600	700	800	900	450
Склад	30	70	60	90	120	150	180	165	151	140
Арматурная мастерская со	210	230	250	270	305	296	240	213	214	215
складом										
Насосная станция перекачки	90	200	180	220	190	185	230	300	350	400
сточных вод										
Насосная станция водопровода	200	500	300	320	120	400	256	256	890	924
Материальный склад №2	25	50	50	10	56	89	121	110	300	258
Котельная	500	400	600	550	490	720	700	730	450	632

Скреперный склад угля	100	300	200	300	250	400	452	453	520	190

3.4 Курсовой проект оценивается по пятибалльной системе. Качественные критерии оценивания курсового проекта приведены в таблице 6.

Таблица 5 — Критерии оценивания курсового проекта

Оценка	Критерий
«Отлично»	Методика и порядок расчета верные. Ошибки отсутствуют, либо имеются несущественные вычислительные ошибки.
«Хорошо»	Методика и порядок расчета верные. Имеются вычислительные ошибки, обусловленные невнимательностью при расчетах, которые не привели к существенному искажению результата.
«Удовлетворительно»	Имеются незначительные ошибки в методологии, ошибки в промежуточных расчетах или выборе коэффициентов, обусловленные неполным пониманием принципа расчета, при этом конечный результат имеет приемлемые отклонения.
«Неудовлетворительно»	Применена неверная методология, нарушен порядок расчета, имеется серьезная системная ошибка, обусловленные непониманием принципа расчета и приведшие к ошибочному результату.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Электроснабжение» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 13.03.02 Электроэнергетика и электротехника.

Преподаватель-разработчик – Д.К. Кугучева

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой энергетики.

Заведующий кафедрой

В.Ф. Белей

Фонд оценочных средств рассмотрен и одобрен методической комиссией ИМТЭС (протокол № 8 от 26.08.2024 г).

Председатель методической комиссии ИМТЭС

Белих О.А. Белых