

# Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Начальник УРОПСП

# Рабочая программа дисциплины **МАТЕМАТИЧЕСКИЕ ОСНОВЫ МАШИННОГО ОБУЧЕНИЯ**

основной профессиональной образовательной программы магистратуры по направлению подготовки

#### 09.04.01 ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА

ИНСТИТУТ Цифровых технологий

ВЫПУСКАЮЩАЯ КАФЕДРА Прикладной математики и информационных технологий

РАЗРАБОТЧИК УРОПСП

#### 1 ЦЕЛЬ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1.1 Целью освоения дисциплины «Математические основы машинного обучения» является формирование у магистрантов прочной теоретической базы и практических навыков в области применения математических методов и моделей, необходимых для глубокого понимания, разработки, анализа и эффективной реализации современных алгоритмов и подходов машинного обучения в задачах вычислительной техники. Освоение ключевых разделов высшей математики, таких как линейная алгебра, математический анализ, теория вероятностей и математическая статистика, а также основы теории оптимизации, которые являются фундаментом для построения и анализа большинства алгоритмов машинного обучения. Формирование компетенций в области математического моделирования различных процессов и явлений, используемых в машинном обучении. Приобретение навыков применения математического аппарата для описания, анализа и улучшения производительности алгоритмов машинного обучения, включая методы обучения с учителем (регрессия, классификация), обучения без учителя (кластеризация, снижение размерности) и обучения с подкреплением. Развитие способности критически оценивать математические предпосылки и ограничения различных моделей машинного обучения, а также выбирать наиболее адекватные методы для решения конкретных прикладных задач в сфере вычислительной техники. Подготовка к самостоятельной научно-исследовательской деятельности, связанной с разработкой новых, более эффективных и специализированных алгоритмов машинного обучения, а также их оптимизированной реализацией в аппаратных и программных комплексах вычислительной техники.
- 1.2 Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки.

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

| Код и наименование компетенции                                                                                                                                                                                                                                                                                                                                                                                                                          | Дисциплина                               | Результаты обучения (владения, умения и знания), соотнесенные с компетенциями                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ОПК-1 Способен самостоятельно приобретать, развивать и применять математические, естественнонаучные, социально-экономические и профессиональные знания для решения нестандартных задач, в том числе в новой или незнакомой среде и в междисциплинарном контексте; ОПК-2 Способен разрабатывать оригинальные алгоритмы и программные средства, в том числе с использованием современных интеллектуальных технологий, для решения профессиональных задач. | Математические основы машинного обучения | Знать: - математические основы машинного обучения (линейная алгебра, математический анализ, теория вероятностей и статистика, теория оптимизации, функциональный анализ); - основные алгоритмы машинного обучения (линейная регрессия, логистическая регрессия, svm, деревья решений, кластеризация, байесовские методы и др.); - методы оценки качества моделей; - методы снижения размерности; - принципы построения и анализа моделей.  Уметь: - применять математические методы для анализа и решения задач машинного обучения; - выбирать и обосновывать выбор подходящих алгоритмов для конкретных задач; - разрабатывать оригинальные алгоритмы и программные средства; - оценивать качество моделей и проводить их настройку; - самостоятельно осваивать новые методы и технологии; - производить оценки математических методов, моделей, алгоритмов, технологий и инструментальных средств;  Владеть: - навыками программирования на языках руthоп и г. библиотеками и инструментами для машинного обучения (scikit-learn, tensorflow, pytorch); - навыками работы с данными (подготовка, анализ, визуализация); - навыками разработки методики и плана эксперимента усовершенствованных или разработанных новых моделей, алгоритмов, технологий и инструментальных средств работы с большими данными. |

# 2 ТРУДОЁМКОСТЬ ОСВОЕНИЯ, СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, ФОРМЫ АТТЕСТАЦИИ ПО НЕЙ

Дисциплина «Математические основы машинного обучения» относится к блоку 1 обязательной части.

Общая трудоемкость дисциплины составляет 3 зачетные единицы (з.е.), т.е. 108 академических часов (81 астр. часов) контактной и самостоятельной учебной работы студента; работой, связанной с текущей и промежуточной (заключительной) аттестацией по дисциплине.

Распределение трудоемкости освоения дисциплины по семестрам, видам учебной работы студента, а также формы контроля приведены ниже.

Таблица 2 - Объем (трудоёмкость освоения) в <u>очной форме</u> обучения и структура дисциплины

|                                          |         | ВІ |      |      | Контактная работа |     |    |      |       | ация в |                                          |
|------------------------------------------|---------|----|------|------|-------------------|-----|----|------|-------|--------|------------------------------------------|
| Наименование                             | Семестр | ď  | 3.e. | э.е. | Лек               | Лаб | Пр | РЭ   | КА    | СРС    | Подготовка и аттестация<br>период сессии |
| Математические основы машинного обучения | 1       | 3  | 3    | 108  | 16                | -   | 32 | 5    | 0,15  | 54,85  | -                                        |
| Итого по дисциплине:                     |         | 3  | 108  | 16   | -                 | 32  | 5  | 0,15 | 54,85 | -      |                                          |

При разработке образовательной технологии организации учебного процесса основной упор сделан на соединение активной и интерактивной форм обучения. Интерактивная форма позволяет студентам проявить самостоятельность в освоении теоретического материала и овладении практическими навыками, формирует интерес и позитивную мотивацию к учебе.

# 3 УЧЕБНАЯ ЛИТЕРАТУРА И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА

Учебно-методическое обеспечение дисциплины приведено в таблицах 3 и 4.

Таблица 3 – Перечень основной и дополнительной литературы

| Наименование<br>дисциплины | Основная литература                                                                                  | Дополнительная литература                                                                              |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|
| Математические             | 1. Ганичева, А. В. Прикладная статистика: учебное по-                                                | 1. Буданцев, А. В. Прикладные задачи математической статистики:                                        |  |  |
| основы машинно-            | собие / А. В. Ганичева. — 4-е изд., стер. — Санкт-                                                   | Практикум: учебное пособие / А. В. Буданцев, И. А. Юрченков. —                                         |  |  |
| го обучения                | Петербург: Лань, 2023. — 172 с. — Режим доступа: для                                                 | Москва: РТУ МИРЭА, 2023. — 91 с. — Режим доступа: для авто-                                            |  |  |
|                            | авториз. пользователей. — Лань: электронно-                                                          | риз. пользователей. — Лань: электронно-библиотечная система. —                                         |  |  |
|                            | библиотечная система. — URL:                                                                         |                                                                                                        |  |  |
|                            | <u>https://e.lanbook.com/book/336800</u> (дата обращения:                                            | 22.05.2024). — ISBN 978-5-7339-1729-0. — Текст: электронный.                                           |  |  |
|                            | 21.05.2024). — ISBN 978-5-507- 47980-1. — Текст:                                                     | 2. Проскуряков, И. В. Сборник задач по линейной алгебре: учебное                                       |  |  |
|                            | электронный.                                                                                         | пособие для вузов / И. В. Проскуряков. — 17-е изд., испр. —                                            |  |  |
|                            | 2. Беклемишев, Д. В. Курс аналитической геометрии и                                                  | 1                                                                                                      |  |  |
|                            | линейной алгебры: учебник для вузов / Д. В. Беклеми-                                                 | <u> </u>                                                                                               |  |  |
|                            | шев. — 20-е изд., стер. — Санкт-Петербург: Лань, 2024.                                               | — URL: <a href="https://e.lanbook.com/book/397331">https://e.lanbook.com/book/397331</a> (дата обраще- |  |  |
|                            | — 448 с. — Режим доступа: для авториз. пользовате-                                                   | ния:03.07.2024). — ISBN 978-5-8114-9921-2. — Текст: электрон-                                          |  |  |
|                            | лей. – Лань: электронно-библиотечная система. —                                                      | ный.                                                                                                   |  |  |
|                            | URL: <a href="https://e.lanbook.com/book/402917">https://e.lanbook.com/book/402917</a> (дата обраще- |                                                                                                        |  |  |
|                            | ния: 03.07.2024). — ISBN 978-5-507-49779-9. — Текст:                                                 |                                                                                                        |  |  |
|                            | электронный.                                                                                         |                                                                                                        |  |  |

Таблица 4 – Перечень периодических изданий, учебно-методических пособий и нормативной литературы

| Наименование<br>дисциплины | Периодические издания                             | Учебно-методические пособия, нормативная литература |  |  |  |  |
|----------------------------|---------------------------------------------------|-----------------------------------------------------|--|--|--|--|
| Математические             | «Моделирование, оптимизация и информационные тех- | -                                                   |  |  |  |  |
| основы машинно-            | нологии».                                         |                                                     |  |  |  |  |
| го обучения                |                                                   |                                                     |  |  |  |  |

# 4 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИНТЕРНЕТ-РЕСУРСЫ ДИСЦИПЛИНЫ

#### Информационные технологии

В ходе освоения дисциплины, обучающиеся используют возможности интерактивной коммуникации со всеми участниками и заинтересованными сторонами образовательного процесса, ресурсы и информационные технологии посредством электронной информационной образовательной среды университета.

Перечень современных профессиональных баз данных и информационных справочных систем, к которым обучающимся по образовательной программе обеспечивается доступ (удаленный доступ), а также перечень лицензионного программного обеспечения определяется в рабочей программе и подлежит обновлению при необходимости.

#### Электронные образовательные ресурсы:

Российская образовательная платформа и конструктор бесплатных открытых онлайнкурсов и уроков - <a href="https://stepik.org">https://stepik.org</a>

Образовательная платформа - <a href="https://openedu.ru/">https://openedu.ru/</a>

Состав современных профессиональных баз данных (СПБД) и информационных справочных систем (ИСС).

- Библиотека учебных материалов Parallel.ru <a href="http://parallel.ru/info/parallel">http://parallel.ru/info/parallel</a>
- Научная электронная библиотека www.eLibrary.ru
- Портал российского образования www.edu.ru
- Портал российских электронных библиотек www.elbib.ru
- Открытые системы информационный портал www.olap.ru/basic/refer.asp

#### 5 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудиторные занятия проводятся в специализированных аудиториях с мультимедийным оборудованием, в компьютерных классах, а также в других аудиториях университета согласно расписанию занятий.

Консультации проводятся в соответствии с расписанием консультаций.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

При освоении дисциплины используется программное обеспечение общего назначения и специализированное программное обеспечение.

Перечень соответствующих помещений и их оснащения размещен на официальном сайте университета в информационно - телекоммуникационной сети Интернет.

# 6 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ АТТЕСТАЦИИ, СИСТЕМА ОЦЕНИВАНИЯ И КРИТЕРИИ ОЦЕНКИ

Типовые контрольные задания и иные материалы, необходимые для оценки результатов освоения дисциплины (в т.ч. в процессе освоения), а также методические материалы, определяющие процедуры этой оценки приводятся в приложении к рабочей программе дисциплины (утверждается отдельно).

Оценивание результатов обучения может проводиться с применением электронного обучения, дистанционных образовательных технологий.

### 7 СВЕДЕНИЯ О РАБОЧЕЙ ПРОГРАММЕ И ЕЕ СОГЛАСОВАНИИ

Рабочая программа дисциплины «Математические основы машинного обучения» представляет собой компонент основной профессиональной образовательной программы магистратуры по направлению подготовки 09.04.01 Информатика и вычислительная техника.

Рабочая программа рассмотрена и одобрена на заседании кафедры прикладной математики и информационных технологий (протокол № 3 от 10.04.2025 г.).

Заведующий кафедрой

И.Г. Булан

И. о. директора института

О.С. Витренко