

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ И.о. директора института

Фонд оценочных средств (приложение к рабочей программе модуля) **«ВЫСШАЯ МАТЕМАТИКА»**

основной профессиональной образовательной программы бакалавриата по направлению подготовки

09.03.02 «ИНФОРМАЦИОННЫЕ СИСТЕМЫ И ТЕХНОЛОГИИ»

Профиль программы «ПРОЕКТИРОВАНИЕ КОРПОРАТИВНЫХ ИНФОРМАЦИОННЫХ СИСТЕМ»

ИНСТИТУТ цифровых технологий

РАЗРАБОТЧИК кафедра прикладной математики и информационных

технологий

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование	Дисциплина	Результаты обучения (владения, умения и
компетенции	~~	знания), соотнесенные с компетенциями
		<u>Знать:</u>
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	Высшая математика	¬ основы линейной алгебры над произвольными полями; ¬ основы и методы аналитической геометрии; ¬ основные понятия теории матриц и определителей, линейных систем; ¬ основные понятия алгебрь геометрических векторов, свойствалинейных операций над ними, различных типы произведений таких векторов; ¬ основные геометрические объекты — прямые, плоскости, кривые и поверхности второго порядка, их уравнения в различной форме; ¬ определение комплексного числа, формь записи комплексных чисел; ¬ основные элементарные функции, из свойства, графики; ¬ основные положения теории пределого интегрального исчисления функций одного и нескольких переменных; ¬ знать стандартные алгоритмы нахождения решения типовых дифференциальных уравнений; ¬ основные положения теории рядов основные положения теории рядов основные понятия курса высшей математики технического вуза; ¬ предел последовательности и функции; ¬ производная и частные производные дифференциал функции одной и нескольких переменных; ¬ аппроксимация функции одной переменной, несобственные интегралы и кратные интегралы; обыкновенных дифференциальные уравнения; ¬ числовой ряд, степенной ряд; ¬ аксиоматику и основные понятия и определения вероятностей; ¬ основные по

Код и наименование	Дисциплина	Результаты обучения (владения, умения и
компетенции	дисциплина	знания), соотнесенные с компетенциями
		характеристики, точечные и интервальные
		оценки неизвестных параметров.
		<u>Уметь:</u>
		– распознавать метрические объекты по их
		уравнениям в различных системах координат; оперировать многочленами,
		матрицами, комплексными числами,
		решать основные задачи линейной
		алгебры, в частности, системы линейных уравнений;
		уравнении,вычислять определители по определению
		(2-го, 3-го порядка), разложением по
		элементам строки (столбца);
		 выполнять линейные операции над матрицами; решать системы линейных
		уравнений различными способами:
		матричным, метод Крамера, метод Гаусса;
		 – решать неопределенные системы: находить общее и частное решение
		находить общее и частное решение линейной системы;
		– выполнять линейные операции над
		векторами в координатной форме, в
		векторной форме; нормировать вектор; – выполнять нелинейные операции над
		векторами: скалярное произведение двух
		векторов; векторное произведение двух
		векторов; – смешанное произведение трех векторов в
		координатной форме и решать задачи на их
		приложения; составлять уравнение прямой
		по двум точкам;
		– по общему уравнению прямой (плоскости) записывать параметры
		данного математического объекта;
		осуществлять переход от одного вида
		уравнения прямой к другому; — устанавливать расположение плоскостей,
		имеющих неполное уравнение, по
		отношению к координатным плоскостям и
		строить их; – приводить уравнение кривой к
		каноническому виду методом выделения
		полного квадрата, записывать параметры
		кривой по этому уравнению и строить ее
		график; – строить плоские фигуры, ограниченные
		алгебраическими линиями;
		- классифицировать поверхности;
		 выполнять действия над комплексными числами, переходить от одной формы
		записи к другой;
		– определять возможности применения
		методов математического анализа;

Код и наименование	П	Результаты обучения (владения, умения и
компетенции	Дисциплина	знания), соотнесенные с компетенциями
	Дисциплина	пределов функций, дифференцирования, интегрирования и разложения функций в ряды; интегрированых уравнений для решения физических и геометрических задач; строить графики функций в декартовой и полярной системах координат, вычислять пределы последовательностей и функций, сравнивать бесконечно малые и бесконечно большие функции; дифференцировать функции одной и нескольких переменных, заданные явно, параметрически и неявно; проводить полное исследование функций с использованием методов дифференциального исчисления; вычислять неопределенные и определенные и таблиц, определенные интегралы (в том числе несобственные) с помощью основных методов интегрирования и таблиц, определять сходимость несобственных интегралов, оценивать интегралы; решать основные задачи на разложение функций в ряды; определять возможности применения теоретических положений и методов математических дисциплин для постановки и решения конкретных прикладных задач; использовать математические методы и модели для решения прикладных задач, на практике применять полученные знания, строить и изучать математические модели конкретных явлений и процессов для решения расчетных и исследовательских задач; применять стандартные методы и модели к решению типовых теоретико-
		решения расчетных и исследовательских задач; — применять стандартные методы и модели к решению типовых теоретиковероятностных и статистических задач; — пользоваться расчетными формулами,
		таблицами, графиками при решении статистических задач; — вычислять выборочные характеристики и находить оценки неизвестных параметров; — использовать критерии проверки статистических гипотез, показатели эффективности системы.
		Владеть:

Код и наименование	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями
компетенции		21
		– навыками пользования библиотеками
		прикладных программ для решения
		прикладных математических задач;
		– методами решения основных
		алгебраических задач;
		- навыками использования методов
		векторной алгебры в смежных дисциплинах и в физике;
		– алгебро-геометрическими методами при
		решении задач физики, профессиональных
		задач и содержательной интерпретацией
		полученных результатов;
		- навыками использования стандартных
		методов и моделей математического
		анализа и их применения к решению
		прикладных задач;
		 навыками работы с учебной и научной литературой;
		– навыками работы с компьютерными
		математическими прикладными пакетами
		(Mathcad);
		- использовать интегральное исчисление
		при решении задач геометрии и физики;
		- находить общие решения и решения
		задач Коши и некоторых краевых задач для
		основных классов обыкновенных
		дифференциальных уравнений первого и
		высших порядков, решать простейшие
		системы обыкновенных
		дифференциальных уравнений;
		- определять сходимость числовых и
		функциональных рядов, представлять
		функции рядами Тейлора, проводить
		гармонический анализ заданных функций;
		 переводить информацию с языка
		конкретной задачи на язык математических
		символов и строить математические
		модели простейших систем и процессов в
		естествознании и технике.

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов;
- контрольные работы (для очной и заочной форм обучения).

К оценочным средствам для промежуточной аттестации в форме экзамена в первом, втором и третьем семестрах относятся:

- экзаменационные задания по дисциплине, представленные в виде тестовых заданий закрытого и открытого типов.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок 0-40%		41-60%	61-80 %	81-100 %
	«неудовлетворите	«удовлетворител	«хорошо»	«отлично»
льно»		PH0»		
Критерий	«не зачтено»	«зачтено»		
1 Системность и	Обладает	Обладает	Обладает	Обладает
полнота знаний	частичными и	минимальным	набором знаний,	полнотой знаний и
в отношении	разрозненными	набором знаний,	достаточным для	системным
изучаемых	знаниями, которые	необходимым для	системного	взглядом на
объектов	не может научно-	системного	взгляда на	изучаемый объект
	корректно	взгляда на	изучаемый	
	связывать между	изучаемый объект	объект	
	собой (только			
	некоторые из			
	которых может			
	связывать между			
	собой)			
2 Работа с	Не в состоянии	Может найти	Может найти,	Может найти,
информацией	находить	необходимую	интерпретироват	систематизироват
	необходимую	информацию в	ь и	ь необходимую
	информацию, либо	рамках	систематизирова	информацию, а
	в состоянии	поставленной	ть необходимую	также выявить
	находить отдельные	задачи	информацию в	новые,
	фрагменты		рамках	дополнительные
	информации в		поставленной	источники
	рамках		задачи	информации в
	поставленной			рамках
	задачи			поставленной
	**	7		задачи
3 Научное	Не может делать	В состоянии	В состоянии	В состоянии
осмысление	научно корректных	осуществлять	осуществлять	осуществлять
изучаемого	выводов из	научно	систематический	систематический и
явления,	имеющихся у него	корректный	и научно	научно-
процесса,	сведений, в	анализ	корректный	корректный
объекта	состоянии	предоставленной	анализ	анализ
	проанализировать	информации	предоставленной	предоставленной
	только некоторые		информации,	информации,
	из имеющихся у		вовлекает в	вовлекает в
	него сведений		исследование	исследование
			новые	новые
				релевантные

Система	2	3	4	5	
оценок	0-40%	41-60%	61-80 %	81-100 %	
	«неудовлетворите	«удовлетворител	«хорошо»	«отлично»	
	льно» ьно»				
Критерий	«не зачтено»		«зачтено»		
			релевантные	поставленной	
			задаче данные	задаче данные,	
				предлагает новые	
				ракурсы	
				поставленной	
				задачи	
4 Освоение	В состоянии решать	В состоянии	В состоянии	Не только владеет	
стандартных	только фрагменты	решать	решать	алгоритмом и	
алгоритмов	поставленной	поставленные	поставленные	понимает его	
решения	задачи в	задачи в	задачи в	основы, но и	
профессиональ	соответствии с	соответствии с	соответствии с	предлагает новые	
ных задач	заданным	заданным	заданным	решения в рамках	
	алгоритмом, не	алгоритмом	алгоритмом,	поставленной	
	освоил		понимает основы	задачи	
	предложенный		предложенного		
	алгоритм,		алгоритма		
	допускает ошибки				

1.4 Оценивание тестовых заданий закрытого типа осуществляется по системе зачтено/ не зачтено («зачтено» – 41-100% правильных ответов; «не зачтено» – менее 40 % правильных ответов) или пятибалльной системе (оценка «неудовлетворительно» - менее 40 % правильных ответов; оценка «удовлетворительно» - от 41 до 60 % правильных ответов; оценка «хорошо» - от 61 до 80% правильных ответов; оценка «отлично» - от 81 до 100 % правильных ответов).

Тестовые задания открытого типа оцениваются по системе «зачтено/ не зачтено». Оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ОПК-1 : Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

1 семестр

Тестовые задания открытого типа:

1. Даны матрицы
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 2 & -1 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 2 & -1 & 0 \end{pmatrix}.$$

В матрице $C = A \cdot B$ элемент c_{13} равен:

Ответ: -1

2. Определитель
$$\begin{vmatrix} 1 & 7 & -11 \\ 0 & -4 & 5 \\ 0 & 3 & -5 \end{vmatrix}$$
 равен:_____

Ответ: 5

3. Дана матрица
$$A = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$$

Результат вычисления выражения $|A| + |A^T|$ равен: _____

Ответ: 10

4. Для системы линейных уравнений

$$\begin{cases} 3y - x = 2\\ x + 5y = 4 \end{cases}$$

главный определитель Δ равен:_____

Ответ: -8

4. При решении системы уравнений
$$\begin{cases} 4x + 2y - 2z = 2\\ 3x + 5y + z = 10\\ 4x - 2y + 3z = 8 \end{cases}$$

методом Крамера значение переменной х:

Ответ: 1

5. Для системы линейных уравнений
$$\begin{cases} 3y - 2x = 2 \\ x + 5y = 4 \end{cases}$$

вспомогательный определитель Δ_y равен: _____

Ответ: -10

6. Косинус угла между векторами
$$\vec{a} = -2\vec{i} + 2\vec{j} - \vec{k}$$
 и $\vec{b} = -6\vec{i} + 3\vec{j} + 6\vec{k}$ равен: ______ Введите элементарную дробь

Ответ: 4/9

7. Даны векторы
$$\vec{a} = \vec{\imath} - 2\vec{j} + 2\vec{k}$$
 и $\vec{b} = 2\vec{\imath} + \vec{\jmath}$. Проекция пр $\vec{a}\vec{b}$ равна:_____

Ответ: 0

8. Даны координаты вершин треугольника:
$$A(3,-1,5)$$
, $B(4,2,-5)$ и $C(-4,0,3)$. Точка M - середина стороны BC . Медиана AM равна:_____

Ответ: 7

9. Для векторов $\vec{a} = \{2, 1, 3\}$ и $\vec{b} = \{-1, 5, 3\}$ модуль разности $|\vec{a} - \vec{b}|$ равен:_____

Ответ: 5

Векторы $\bar{a}=4\bar{\iota}+\lambda\bar{\jmath}+5\bar{k}$ и $\bar{b}=\lambda\bar{\iota}+2\bar{\jmath}-6\bar{k}$ взаимно перпендикулярны при значении λ , равном:_____

Ответ: 5

10. Даны векторы $\bar{a}=\{-2,\ y,\ 1\}$, $\bar{b}=\{3,-1,\ 2\}$. Если известно, что $\bar{a}\perp\bar{b}$, то координата y будет равна:_____

Ответ: -4

11. Известно, что $|\vec{a}|=2$, $|\vec{b}|=3$ и угол между \vec{a} и \vec{b} равен 30°. Значение $|\vec{a}\times\vec{b}|$ равно:_____

Ответ: 3

12. Произведение координат центра окружности $x^2 + y^2 - 4x - 4y + 1 = 0$ равно:____

Ответ: 4

13. Уравнение эллипса с центром в начале координат имеет вид $\frac{x^2}{25} + \frac{y^2}{9} = 1$, тогда ее малая полуось равна:_____

Ответ: 3

Ответ: эллипс

15. Значение α , при котором прямые $l_1: \frac{x-1}{0} = \frac{y+5}{-4} = \frac{z-7}{6}$ и $l_2: \frac{x+2}{1} = \frac{y}{3} = \frac{z+5}{\alpha}$ ортогональны друг другу, равно:_____

Ответ: 2

16. Значение α , при котором прямые $l_1:\frac{x-2}{4}=\frac{y-3}{-8}=\frac{z+1}{\alpha}$ и $l_2:\frac{x+7}{-2}=\frac{y+4}{4}=\frac{z}{1}$ параллельны, равно:

Ответ: -2

17. Координаты направляющего вектора $\vec{p}(x; y; z)$ прямой, проходящей через две точки М1(1,2,3) и М2(-1,0,1), соответственно равны: ___; ___;

Введите три числа через точку с запятой, без пробелов

Ответ: 2;2;2

18. Угол ϕ между прямыми $l_1: \frac{x-2}{1} = \frac{y-3}{-1} = \frac{z+5}{-2}$ и $l_2: \frac{x+7}{3} = \frac{y+4}{-3} = \frac{z}{3}$ равен: ____ градусов.

Ответ: 90

19. В пересечении двух плоскостей образуется:

Ответ: прямая (линия)

20. Плоскость *x0z* определена уравнением: _____

Введите уравнение без пробелов

Ответ: у=0

21. Единственную плоскость можно провести через точки.

Введите число

Ответ: 3

22. Угол между плоскостями x + 2y - 2z + 1 = 0 и x + y - 4 = 0 равен: ____ градусов.

Ответ: 45

23. Через точку M(3, 3, -2) перпендикулярно прямой $\frac{x+1}{-2} = \frac{y}{2} = \frac{z}{3}$ проходит плоскость Ax+By+Cz+D=0, где A, B, C, D соответственно равны: __;__;__;__

Введите четыре числа через точку с запятой, без пробелов

Ответ: -2;2;3;6

Тестовые задания закрытого типа:

24. Для матрицы $A = \begin{pmatrix} 3 & 1 & 2 \\ -5 & 3 & 2 \\ -4 & -1 & 3 \end{pmatrix}$ расположение алгебраических дополнений для элементов a_{11} , a_{22} , a_{33} , a_{23} в порядке возрастания значений:

№	Алгебраическое дополнение	
1	A_{11}	
2	A_{22}	
3	A_{33}	
4	A_{23}	

Ответ: 4,1,3,2

25. Для комплексного числа $z = 2 \cdot \left(cos(\frac{\pi}{6}) + i \cdot sin(\frac{\pi}{6}) \right)$ алгебраической формой является:

$$1.z = 1 - i$$

$$2.z = \sqrt{3} + i$$

$$3.z = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2} \cdot i$$

$$4.z = \frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2} \cdot i$$

26. Даны векторы:

$$\vec{a} = \{3, -1, 1\}, \ \vec{b} = \{2, 1, 0\},$$

$$\vec{c} = \{4, -1, -2\}, \ \vec{d} = \{1, -1, 1\},$$

$$\vec{f} = \{2, -1, -2\}, \ \vec{t} = \{4, 1, 1\}.$$

Верным является утверждение:

1.
$$\vec{a} \cdot \vec{b} = 5$$
, $\vec{c} \cdot \vec{d} = 5$

2.
$$\vec{c} \cdot \vec{d} = 5$$
, $\vec{f} \cdot \vec{t} = 5$

3.
$$\vec{a} \cdot \vec{b} = 5$$
, $\vec{f} \cdot \vec{t} = 5$

$$4.\ \vec{a} \cdot \vec{b} = -5$$

27. Для векторов $\vec{a}(a_x; a_y; a_z)$, $\vec{b}(b_x; b_y; b_z)$, $\vec{c}(c_x; c_y; c_z)$ векторно-скалярное (смешанное) произведение $\vec{a} \cdot \vec{b} \times \vec{c}$ вычисляется по формуле:

1.
$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix}$$

$$2. \begin{vmatrix} b_x & a_x & c_x \\ b_y & a_y & c_y \\ b_z & a_z & c_z \end{vmatrix}$$

3.
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$4. \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

28. Три точки $M_1(x_1; y_1; z_1)$, $M_2(x_2; y_2; z_2)$ и $M_3(x_3; y_3; z_3)$ принадлежат плоскости:

1.
$$\begin{vmatrix} x & x & y & y \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ a & b & c \end{vmatrix} = 0$$

$$2.\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$$

3.
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m & n & p \end{vmatrix} = 0$$

$$4. Ax + By + Cz = 0$$

29. Установление соответствия:

	Линия второго порядка		Определение
1	Эллипс	a	Геометрическое место точек плоскости, модуль разности расстояний от которых до двух фиксированных точек плоскости F_1 и F_2 есть величина постоянная и равная $2a$ ($2a < F_1F_2 $)
2	Парабола	б	Геометрическое место точек плоскости, сумма расстояний от которых до двух фиксированных точек плоскости F_1 и F_2 есть величина постоянная и равная $2a$ $(2a> F_1F_2)$
3	Гипербола	В	Геометрическое место точек плоскости, расстояние от которых до фиксированной прямой l и до фиксированной точки F (не лежащей на прямой l) одинаково
4	Окружность		Геометрическое место точек, равноудаленных от заданной точки на ненулевое расстояние

Ответ: 16, 2в, 3а, 4г

30. Даны две точки A(2,-1,3) и B(4,-2,-1). Через точку A перпендикулярно вектору \overrightarrow{AB} проходит плоскость:

1.
$$2(x-2) + (y+1) + 4(z-3) = 0$$

2.
$$3(x-4) - (y+2) - 4(z+1) = 0$$

3.
$$2(x-2) - (y+1) - 4(z-3) = 0$$

$$4. 3(x-4) + (y-2) + 4(z+1) = 0$$

Тестовые задания открытого типа:

31. Предел
$$\lim_{x\to 0} \frac{\sin 6x}{tg 3x}$$
 равен:_____

Ответ: 2

32. Предел
$$\lim_{x\to 0} (1-x)^{\frac{1}{x}}$$
 равен:_____

Введите элементарную дробь

Ответ:1/е

33. Предел
$$\lim_{x \to +\infty} \sqrt{x^3 + 3x} - x$$
 равен:_____

Введите элементарную дробь

Ответ:3/2

34.
$$y(x) - \phi$$
ункция, $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} - \underline{\hspace{1cm}}$

Ответ: производная (y'(x)) (y'(x))

35. Для функции
$$f(x) = \ln(x^2 + 1)$$
 производная $f'(1)$ равна: _____

Ответ: 1

36. Для функции
$$y \cdot e^x + e^y = 0$$
 производная $y'(x) =$

Введите выражение без пробелов

Ответ: у/(у-1)

37. Функция
$$y(x) = \frac{e^x}{x}$$
 имеет экстремум в точке х: _____

Ответ: 1

38. Количество асимптот функции
$$y(x) = \frac{3x^2 + 3x + 5}{x^2 + 5x + 6}$$
 равно: _____

Введите число

Ответ: 3

39. Функция $y(x)=x^4+4x$ имеет точек перегиба: _____

Введите число

Ответ: 0

40. В область определения функции двух переменных $u = \frac{1}{\sqrt{x^2 + y^2 - 4}}$ <u>**HE**</u> входят точки, лежащие на окружности с радиусом, равным:_____

Ответ: 2

41. Для функции $z = \frac{xy}{x+y}$ выражение $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ в точке (1;1) равно:_____

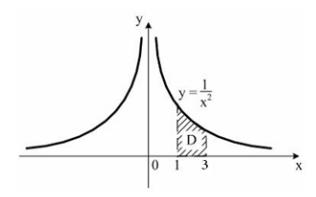
Ответ: 1

42. Для функции $z=x^2+xy+y^2+3y+4$ стационарной точкой (a;b) является (___;___) Введите два числа через точку с запятой, без пробелов

Ответ: 1;-2

43. F(x) – первообразная для функции $f(x) = 9^{x-1} \ln 9$, тогда разность F(2)–F(1) равна:_____

Ответ: 8


44. Способ вычисления неопределенного интеграла $\int x \sin 2x \ dx$ - ______

Ответ: по частям

45. Интеграл $\int_0^5 (2 - \frac{1}{\sqrt{x+4}}) dx$ равен: _____

Ответ: 8

46. Площадь криволинейной трапеции ${\bf D}$

равна:

Введите элементарную дробь

Ответ: 2/3

47. Пусть y = y(x) — решение уравнения $y' - y = e^x$, удовлетворяющее начальному условию y(0) = 1 . Значение y(1) равно:______ Ответ: **2e** (**2*e**)

48. Максимальным корнем характеристического уравнения $\ddot{y} - 7\dot{y} + 6y = 0$ является значение:_____

Ответ: 6

49. Пусть y(x) – решение задачи Коши y'' + 3y' = 10 - 6x при y(0) = 0, y'(0) = 4. Значение y(1) равно: ______

50. Для ряда $\frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \frac{3}{16} + \dots$ отношение седьмого члена ряда к восьмому члену ряда равно:

Ответ: 2

51. Для исследования сходимости ряда

$$\sum_{n=1}^{\infty} \frac{3^n}{n!}$$

(без использования асимптотической формулы Стирлинга) применяется признак: _____

Ответ: Даламбера

52. Для ряда

$$\sum_{n=0}^{\infty} \frac{n \cdot x^n}{3^n \cdot (n+1)}$$

радиус сходимости равен: ____

Ответ: 3

53. Коэффициент при степени $(x-1)^2$ в разложении функции $f(x) = \sqrt{x}$ в ряд Тейлора при $x_0 = 1$ равен: _____

Введите число (разделитель разрядов – запятая)

Ответ: -0,125 (-1/8)

Тестовые задания закрытого типа:

54. Установление соответствия:

	Предел	Зна	чение
1	$\lim_{x\to 0}\frac{1-\cos(2x)}{2x^2}$		2
2	$\lim_{x\to 0}\frac{\sin 2x}{x}$	б	e^2
3	$\lim_{x \to +\infty} \left(1 + \frac{1}{x}\right)^{2x}$		1
4	$\lim_{x \to \infty} \frac{2x^5 + 4x^4 + 3x^2 + 1}{x^6 + 5x^5 - 4x}$	Γ	0

Ответ: 1в,2а,36,4г

55. Для функции
$$\begin{cases} x = 2t + 3t^2, \\ y = t^2 + 2t^3. \end{cases}$$
 производная $y'(x)$ равна

$$1.y'(x) = 2t$$

$$2.y'(x) = 2t + 6t^2$$

$$3.y'(x) = 2 + 6t$$

$$4.y'(x) = t$$

56. Установление соответствия:

Область интегрирования	Интеграл
1 1	-

1	3 y 3 y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a	$\int_{1}^{2} dx \int_{1}^{3} f(x, y) dy$
2	3 2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	б	$\int_{-1}^{2} dx \int_{1}^{3} f(x, y) dy$
3	1 - 1 - 2 3 x	В	$\int_{-2}^{1} dx \int_{1}^{3} f(x, y) dy$
4	3 1 -2 -1 0 1 x	Γ	$\int_{1}^{3} dx \int_{-1}^{2} f(x, y) dy$

Ответ: 16, 2а, 3г, 4в

57. Установление соответствия:

,	Дифференциальное уравнение	Вид		
1	$y(e^x + 4)dy + e^x dx = 0$	a	Бернулли	
2	$xy' + y = y^2 \ln x$	б	в полных дифференциалах	
3	$(x^2 + y)dx + (x - 2y)dy = 0$	В	с разделяющимися переменными	
4	$y = x \left(y' - \sqrt[x]{e^y} \right)$	Γ	однородное	

Ответ: 1в,2а,3б,4г

58. Установление соответствия:

	Задача Коши		Частное решение	
1	$xy' = 2y - x, \ y(1) = 3$	a	$y = -x^2$	
2	$y' - \frac{3y}{x} = x$, $y(1) = -1$	б	$y = -\frac{1}{x}$	
3	$x^2y' = 2xy + 3$, $y(1) = -1$	В	y = x (2x + 1)	

4	$xy' - y = x^3$, $y(2) = 6$	Γ	$y = x\left(\frac{x^2}{2} + 1\right)$
			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

Ответ: 1в,2а,36,4г

59. Установление соответствия:

	Ряд		Сходимость		
1	$\sum_{n=1}^{\infty} \left(-1\right)^n \left(\frac{2n+1}{3n-2}\right)^{2n}$	a	расходится		
2	$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} n^2 \sin \frac{\pi}{n^2}$	б	сходится условно		
3	$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{\sqrt{n}}{n+100}$	В	сходится абсолютно		

Ответ: 1в,2а,3б

60. Область сходимости степенного ряда

$$\sum_{n=1}^{\infty} n^2 4^n (x-1)^n$$

- 1. [3/4;5/4)
- 2. [3;5)
- 3. [3/4;5/4]
- 4. (1/4;3/4)
- 5. (3/4;5/4)

3 семестр

Тестовые задания открытого типа:

61. Имеется 5 городов, каждый из которых соединен с каждым дорогой, не проходящей через остальные города. Общее количество дорог равно:_____

Ответ:10

62. Число 6-значных телефонных номеров, при условии, что <u>любая</u> цифра может повторяться, равно: _____

Ответ: 1000000

63. Из промежутка [0;2] наугад выбирается два числа. Вероятность того, что их сумма больше 2, равна:_____

Введите число (разделитель – запятая)

Ответ: 0,5

64. Подброшены две игральные кости. Вероятность того, что выпала хотя бы одна единица, равна:_____

Введите элементарную дробь

Ответ: 11/36

65. В группе из 20 студентов 4 отличника и 16 хорошистов. Вероятности успешной сдачи сессии для них соответственно равны 0,9 и 0,65. Вероятность того, что наугад выбранный студент успешно сдаст сессию, равна:_____

Введите элементарную дробь

Ответ:7/10

66. Вероятность попадания в мишень при каждом выстреле постоянна и равна 0,4. Наивероятнейшее число попаданий при 6 выстрелах будет равно: _____

Ответ: 2,4

67. При подбрасывании монеты 400 раз вероятность появления 200 орлов определяется по локальной теореме Муавра-Лапласа $P_{400}(200) = \frac{1}{\sqrt{100}} \varphi(x)$. Значение x равно:_____

Ответ: 0

68. В новых домах микрорайона установлено 10000 кодовых замков на входных дверях. Вероятность поломки одного замка в течение месяца равна 0,0002. Ежемесячно управляющая компания должна предусмотреть **в среднем** расходы на ремонт замков в количестве дверей:

Ответ: 2

69. Случайная величина — число купленных единиц товара - задана рядом:

X	0	1	2	3	4
p	0,1	0,2	0,3	0,2	0,2

Вероятность покупки, по крайней мере, двух единиц товара, равна: ____

Введите число (разделитель – запятая)

Ответ: 0,7

70. Дискретная случайная величина X задана рядом распределения:

X	-1	2	4
p	0,1	a	b

Тогда M(X)=3,3, при условии: **a**=___; **b**=___

Введите два числа через точку с запятой, без проделов (разделитель разрядов – запятая)

Ответ:0,1;0,8

71. Случайная величины X, распределена равномерно в интервале (1; 13), тогда числовые характеристики ее, соответственно, равны: $M(X) = ____$, $D(X) = ____$.

Введите два числа через запятую, без пробелов

Ответ. 7,12

72. В приморском городке 99,99% мужчин хотя бы один раз в жизни были на рыбалке. Проводят социологические исследования среди 10000 наугад выбранных мужчин. Случайная величина X — число мужчин среди опрошенных, которые ни разу в жизни не рыбачили. Значение математического ожидания M(X) равно: _____

Ответ: 1

73. Случайная величина X задана функцией распределения:

$$F(x) = \begin{cases} 0 & npu \ x \le -1, \\ \frac{3x}{4} + \frac{3}{4} & npu \ -1 < x \le \frac{1}{3}, \\ 1 & npu \ x > \frac{1}{3}. \end{cases}$$

Вероятность того, что в результате испытания X попадет в интервал $\left(0; \frac{1}{3}\right)$,

равна:____

Введите элементарную дробь

Ответ: 1/4

74. Функция
$$f(x) = \begin{cases} 0, & \text{при } |x| \ge 2\\ a \cdot |x|, & \text{иначе} \end{cases}$$

может быть плотностью распределения непрерывной случайной величины при значении а, равном: _____

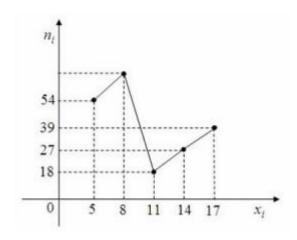
Ответ: 0,25 (1/4) (0.25)

75. Плотность распределения нормальной случайной величины задана $f(x) = \frac{1}{4\sqrt{2\pi}}e^{-\frac{(x-161)^2}{32}}$, тогда ее центральный момент второго порядка равен:_____

Ответ: 16

76. Случайная величина Y = 3X + 5, при этом D(X) = 2. Тогда D(Y) равна: _____

Ответ: 18


77. Задано статистическое распределение выборки объема $n = \sum_{i=1}^k n_i$:

x_i	1	2	3	4
n_i	1	2	3	4

Выборочное среднее $\overline{x}_{\scriptscriptstyle B}$ значение равно:_____

Ответ: 3

78. Из генеральной совокупности извлечена выборка объема n =200, полигон частот которой имеет вид:

Тогда относительная частота варианты х₂=8 равна:

Ответ: 0,31

79. Интервальная оценка математического ожидания нормально распределенного количественного признака (8,4; 9,2). Выборочное среднее равно:_____

Ответ: 8,8

80. При построении доверительного интервала для вероятности биномиально распределенного генерального признака в случае больших выборок используют ______ распределение.

Ответ: нормальное

81. Сумма доверительной вероятности и уровня значимости равна:______%

Ответ. 100

82. При проверке статистических гипотез ошибка _____ рода состоит в том, чтобы отвергнуть правильную нулевую гипотезу.

Введите число

Ответ: 1

83. Для альтернативной гипотезы H_1 : $a \neq 20$ **вид** критической области:

Ответ: двусторонняя (двусторонний)

Тестовые задания закрытого типа:

84. Размещения — это:

- 1. возможность переставлять местами набор элементов
- 2. комбинации, составленные выбором из различных элементов различных элементов, отличающиеся либо составом элементов, либо порядком их следования
- 3. комбинации m элементов из n элементов, отличающиеся составом или порядком следования, причем выбранный элемент возвращается на место и может участвовать в дальнейшем выборе
- 4. комбинации, составленные выбором различных элементов из различных элементов, отличающиеся только составом (но не порядком следования)
- 5. комбинации, составленные из одних и тех же элементов и отличающиеся порядком их следования

85. Установления соответствия:

	Теорема		Применяется, когда события А и В:	
1	P(A+B) = P(A) + P(B)	a	совместные	
2	P(A * B) = P(A) * P(B)	б	несовместные	
3	$P(A * B) = P(A) * P(B \mid A)$	В	независимые	
4	P(A+B) = P(A) + P(B) - P(AB)	Γ	зависимые	

Ответ: 16, 2в, 3г, 4а

86.

	Формула	Название	
1	$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)$	a	Пуассона
2	$P(A) = C_n^m p^m q^{n-m}$	б	Полной вероятности
3	$P(X=m) = \frac{\lambda^m}{m!}e^{-\lambda}$	В	Байеса
4	$P(B A) = \frac{P(H_i) \cdot P(A/H_i)}{\sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)}$	Γ	Бернулли

Ответ: 16, 2г, 3а, 4в

87. Установление соответствия

Pac	Распределение случайной величины		Для n испытаний:	
1	Биномиальное	a	$P(X = x_i) = \frac{C_M^{x_i} \cdot C_{N-M}^{n-x_i}}{C_N^n}$	
2	Геометрическое	б	$P(X = x_i) = C_n^{x_i} p^{x_i} (1 - p)^{n - x_i}$	
3	Пуассона	В	$P(X = x_i) = (1 - p)^{n - x_i} p$	
4	Гипергеометрическое	Γ	$P(X = x_i) = \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}$	

Ответ: 16, 2в, 3г,4а

88. Дисперсия случайной величины, распределенной по биномиальному закону, равна 16. Количество испытаний равно 100. Вероятность наступления события в одном испытании может быть равна:

- 1.0,2
- 2.0,3
- 3.0,8
- 4.0,5

89. Закон больших чисел утверждает, что:

- 1. при большом числе испытаний вероятность реализации случайного события становится близкой к единице
- 2. поведение произведения достаточно большого количества случайных величин становится почти закономерным
- 3. при большом числе испытаний средняя величина неограниченно возрастает

4. поведение суммы достаточно большого количества случайных величин становится почти закономерным

90. Левосторонняя критическая область принятия гипотезы может быть определена из соотношения:

1.
$$P(-x_{\kappa p \mu \tau} < X < x_{\kappa p \mu \tau}) = \gamma$$

2.
$$P(X < -x_{KPUT}) + P(X > x_{KPUT}) = \alpha$$

4.
$$P(X > x_{KPUT}) = \alpha$$

3 ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/ КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Учебным планом предусмотрено выполнение трех контрольных работ (для очной и заочной формы обучения).

ОЧНАЯ ФОРМА

КОНТРОЛЬНАЯ РАБОТА №1

1. Выполнить действия над комплексными числами в алгебраической форме

$$\frac{5-8i}{(1+9i)(5+7i)} - \frac{8-4i}{1-5i}$$

2. Найти произведение и частное двух комплексных чисел в тригонометрической и показательной формах

$$z_1 = 2 + 2\sqrt{3}i$$
, $z_2 = -5\sqrt{3} - 5i$.

3. В комплексной области построить область, заданную условием

$$|z-i| \leq 1$$
.

4. Исследовать матрицы:

а) Даны матрицы
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 3 \\ 1 & -1 & 4 \end{pmatrix}$$
 и $B = \begin{pmatrix} 1 & 2 & 0 \\ 3 & -6 & 0 \end{pmatrix}$. Выяснить, какие из следующих

операций можно выполнить (ответ пояснить): 1) $3A + B^T$; 2) $A \cdot B$; 3) $B \cdot A$; 4) $B^T \cdot A$; 5) B^{-1} .

- б) Даны матрицы $A = \begin{pmatrix} 1 & 12 \end{pmatrix}$ и $B = \begin{pmatrix} 18 \\ 0 \end{pmatrix}$. Найти определитель матрицы $A \cdot B$.
- в) Выяснить, какие из заданных матриц являются невырожденными:

$$1)\begin{pmatrix}5&2\\2&3\end{pmatrix};2)\begin{pmatrix}2&3&1\\0&0&0\\1&3&0\end{pmatrix};3)\begin{pmatrix}5&0&0\\0&6&0\\0&0&3\end{pmatrix};4)\begin{pmatrix}2&4&3\\2&3&5\\4&7&8\end{pmatrix}.$$

г) При каких значениях
$${\pmb k}$$
 матрица $A=\begin{pmatrix} 2k & 3 & k \\ 0 & 3-k & 5 \\ 0 & 0 & 3 \end{pmatrix}$ имеет обратную матрицу?

5. Исследовать систему линейных уравнений на совместностьи определенность. Найти общее решение системы, сделать проверку:

$$\begin{cases} 2x - y + z - w = 2\\ x - 2y + 3v + w = 1\\ 4x + y + 3z - 6v - 5w = 4\\ 7x - 8y + 2z + 9v + w = 7\\ 5x + 2y + 4z - 9v - 7w = 5 \end{cases}$$

6. Дана пирамида с вершинами в точках A, B, C, D. Найти объёмпирамиды, площадь основания АВС и высоту пирамиды, опущенную из вершины D на грань ABC.

No	Условие
вариан	
та	
1	A(1;1;1), B(-1;2;4), C(2;0;6), D(-2;5;-1).

7. Даны три силы приложенные к точке А. Найти: работу равнодействующей этих сил, если точка перемещается прямолинейно из положения А в положение В; равнодействующей этих сил относительно точки В и величину момента.

No	\bar{F}_1	<i>F</i> ₂	<i>F</i> ₃	A	В
варианта					
1	(4, -8,	(-3, 5,	(2, -3, 4)	(-2, 7, -6)	(-6, 5, 10)
	1)	2)			

- 8. Найти расстояние между параллельными прямыми 3x-2y+7=0 и 3x-2y-1=0.
- 9. Составить уравнение окружности концы, одного из диаметров которой имеют координаты (3,9) и (7,3).
- 10. Составить уравнение линии в полярной системе координат: $x^2 + y^2 + 2y = 0$. Построить ее.

КОНТРОЛЬНАЯ РАБОТА №2

- 1. Найти пределы: $\lim_{x\to\infty} \frac{7x^4 + 2x^3 1}{3x^4 2x^2 2}$; $\lim_{x\to 1} \frac{x^2 3x + 2}{x^2 + x 2}$.
- 2. Исследовать на непрерывность функцию $y = \begin{cases} 3x, & x < 0 \\ sinx, & 0 \le x < 1 \\ 3cosx, & x > 1 \end{cases}$
- 3. Вычислить определенные интегралы:

a)
$$\int_0^1 \frac{x^2+1}{(x^3+3x+1)^2} dx$$
;

6)
$$\int_{0}^{2} \ln(x^2 + 4) dx$$

6)
$$\int_0^2 \ln(x^2 + 4) \, dx;$$
B)
$$\int_0^3 \frac{4x}{\sqrt[3]{(3x - 8)^2} - 2\sqrt[3]{3x - 8} + 4} \, dx.$$

4. Вычислить несобственные интегралы или установить их расходимость:

a)
$$\int_0^\infty x \cdot e^{-x^2} dx;$$

$$6) \int_{e}^{\infty} \frac{dx}{x \cdot \sqrt[3]{\ln^2 x}};$$

B)
$$\int_{-1}^{1} \frac{dx}{\sqrt[3]{x^2}}$$

5. Исследовать на экстремум функцию двух переменных

$$z = x^3 + 8y^3 - 6xy + 5.$$

- 6. Вычислить двойной интеграл $\iint_D \frac{y^2}{x^2 + y^2} dx dy$, где $D = \{x^2 + y^2 \le 2x\}$.
- 7. Исследовать на сходимость ряды: 1) $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+5)!}$; 2) $\sum_{n=1}^{\infty} \frac{(-1)^n}{(n+1)^{1/3}}$.
- 8. Найти область сходимости функционального ряда:

a)
$$\frac{x+1}{1\cdot 2} + \frac{(x+1)^2}{2\cdot 2^2} + \frac{(x+1)^3}{3\cdot 2^3} + \dots + \frac{(x+1)^n}{n\cdot 2^n} + \dots$$

6)
$$1 + \frac{1}{x} + \frac{1}{x^2} + \frac{1}{x^3} + \dots + \frac{1}{x^n} + \dots$$

B)
$$\sum_{n=0}^{\infty} 2^{3n+1} (x+1)^n$$

- 9. Найти общее решение дифференциального уравнения $y' y \operatorname{tg} x = \frac{e^{2x}}{\cos x}$.
- 10. Решить дифференциальные уравнения, допускающие понижение порядка:

$$y'' = e^{-3x} + \sqrt{x^5} + 4 - \frac{9}{x^3}$$

$$2 \qquad y'' = \frac{1}{\sin^2 2x}, \quad y(\frac{\pi}{4}) = \frac{\pi}{4}, \quad y'(\frac{\pi}{4}) = 1$$

11.а) Найти общее решение дифференциальных уравнений:

1)
$$y'' - 7y' + 12y = 0$$
; 2) $y'' - 2y' = 0$; 3) $y'' - 25y = 0$; 4) $y'' - 4y' + 4y = 0$;

б) Указать структуру общего решения уравнения

$$y'' - 8y' + 16y = 12x^2 - 28x + e^{4x}$$

$$y'' - 4y = 8\sin 2x + 3e^{2x}.$$

в) Указать вид частного решения дифференциального уравнения

$$y'' - 5y' = x^2 e^{5x}.$$

$$y'' + 16y = x\sin 4x.$$

12. Исследовать сходимость (расходимость) рядов

a)
$$\frac{1}{3} + \frac{1}{5} + \frac{1}{9} + \frac{1}{17} + \dots + \frac{1}{2^n + 1} + \dots$$

6)
$$\frac{1}{2} + \frac{3}{2^2} + \frac{5}{2^3} + \dots + \frac{2n-1}{2^n} + \dots$$

B)
$$\sum_{n=1}^{\infty} \frac{3^{2n-1}}{(4n+3)!}$$
,

13. Найти сумму ряда: а)
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$
; б) $\sum_{n=1}^{\infty} \frac{1}{4n^2-1}$

14. Вычислить двойной интеграл $\iint_D (1+x-5y)dxdy$, где область интегрирования D задана неравенствами: $x \ge 0$, $y \ge 0$, $x + 3y \le 3$;

КОНТРОЛЬНАЯ РАБОТА №3

- 1. Найти вероятность того, что событие A появляется в 5 испытаниях не менее 2 раза, вероятность события p=0,3.
- 2. В тире 5 ружей. Вероятность попадания 0,5; 0,6; 0,7; 0,8; 0,9. Найти р попадания при одном выстреле, если ружье берется наудачу.
- 3. Вероятность того, что стрелок при одном выстреле попадает в мишень p=0,3. Стрелок произвел 3 выстрела. Найти вероятность р того, что все 3 выстрела дали попадание.
- 4.. Вычислить вероятность того, что при произвольном разбиении колоды из 52 карт на 2 половины в каждой из них окажется по 13 черных и 13 красных карт.
- 5. Предприятие изготовляет 95% изделий стандартных, 86% из них- первого сорта. Найти вероятность того, что взятое наудачу изделие окажется первого сорта.
- 6. Дискретная случайная величина задана законом распределения

P 0.6 0.1 0.2 0.1

Найти M(X) D(X) и s(X) Построить график F(X).

7. Случайная величина X задана плотностью распределения

$$f(x) = \begin{cases} 0, ecnu \cdot x \le 0, \\ \cos x, ecnu \cdot 0 < x < \frac{\pi}{2}, \\ 0, ecnu \cdot x \ge \frac{\pi}{2}. \end{cases}$$

Найти функцию распределения и построить их графики.

8. В ходе проведения экспериментов получен следующий набор данных для указанных ниже вариантов. Составить интервальный вариационный ряд, определить среднюю выборочную, выборочную дисперсию, среднее квадратическое отклонение выборки. Найти моду и медиану интервального вариационного ряда. Найти 95% доверительный интервал для истинного среднего значения. Построить гистограмму относительных частот.

17,2 10,6 18,9 17,5 14,6 14,1 12,6 21,1 15,5 18,2 17,8 10,4 13,7 13,2 18,7 15,7 16,3 14,8 13,8 15,8 15,4 16,9 14,7 15,3 13,4 17,3 15,4 13,5 15,8 17,8 20,0 18,2 15,3 16,6 16,7 14,5 14,0 17,4 17,2 15,2 16,6 13,6 17,9 13,9 12,9 15,5 17,0 12,7 16,4 14,8 15,3 16,4 16,4 15,7 14,2 13,6 17,9 16,5 15,4 15,6 15,4 17,0 16,9 15,2 16,1 15,9 14,3 14,2 18,0 15,9 17,6 16,3 15,0 14,4 17,3 16,4 14,7 12,3 15,1 15,9 16,7 16,4 15,5 16,7 15,7 15,1 17,7 15,4 11,0 12,5 13,2 14,5 15,4 16,4 15,2 16,6 17,8 15,3 16,1 16,2

ЗАОЧНАЯ ФОРМА

КОНТРОЛЬНАЯ РАБОТА №1

- 1. Даны векторы $\mathbf{a}(a_1a_2a_3)$, $\mathbf{b}(b_1b_2b_3)$, $\mathbf{c}(c_1c_2c_3)$; и $\mathbf{d}(d_1d_2d_3)$ в некотором базисе. Показать, что векторы \mathbf{a} , \mathbf{b} , \mathbf{c} образуют базис и найти координаты вектора \mathbf{d} в этом базисе с помощью формул Крамера. а (1;2;3), b (-1;3;2), c(7;-3;5), d(6;10;17).
- 2. Даны координаты вершин пирамиды $A_1 A_2 A_3 A_4$. Найти
- 1) длину ребра A_1A_2 ; 2)
угол между ребрами A_1A_2 и A_1A_4 ; 3) угол между ребром
 A_1A_4 и гранью $A_1A_2A_3$; 4) площадь грани $A_1A_2A_3$;
- 5) объем пирамиды; 6) уравнения прямой A_1A_2 ; 7) уравнение плоскости $A_1A_2A_3$; 8) уравнения высоты, опущенной из вершины A_4 на грань $A_1A_2A_3$. Сделать чертеж.

$$A_1$$
 (4;2;5), A_2 (0;7;2), A_3 (0;2;7), A_4 (1;5;0).

3. Составить уравнение прямой проходящей через центр окружности

$$(x-x_0)^2+(y-y_0)^2=R^2$$
 перпендикулярно одной из асимптот гиперболы $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$.

$$(x-2)^2 + (y-3)^2 = 9, \frac{x^2}{49} - \frac{y^2}{25} = 1.$$

4. Дана система линейных уравнений

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

Доказать ее совместность и решить двумя способами: 1) методом Гаусса; 2) записать систему в матричной форме и решить ее средствами матричного исчисления, при этом правильность вычисления обратной матрицы проверить, используя матричное умножение.

$$\begin{cases} 3\chi_1 + 2\chi_2 + \chi_3 = 5 \\ 2\chi_1 + 3\chi_2 + \chi_3 = 1 \\ 2\chi_1 + \chi_2 + 3\chi_3 = 11 \end{cases}$$

5. Найти собственные значения и собственные векторы линейного преобразования, заданного в некотором базисе матрицей А.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ -3 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$$

КОНТРОЛЬНАЯ РАБОТА №2

1. Вычислить пределы функций, не пользуясь правилом Лопиталя раскрытия неопределенностей.

a).
$$\lim_{x \to \infty} \frac{3x^2 - 5x}{-5x^2 + x - 1}$$
 6). $\lim_{x \to \infty} \left[1 + \frac{2}{x} \right]^x$

2. Найти производные заданных функций.

a)
$$y = \left(3x^4 - \frac{5}{\sqrt[4]{x}} + 2\right)^5$$
; $y = \frac{ctgx^3 + \ln 4x}{\sqrt{6x + 1}}$

B)
$$y = \arccos 2x + \sqrt{1 - 4x^2}$$
; $y = 2^{tg x} + x \sin 2x$.

д)
$$tg\left(\frac{y}{x}\right) = 5x$$
.

3. Найти $\frac{dy}{dx}$ и $\frac{d^2y}{dx^2}$ для функций заданных параметрически:

$$x = cos\left(\frac{t}{2}\right), \ y = t - sin t.$$

- 4. Исследовать методами дифференциального исчисления функцию $y = \frac{3x}{x^2 4}$ и, используя результаты исследования, построить график.
- 5. Найти полный дифференциал функции z = f(x; y),

$$f(x; y) = xy^3 - 2x^3y + 2y^4$$
.

6. Найти неопределенные интегралы. Результаты проверить дифференцированием.

a)
$$\int \frac{3x^2 + e^x}{x^3 + e^x} dx$$
; 6) $\int \frac{arctg^2 2x}{1 + 4x^2} dx$;

B)
$$\int x \cos 2x dx$$
; Γ) $\int \frac{x^3+6}{x^2+5x-6} dx$.

- 7. Вычислить по формуле Ньютона Лейбница определенный интеграл $\int\limits_{3}^{9} \frac{\ln x}{x} dx$.
- 3. Вычислить площадь фигуры, ограниченной параболой

$$y = -x^2 + 4x - 1$$
 и прямой $y = -x - 1$. Сделать чертеж.

8. Найти общее решение дифференциального уравнения

$$y'-4xy=x$$
 и частное решение, удовлетворяющее начальному условию; $y_0=\frac{3}{4},$ $x_0=0.$

9. Найти общее решение дифференциального уравнения

$$y^{''}+4y^{'}+4y=2e^{x}$$
 и частное решение, удовлетворяющее начальным условиям; $y_{0}=-2$, $y_{0}^{\prime}=-2$ при $x=0$.

10. Написать три первых члена степенного ряда по заданному общему члену $\frac{nx^n}{2^n}$; найти интервал сходимости ряда и исследовать его сходимость на концах этого интервала.

КОНТРОЛЬНАЯ РАБОТА №3

- 1. В партии из 80 банок 6 оказалось нестандартными. Найти вероятность того, что две взятые подряд банки окажутся нестандартными.
- 2. В ящике 10 заклепок: 5 железных, 3 латунных и 2 медных. Взяли наудачу 2 заклепки. Какова вероятность того, что обе они из одного материала.
- 3. Вероятность того, что телевизор в течение гарантийного срока потребует ремонта, равна
- 0,2. Найти вероятность того, что из 6 проданных телевизоров в течение гарантийного срока A потребуют ремонта не более одного Б хотя бы один не потребует ремонта.
- 4. Посажено 900 семян кукурузы. Вероятность прорастания отдельного семени равна 0,8. Найти вероятность того, что взойдет не менее 700 ростков кукурузы.
- 5. Произведено 200 независимых испытаний. Вероятность осуществления события A В каждом из которых равна 0,6. Какова вероятность того, что событие осуществится: а) ровно 200 р, б) от 180 до 190 раз, в) не менее 200 раз.
- 6. Дискретная случайная величина задана законом распределения:

X	11.3	11.6	12.4	13.2
P	0.5	0.1	0.2	0.2

Найти M(X) D(X) и G(X) Построить график F(X)

7. Непрерывная случайная величина задана интегральной функцией распределения

$$F(X) = \begin{cases} 0 & x \le 0 \\ \frac{x}{5} & 0 < x \le 5 \\ 1 & x > 5 \end{cases}$$

Найти дифференциальную функцию f(x), Найти M(X), D(X) и σ (X). Найти P(3 < x < 4) Построить график F(X)и f(X).

8. В ходе проведения экспериментов получен следующий набор данных для указанных ниже вариантов. Составить интервальный вариационный ряд, определить среднюю выборочную, выборочную дисперсию, среднее квадратическое отклонение выборки. Найти моду и медиану интервального вариационного ряда. Найти 95% доверительный интервал для истинного среднего значения. Построить гистограмму относительных частот.

17,2 10,6 18,9 17,5 14,6 14,1 12,6 21,1 15,5 18,2 17,8 10,4 13,7 13,2 18,7 15,7 16,3 14,8 13,8 15,8 15,4 16,9 14,7 15,3 13,4 17,3 15,4 13,5 15,8 17,8 20,0 18,2 15,3 16,6 16,7 14,5 14,0 17,4 17,2 15,2 16,6 13,6 17,9 13,9 12,9 15,5 17,0 12,7 16,4 14,8 15,3 16,4 16,4 15,7 14,2 13,6 17,9 16,5 15,4 15,6 15,4 17,0 16,9 15,2 16,1 15,9 14,3 14,2 18,0 15,9 17,6 16,3 15,0 14,4 17,3 16,4 14,7 12,3 15,1 15,9 16,7 16,4 15,5 16,7 15,7 15,1 17,7 15,4 11,0 12,5 13,2 14,5 15,4 16,4 15,2 16,6 17,8 15,3 16,1 16,2

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Высшая математика» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 09.03.02 Информационные системы и технологии (профиль Проектирование корпоративных информационных систем).

Преподаватель-разработчик – Руденко А.И., к.ф.-м.н., С.Н. Мухина, доцент, к.п.н.

Фонд оценочных средств рассмотрен и одобрен и.о. заведующего кафедрой прикладной математики и информационных технологий.

И.о. заведующего кафедрой

А.И. Руденко

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой прикладной информатики.

Styrus

Maj

Заведующий кафедрой

М.В. Соловей

Фонд оценочных средств рассмотрен и одобрен методической комиссией института цифровых технологий (протокол №5 от 29.08.2024 г).

Председатель методической комиссии

О.С. Витренко