

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ И.о. директора института

Фонд оценочных средств (приложение к рабочей программе дисциплины)

«<u>ЧИСЛЕННЫЕ МЕТОДЫ</u>» (модуль «Саморазвития»)

основных профессиональных образовательных программ

бакалавриата и специалитета

РАЗРАБОТЧИК

кафедра прикладной математики и информационных технологий

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование компетенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями
уК-4 Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(ых) языке(ах) УК-6 Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни	Численные методы	 Знаты: численные методы решения математических задач. Уметь: применять численные методы при решении профессиональных задач. Владеть: инструментарием для решения математических задач в своей предметной области; навыками выбора современных информационных технологий и программных средств, в том числе отечественного производства при решении задач вычислительной математики; навыками применения основ высшей математики, физики, основ вычислительной техники и программирования при решении практических задач; навыками использования методов математического анализа и моделирования при решений профессиональных задач с применением общеинженерных и естественнонаучных знаний; навыками использования методов применения современных информационных технологий и программных средств численных методов.

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов.

Промежуточная аттестация в форме зачета (второй и третий семестр) проходит по результатам прохождения всех видов текущего контроля успеваемости. В отдельных случаях (при не прохождении всех видов текущего контроля) зачет может быть проведен в виде тестирования.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5	
оценок	0-40%	41-60%	61-80 %	81-100 %	
	«неудовлетворите	«удовлетворител	«хорошо»	«отлично»	
	льно»	ьно»			
Критерий	«не зачтено»		«зачтено»		
1 Системность и	Обладает	Обладает	Обладает	Обладает	
полнота знаний	частичными и	минимальным	набором знаний,	полнотой знаний и	
в отношении	разрозненными	набором знаний,	достаточным для	системным	
изучаемых	знаниями, которые	необходимым для	системного	взглядом на	
объектов	не может научно-	системного	взгляда на	изучаемый объект	
	корректно	взгляда на	изучаемый		
	связывать между	изучаемый объект	объект		
	собой (только				
	некоторые из				
	которых может				
	связывать между				
	собой)				
2 Работа с	Не в состоянии	Может найти	Может найти,	Может найти,	
информацией	находить	необходимую	интерпретироват	систематизироват	
	необходимую	информацию в	Ь И	ь необходимую	
	информацию, либо	рамках	систематизирова	информацию, а	
	в состоянии	поставленной	ть необходимую	также выявить	
	находить отдельные	задачи	информацию в	новые,	
	фрагменты		рамках	дополнительные	
	информации в		поставленной	источники	
	рамках		задачи	информации в	
	поставленной			рамках	
	задачи			поставленной	
				задачи	
3 Научное	Не может делать	В состоянии	В состоянии	В состоянии	
осмысление	научно корректных		осуществлять	осуществлять	
изучаемого	выводов из	•	систематический	систематический и	
явления,	имеющихся у него	* *	и научно	научно-	
процесса,	сведений, в	анализ	корректный	корректный	
объекта	состоянии	предоставленной	анализ	анализ	
	проанализировать	информации	предоставленной	предоставленной	
	только некоторые		информации,	информации,	
	из имеющихся у		вовлекает в	вовлекает в	
	него сведений		исследование	исследование	

Система	2	3	4	5	
оценок	0-40%	41-60%	61-80 %	81-100 %	
	«неудовлетворите	«удовлетворител	«хорошо»	«отлично»	
	льно»	PH0»			
Критерий	«не зачтено»		«зачтено»		
			новые	новые	
			релевантные	релевантные	
			задаче данные	поставленной	
				задаче данные,	
				предлагает новые	
				ракурсы	
				поставленной	
				задачи	
4 Освоение	В состоянии решать	В состоянии	В состоянии	Не только владеет	
стандартных	только фрагменты	решать	решать	алгоритмом и	
алгоритмов	поставленной	поставленные	поставленные	понимает его	
решения	задачи в	задачи в	задачи в	основы, но и	
профессиональ	соответствии с	соответствии с	соответствии с	предлагает новые	
ных задач	заданным	заданным	заданным	решения в рамках	
	алгоритмом, не	алгоритмом	алгоритмом,	поставленной	
	освоил		понимает основы	задачи	
	предложенный		предложенного		
	алгоритм,		алгоритма		
	допускает ошибки				

1.4 Оценивание тестовых заданий закрытого типа осуществляется по системе зачтено/ не зачтено («зачтено» — 41-100% правильных ответов; «не зачтено» — менее 40 % правильных ответов) или пятибалльной системе (оценка «неудовлетворительно» - менее 40 % правильных ответов; оценка «удовлетворительно» - от 41 до 60 % правильных ответов; оценка «хорошо» - от 61 до 80% правильных ответов; оценка «отлично» - от 81 до 100 % правильных ответов).

Тестовые задания открытого типа оцениваются по системе «зачтено/ не зачтено». Оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

2 семестр

УК-4 Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(ых) языке(ах)

Тестовые задания открытого типа:

1. Даны матрицы
$$A = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 2 & -1 & -2 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \\ 2 & -1 & 0 \end{pmatrix}.$$

В матрице $C = A \cdot B$ элемент c_{13} равен:_____

Ответ: -1

2. Определитель
$$\begin{vmatrix} 1 & 7 & -11 \\ 0 & -4 & 5 \\ 0 & 3 & -5 \end{vmatrix}$$
 равен:_____

Ответ: 5

3. Дана матрица
$$A = \begin{pmatrix} 1 & 2 \\ -3 & 4 \end{pmatrix}$$

Результат вычисления выражения $|A| + |A^T|$ равен: _____

Ответ: 10

4. Для системы линейных уравнений

$$\begin{cases} 3y - x = 2 \\ x + 5y = 4 \end{cases}$$

главный определитель Δ равен:

Ответ: -8

4. При решении системы уравнений
$$\begin{cases} 4x + 2y - 2z = 2\\ 3x + 5y + z = 10\\ 4x - 2y + 3z = 8 \end{cases}$$

методом Крамера значение переменной х:

Ответ: 1

5. Для системы линейных уравнений
$$\begin{cases} 3y - 2x = 2 \\ x + 5y = 4 \end{cases}$$

вспомогательный определитель Δ_y равен: _____

Ответ: -10

Ответ: 4/9

7. Даны векторы $\vec{a}=\vec{\iota}-2\vec{j}+2\vec{k}$ и $\vec{b}=2\vec{\iota}+\vec{\jmath}$. Проекция пр $\vec{a}\vec{b}$ равна:_____

Ответ: 0

8. Даны координаты вершин треугольника: A(3,-1,5), B(4,2,-5) и C(-4,0,3). Точка M - середина стороны BC. Медиана AM равна:_____

Ответ: 7

9. Для векторов $\vec{a} = \{2, 1, 3\}$ и $\vec{b} = \{-1, 5, 3\}$ модуль разности $|\vec{a} - \vec{b}|$ равен:_____

Ответ: 5

Векторы $\bar{a}=4\bar{\iota}+\lambda\bar{\jmath}+5\bar{k}$ и $\bar{b}=\lambda\bar{\iota}+2\bar{\jmath}-6\bar{k}$ взаимно перпендикулярны при значении λ , равном:_____

Ответ: 5

10. Даны векторы $\bar{a}=\{-2,\ y,\ 1\}$, $\bar{b}=\{3,-1,\ 2\}$. Если известно, что $\bar{a}\perp\bar{b}$, то координата y будет равна:_____

Ответ: -4

11. Известно, что $|\vec{a}| = 2$, $|\vec{b}| = 3$ и угол между \vec{a} и \vec{b} равен 30°. Значение $|\vec{a} \times \vec{b}|$ равно:_____

Ответ: 3

12. Произведение координат центра окружности $x^2 + y^2 - 4x - 4y + 1 = 0$ равно:____

Ответ: 4

Тестовые задания закрытого типа:

13. Для векторов $\vec{a}(a_x; a_y; a_z)$, $\vec{b}(b_x; b_y; b_z)$, $\vec{c}(c_x; c_y; c_z)$ векторно-скалярное (смешанное) произведение $\vec{a} \cdot \vec{b} \times \vec{c}$ вычисляется по формуле:

1.
$$\begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_a & y_a & z_a \\ x_b & y_b & z_b \end{vmatrix}$$

3.
$$\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

$$4.\begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$

14. Установление соответствия:

	Линия второго порядка		Определение
1	Эллипс	a	Геометрическое место точек плоскости, модуль разности расстояний от которых до двух фиксированных точек плоскости F_1 и F_2 есть величина постоянная и равная $2a$ ($2a < F_1F_2 $)
2	Парабола	б	Геометрическое место точек плоскости, сумма расстояний от которых до двух фиксированных точек плоскости F_1 и F_2 есть величина постоянная и равная $2a$ $(2a> F_1F_2)$
3	Гипербола	В	Геометрическое место точек плоскости, расстояние от которых до фиксированной прямой l и до фиксированной точки F (не лежащей на прямой l) одинаково
4	Окружность		Геометрическое место точек, равноудаленных от заданной точки на ненулевое расстояние

Ответ: 16, 2в, 3а, 4г

15. Три точки $M_1(x_1;y_1;z_1)$, $M_2(x_2;y_2;z_2)$ и $M_3(x_3;y_3;z_3)$ принадлежат плоскости:

1.
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m & n & p \end{vmatrix} = 0$$

$$2.\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 0$$

3.
$$\begin{vmatrix} x - x_1 & y - y_1 & z - z_1 \\ x_2 - x_1 & y_2 - y_1 & z_2 - z_1 \\ m & n & p \end{vmatrix} = 0$$

$$4. Ax + By + Cz = 0$$

16. Даны две точки A(2,-1,3) и B(4,-2,-1). Через точку A перпендикулярно вектору \overrightarrow{AB} проходит плоскость:

1.
$$2(x-2) + (y+1) + 4(z-3) = 0$$

2.
$$3(x-4) - (y+2) - 4(z+1) = 0$$

3.
$$2(x-2) - (y+1) - 4(z-3) = 0$$

$$4. 3(x-4) + (y-2) + 4(z+1) = 0$$

УК-6 Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни

Тестовые задания открытого типа:

17. Предел
$$\lim_{x\to 0} \frac{\sin 6x}{tg3x}$$
 равен:_____

Ответ: 2

18. Предел
$$\lim_{x\to 0} (1-x)^{\frac{1}{x}}$$
 равен:_____

Введите элементарную дробь

Ответ:1/е

19. Предел
$$\lim_{x \to +\infty} \sqrt{x^3 + 3x} - x$$
 равен:_____

Введите элементарную дробь

Ответ:3/2

20.
$$y(x) - \phi$$
ункция, $\lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} - \underline{\hspace{1cm}}$

Ответ: производная (y'(x))(y'(x))

21. Для функции
$$f(x) = \ln(x^2 + 1)$$
 производная $f'(1)$ равна: _____

Ответ: 1

22. Для функции
$$y \cdot e^x + e^y = 0$$
 производная $y'(x) =$

Введите выражение без пробелов

Ответ: у/(у-1)

23. Функция
$$y(x) = \frac{e^x}{x}$$
 имеет экстремум в точке х: _____

Ответ: 1

24. Количество асимптот функции $y(x) = \frac{3x^2 + 3x + 5}{x^2 + 5x + 6}$ равно: _____

Введите число

Ответ: 3

25. Функция $y(x)=x^4+4x$ имеет точек перегиба: _____

Введите число

Ответ: 0

26. В область определения функции двух переменных $u = \frac{1}{\sqrt{x^2 + y^2 - 4}}$ <u>**HE**</u> входят точки, лежащие на окружности с радиусом, равным:_____

Ответ: 2

27. Для функции
$$z = \frac{xy}{x+y}$$
 выражение $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y}$ в точке (1;1) равно:_____

Ответ: 1

28. Для функции $z=x^2+xy+y^2+3y+4$ стационарной точкой (a;b) является (___;___) Введите два числа через точку с запятой, без пробелов

Ответ: 1;-2

Тестовые задания закрытого типа:

29. Установление соответствия:

	Предел	Зна	чение
1	$\lim_{x\to 0} \frac{1-\cos(2x)}{2x^2}$	a	2
2	$\lim_{x\to 0}\frac{\sin 2x}{x}$	б	e^2
3	$\lim_{x\to+\infty} \left(1+\frac{1}{x}\right)^{2x}$	В	1
4	$\lim_{x \to \infty} \frac{2x^5 + 4x^4 + 3x^2 + 1}{x^6 + 5x^5 - 4x}$	Γ	0

Ответ: 1в,2а,36,4г

30. Для функции
$$\begin{cases} x = 2t + 3t^2, \\ y = t^2 + 2t^3. \end{cases}$$
 производная $y'(x)$ равна

$$1.y'(x) = 2t$$

$$2.y'(x) = 2t + 6t^2$$

$$3.y'(x) = 2 + 6t$$

$$4.y'(x)=t$$

31. Установление соответствия:

	Область интегрирования		Интеграл
1	3 y 3 y 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a	$\int_{1}^{2} dx \int_{1}^{3} f(x, y) dy$
2	3 2 - 1	б	$\int_{-1}^{2} dx \int_{1}^{3} f(x, y) dy$
3		В	$\int_{-2}^{1} dx \int_{1}^{3} f(x, y) dy$
4	3 1 -2 -1 0 1 x	Γ	$\int_{1}^{3} dx \int_{-1}^{2} f(x, y) dy$

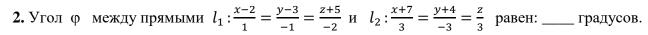
Ответ: 16, 2а, 3г, 4в

32. Установление соответствия:

,	Дифференциальное уравнение	Вид		
1	$y(e^x + 4)dy + e^x dx = 0$	a	Бернулли	
2	$xy' + y = y^2 \ln x$	б	в полных дифференциалах	
3	$(x^2 + y)dx + (x - 2y)dy = 0$	В	с разделяющимися переменными	
4	$y = x \left(y' - \sqrt[x]{e^y} \right)$	Γ	однородное	

Ответ: 1в,2а,3б,4г

3 семестр


УК-4 Способен осуществлять деловую коммуникацию в устной и письменной формах на государственном языке Российской Федерации и иностранном(ых) языке(ах)

Тестовые задания открытого типа:

1.	Координаты на	правляющего	вектора	$\vec{p}(x; y; z)$	прямой,	проходящей	через	две	точки
M	1(1,2,3) и M2(-1	,0,1), соответст	гвенно ра	вны:; _	;				

Введите три числа через точку с запятой, без пробелов

Ответ: 2;2;2

Ответ: 90

3. В пересечении двух плоскостей образуется: _____

Ответ: прямая (линия)

4. Плоскость *x0z* определена уравнением: _____

Введите уравнение без пробелов

Ответ: у=0

5. Единственную плоскость можно провести через точки.

Введите число

Ответ: 3

6. Угол между плоскостями x + 2y - 2z + 1 = 0 и x + y - 4 = 0 равен: _____ градусов.

Ответ: 45

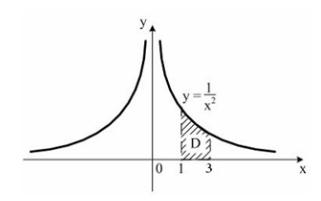
7. Через точку M(3, 3, -2) перпендикулярно прямой $\frac{x+1}{-2} = \frac{y}{2} = \frac{z}{3}$ проходит плоскость Ax+By+Cz+D=0, где A, B, C, D соответственно равны: __;__;__;__

Введите четыре числа через точку с запятой, без пробелов

Ответ: -2;2;3;6

8. $F(x)$ – первообразная для функции	$f(x) = 9^{x-1}$	¹ ln 9, тогда	разность	F(2)-F(1)
равна:				

Ответ: 8


9. Способ вычисления неопределенного интеграла $\int x \sin 2x \, dx$ - ______

Ответ: по частям

10. Интеграл
$$\int_0^5 (2 - \frac{1}{\sqrt{x+4}}) dx$$
 равен: _____

Ответ: 8

11. Площадь криволинейной трапеции **D**

равна:____

Введите элементарную дробь

Ответ: 2/3

12. Пусть y = y(x) – решение уравнения $y' - y = e^x$, удовлетворяющее начальному условию y(0) = 1. Значение y(1) равно:_____ Ответ: 2е (2*е)

Тестовые задания закрытого типа:

13. Установление соответствия:

	Задача Коши		Частное решение
1	$xy' = 2y - x, \ y(1) = 3$	a	$y = -x^2$
2	$y' - \frac{3y}{x} = x$, $y(1) = -1$	б	$y = -\frac{1}{x}$
3	$x^2y' = 2xy + 3$, $y(1) = -1$	В	y = x (2x + 1)

4	$xy' - y = x^3$, $y(2) = 6$	Γ	$y = x\left(\frac{x^2}{2} + 1\right)$	
			(2)	

Ответ: 1в,2а,36,4г

14. Установление соответствия:

	Ряд		Сходимость
1	$\sum_{n=1}^{\infty} \left(-1\right)^n \left(\frac{2n+1}{3n-2}\right)^{2n}$	a	расходится
2	$\sum_{n=1}^{\infty} \left(-1\right)^{n-1} n^2 \sin \frac{\pi}{n^2}$	б	сходится условно
3	$\sum_{n=1}^{\infty} \left(-1\right)^n \frac{\sqrt{n}}{n+100}$	В	сходится абсолютно

Ответ: 1в,2а,36

15. Область сходимости степенного ряда

$$\sum_{n=1}^{\infty} n^2 4^n (x-1)^n$$

- 1. [3/4;5/4)
- 2. [3;5)
- 3. [3/4;5/4]
- 4. (1/4;3/4)
- 5. (3/4;5/4)

16. Для матрицы $A = \begin{pmatrix} 3 & 1 & 2 \\ -5 & 3 & 2 \\ -4 & -1 & 3 \end{pmatrix}$ расположение алгебраических дополнений для

элементов а11, а22, а33, а23 в порядке возрастания значений:

№	Алгебраическое дополнение
1	A_{11}
2	A_{22}
3	A_{33}
4	A_{23}

Ответ: 4,1,3,2

УК-6 Способен управлять своим временем, выстраивать и реализовывать траекторию саморазвития на основе принципов образования в течение всей жизни

Тестовые задания открытого типа:

17. Максимальным корнем характеристического уравнения $\ddot{y} - 7\dot{y} + 6y = 0$ является значение:
Ответ: 6
18. Пусть $y(x)$ – решение задачи Коши $y'' + 3y' = 10 - 6x$ при $y(0) = 0$, $y'(0) = 4$. Значение $y(1)$ равно:
19. Для ряда $\frac{3}{2} + \frac{3}{4} + \frac{3}{8} + \frac{3}{16} + \dots$ отношение седьмого члена ряда к восьмому члену ряда равно:
Ответ: 2
20. Имеется 5 городов, каждый из которых соединен с каждым дорогой, не проходящей через остальные города. Общее количество дорог равно:
Ответ:10
21. Число 6-значных телефонных номеров, при условии, что <u>любая</u> цифра может повторяться, равно:
Ответ: 1000000
22. Из промежутка [0; 2] наугад выбирается два числа. Вероятность того, что их сумма больше 2, равна:
Введите число (разделитель – запятая)
Ответ: 0,5
23. Подброшены две игральные кости. Вероятность того, что выпала хотя бы одна единица, равна:
Введите элементарную дробь
Ответ: 11/36
24. В группе из 20 студентов 4 отличника и 16 хорошистов. Вероятности успешной сдачи сессии для них соответственно равны 0,9 и 0,65. Вероятность того, что наугад выбранный студент успешно сдаст сессию, равна:
Введите элементарную дробь
Ответ:7/10
25. Вероятность попадания в мишень при каждом выстреле постоянна и равна 0,4. Наивероятнейшее число попаданий при 6 выстрелах будет равно:

Ответ: 2,4

26. При подбрасывании монеты 400 раз вероятность появления 200 орлов определяется по локальной теореме Муавра-Лапласа $P_{400}(200) = \frac{1}{\sqrt{100}} \varphi(x)$. Значение х равно:_____

Ответ: 0

27. В новых домах микрорайона установлено 10000 кодовых замков на входных дверях. Вероятность поломки одного замка в течение месяца равна 0,0002. Ежемесячно управляющая компания должна предусмотреть в среднем расходы на ремонт замков в количестве дверей:

Ответ: 2

28. Случайная величина — число купленных единиц товара - задана рядом:

X	0	1	2	3	4
P	0,1	0,2	0,3	0,2	0,2

Вероятность покупки, по крайней мере, двух единиц товара, равна: ____

Введите число (разделитель – запятая)

Ответ: 0,7

Тестовые задания закрытого типа:

29. Установления соответствия:

	Теорема		Применяется, когда события А и В:
1	P(A+B) = P(A) + P(B)	a	совместные
2	P(A * B) = P(A) * P(B)	б	несовместные
3	$P(A * B) = P(A) * P(B \mid A)$	В	независимые
4	P(A+B) = P(A) + P(B) - P(AB)	Γ	зависимые

Ответ: 16, 2в, 3г, 4а

30.

Формула		Название	
1	$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)$	a	Пуассона
2	$P(A) = C_n^m p^m q^{n-m}$	б	Полной вероятности
3	$P(X=m) = \frac{\lambda^m}{m!}e^{-\lambda}$	В	Байеса

4	$P(R A) = \frac{P(H_i) \cdot P(A/H_i)}{P(R A)}$	Γ	Бернулли
	$\sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)$		

Ответ: 16, 2г, 3а, 4в

31. Установление соответствия

Pac	Распределение случайной величины		Для n испытаний:	
1	Биномиальное	a	$P(X = x_i) = \frac{C_M^{x_i} \cdot C_{N-M}^{n-x_i}}{C_N^n}$	
2	Геометрическое	б	$P(X = x_i) = C_n^{x_i} p^{x_i} (1 - p)^{n - x_i}$	
3	Пуассона	В	$P(X = x_i) = (1 - p)^{n - x_i} p$	
4	Гипергеометрическое	Γ	$P(X = x_i) = \frac{\lambda^{x_i}}{x_i!} e^{-\lambda}$	

Ответ: 16, 2в, 3г,4а

32. Дисперсия случайной величины, распределенной по биномиальному закону, равна 16. Количество испытаний равно 100. Вероятность наступления события в одном испытании может быть равна:

- 1.0,2
- 2.0,3
- 3.0,8
- 4. 0,5

З ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/ КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Данный вид контроля не предусмотрен учебным планом

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Численные методы» представляет собой компонент основных профессиональных образовательных программ бакалавриата и специалитета.

Преподаватель -разработчик – Руденко А.И., к.ф.-м.н.

Фонд оценочных средств рассмотрен и одобрен и.о. заведующего кафедрой прикладной математики и информационных технологий.

И.о. заведующего кафедрой

Synes

А.И. Руденко

Фонд оценочных средств рассмотрен и одобрен методической комиссией института цифровых технологий (протокол №5 от 29 августа 2024 г).

Председатель методической комиссии

Pt .

О.С. Витренко