Федеральное государственное бюджетное образовательное учреждение высшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

С. В. Рудаченко, Т. В. Рудаченко

ИНЖЕНЕРНАЯ КОМПЬЮТЕРНАЯ ГРАФИКА

Учебно-методическое пособие по изучению дисциплины для студентов, обучающихся в бакалавриате по направлению подготовки 15.03.01 Машиностроение, профиль программы «Технологии, оборудование и автоматизация машиностроительных производств»

Калининград Издательство ФГБОУ ВО «КГТУ» 2025

Рецензент

доктор технических наук, доцент, заведующий кафедрой инжиниринга технологического оборудования Д. Б. Подашев

Рудаченко, С. В., Рудаченко, Т. В.

Инженерная компьютерная графика: учеб.-методич. пособие по изучению дисциплины для студ., обучающихся в бакалавриате по напр. подгот. 15.03.01 «Машиностроение» (профиль «Технологии, оборудование и автоматизация машиностроительных производств»)/ С.В. Рудаченко, Т.В. Рудаченко. – Калининград: Изд-во ФГБОУ ВО «КГТУ», 2025. – 75 с.

В учебно-методическом пособии по изучению дисциплины «Инженерная компьютерная графика» представлены материалы по освоению тем лекционного курса, включающие подробный план лекции по каждой изучаемой теме, материалы по подготовке к практическим занятиям, вопросы для самоконтроля, список учебной литературы, отражены рекомендации для выполнения расчетно-графической работы для направления подготовки 15.03.01 Машиностроение (профиль «Технологии, оборудование и автоматизация машиностроительных производств»).

Табл. 5, список лит. – 34 наименования

Учебно-методическое пособие рассмотрено и рекомендовано в качестве локального электронного методического материала кафедрой инжиниринга технологического оборудования 26 сентября 2025 г., протокол № 2

Учебно-методическое пособие рекомендовано к использованию в учебном процессе в качестве локального электронного методического материала методической комиссией института агроинженерии и пищевых систем ФГБОУ ВО «Калининградский государственный технический университет» 30 сентября 2025 г., протокол № 7

УДК 514.18 (076)

© Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2025 г. © Рудаченко С. В., Рудаченко Т. В., 2025 г.

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ	4
1. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ	
ДИСЦИПЛИНЫ (лекционный курс)	8
2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ	
ПРАКТИЧЕСКИХ ЗАНЯТИЙ	37
3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ	
САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ	63
4. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ	
РАСЧЕТНО-ГРАФИЧЕСКИХ РАБОТ	64
ЗАКЛЮЧЕНИЕ	66
БИБЛИОГРАФИЧЕСКИЙ СПИСОК	67
ПРИЛОЖЕНИЯ	70

ВВЕДЕНИЕ

Дисциплина «Инженерная компьютерная графика» входит в состав основной профессиональной образовательной программы бакалавриата по направлению подготовки 15.03.01 Машиностроение (профиль «Технологии, оборудование и автоматизация машиностроительных производств»).

Дисциплина состоит из следующих разделов: «Начертательная геометрия», «Проекционное черчение», «Машиностроительное черчение» и «Компьютерная графика».

Целью освоения дисциплины является формирование у обучающихся пространственного представления и конструктивно-геометрического мышления, способностей к анализу и синтезу пространственных форм и отношений на основе графических моделей пространства, подготовка студентов к использованию компьютера при выполнении конструкторской документации.

Задачи изучения дисциплины:

- освоение способов получения определенных графических моделей пространства, основанных на ортогональном проецировании;
- приобретение навыков решения на графических моделях инженерных задач, связанных с пространственными формами и отношениями;
- формирование базовых знаний, умений и навыков выполнения чертежей и создания графических моделей с применением средств компьютерной графики.

В результате освоения дисциплины обучающийся должен:

- принципы графического и геометрического моделирования инженерных задач;
- общетеоретические положения и способы, необходимые для построения изображений пространственных форм на плоскости;
- методы геометрических построений, а также приемы решения позиционных и метрических задач;
- общие требования стандартов ЕСКД и других нормативных документов к выполнению и оформлению конструкторских документов;
- современные способы автоматизации графических работ, возможности автоматизированного создания геометрических моделей пространственных объектов и выполнения чертежей;

уметь:

- строить изображения пространственных форм на плоскости, т.е. составлять чертеж;
- мысленно воспроизводить пространственную форму изображенного на чертеже предмета;

- выполнять анализ и синтез пространственных отношений на основе графических моделей пространства;
- составлять алгоритмы и решать графическими методами задачи о взаимном расположении и измерении геометрических форм в пространстве;
- пользоваться стандартами и справочной литературой, а также средствами компьютерной графики;

владеть:

- навыками составления и чтения чертежей, а также изучения нормативных источников и использования справочной литературы;
- навыками использования ЭВМ в графических построениях, создания 2D и 3D-моделей в рамках графических систем.

Для оценивания поэтапного формирования результатов освоения дисциплины (текущий контроль) предусмотрены:

- тестовые задания;
- задания и контрольные вопросы по практическим занятиям;
- задания для расчетно-графической работ.

Перечень и содержание тестовых и контрольных заданий представлены в фонде оценочных средств по данной дисциплине.

Тестовые задания (для студентов очной формы обучения) используются для оценки освоения дисциплины — знания основных терминов, определений инженерной графики, а также положений стандартов ЕСКД, регламентирующих общие правила выполнения и оформления чертежей. Тест считается сданным, если даны правильные ответы на 60 % вопросов. В случае получения неудовлетворительной оценки тест подлежит повторной сдаче.

Студенты очной формы обучения производят решение в рабочих тетрадях задач по начертательной геометрии.

Аудиторные контрольные задания, которые студенты очной формы выполняют на практических занятиях, позволяют проверить итоговые навыки, полученные при изучении отдельных блоков дисциплины. В случае получения положительной оценки результат контрольного задания засчитывается как защита одного из семестровых графических заданий.

Контрольные задания оцениваются положительно, если студент обнаружил основного учебного материала, необходимого знание последующего освоения дисциплины. Как правило, задание засчитывается, допустил незначительные погрешности графического задания, но обладает необходимыми знаниями для их устранения под руководством преподавателя.

При получении неудовлетворительной оценки контрольное задание следует выполнить повторно.

В первом семестре студенты выполняют расчётно-графическую работу (РГР) № 1, содержащую решения некоторых типовых задач начертательной геометрии, а также задания по проекционному черчению. Во втором семестре студенты выполняют расчётно-графическую работу (РГР) № 2, задания которой содержат элементы машиностроительного черчения. Все задания после их выполнения подлежат защите, содержанием которой являются вопросы, позволяющие выяснить степень усвоения материала. Все задания расчетнографических работ по инженерной компьютерной графике выполняются в графической системе КОМПАС-3D. Практические занятия по дисциплине проводятся в специализированных аудиториях (компьютерных классах).

Промежуточная аттестация по дисциплине за первый семестр ее освоения проводится в форме зачета (вопросы для самоконтроля – в приложении 1).

К зачету допускаются студенты:

- выполнившее и защитившие все графические задания, входящие в РГР
 № 1;
- получившие положительные оценки по результатам тестирования и выполнения контрольных заданий.

Промежуточная аттестация по дисциплине проводится в форме экзамена (контрольные вопросы по дисциплине – в приложении 2).

К экзамену допускаются студенты:

- выполнившее и защитившие все графические задания, входящие в РГР № 2;
- получившие положительные оценки по результатам тестирования и выполнения контрольных заданий (для очной формы обучения).

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100-балльную (процентную) систему и правило перевода оценок в пятибалльную систему (таблица 1).

Таблица 1 – Система оценок и критерии выставления оценки

	2	3	4	5
Система	0–40 %	41–60 %	61–80 %	81–100 %
оценок	«неудовлетво-	«удовлетво-	// УОРОШО //	«онгисто»
	рительно»	рительно»	«хорошо»	WOIJINAHO//
IC	«не зачтено»	«зачтено»		
Критерий				
1. Системность и	Обладает	Обладает	Обладает	Обладает полнотой
полнота знаний в	частичными и	минималь-	набором знаний,	знаний и систем-
отношении	разрозненными	ным набором	достаточным для	ным взглядом на
изучаемых	знаниями, которые	знаний,	системного взгляда	изучаемый объект
объектов	не может научно-	необходимым	на изучаемый	
	корректно связывать	для	объект	

	2	3	4	5
Система	0–40 %	41–60 %	61-80 %	81–100 %
оценок	«неудовлетво-	«удовлетво-	//VODOMO\\	//OTHUMO\\
	рительно»	рительно»	«хорошо»	«отлично»
Критерий	«не зачтено»	«зачтено»		
	между собой (только некоторые из которых может связывать между собой)	системного взгляда на изучаемый объект		
2. Работа с информацией	Не в состоянии находить необходимую информацию, либо в состоянии находить отдельные фрагменты информации в рамках поставленной задачи	Может найти необходимую информацию в рамках поставленной задачи	Может найти, интерпретировать и систематизировать необходимую информацию в рамках поставленной задачи	Может найти, систематизировать необходимую информацию, а также выявить новые, дополнительные источники информации в рамках поставленной задачи
3. Научное осмысление изучаемого явления, процесса, объекта	Не может делать научно-корректных выводов из имеющихся у него сведений, в состоянии проанализировать только некоторые из имеющихся у него сведений	В состоянии осуществлять научно- корректный анализ предоставленной информации	В состоянии осуществлять систематический и научно-корректный анализ предоставленной информации, вовлекает в исследование новые релевантные задаче данные	В состоянии осуществлять систематический и научно-корректный анализ предоставленной информации, вовлекает в исследование новые релевантные поставленной задаче данные, предлагает новые ракурсы поставленной задачи
4. Освоение стандартных алгоритмов решения профессиональных задач	В состоянии решать только фрагменты поставленной задачи в соответствии с заданным алгоритмом, не освоил предложенный алгоритм, допускает ошибки	В состоянии решать поставленные задачи в соответствии с заданным алгоритмом	В состоянии решать поставленные задачи в соответствии с заданным алгоритмом, понимает основы предложенного алгоритма	Не только владеет алгоритмом и понимает его основы, но и предлагает новые решения в рамках поставленной задачи

При необходимости для обучающихся инвалидов или обучающихся с OB3 предоставляется дополнительное время для подготовки ответа с учетом его индивидуальных психофизических возможностей.

Данное пособие структурировано по разделам. Во введении приведены цели и задачи дисциплины «Инженерная компьютерная графика», результаты обучения, критерии оценки (уровня освоения дисциплины). В разделах «Методические рекомендации по изучению дисциплины (лекционный курс)» и «Методические рекомендации ПО проведению практических представлены материалы по освоению тем лекционного курса, включающие подробный план лекции по каждой изучаемой теме, материалы по подготовке к практическим занятиям, вопросы для самоконтроля и рекомендации по выполнению самостоятельной работы студентов. В разделе «Методические рекомендации по выполнению расчетно-графических работ (РГР)» размещены требованию к выполнению и оформлению заданий расчетно-графических работ для очной и заочной форм обучения. Пособие содержит также список учебной литературы, заключение и приложения.

1. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ДИСЦИПЛИНЫ (лекционный курс)

Тематический план лекционных занятий (ЛЗ) (3 семестр) представлен в таблице 1.

Таблица 1 – Объем (трудоемкость освоения) и структура ЛЗ

Оовем (грудоемкость освоения) и структура 313
Тема лекционного занятия
Компьютерная графика, геометрическое моделирование и
решаемые ими задачи.
2D-моделирование в графических системах;
3D-моделирование в графических системах
Оформление чертежей. Стандарты Единой системы
конструкторской документации (ЕСКД)
Методы проецирования. Проецирование точки. Эпюр
Монжа. Октанты
Проецирование прямой общего и частного положений.
Следы прямой. Определение натуральной величины
отрезка прямой.
Взаимное положение прямых линий
Проецирование плоскости.
Прямая и точка в плоскости, признаки принадлежности
Взаимное положение прямой и плоскости, двух плоскостей,
двух прямых
Способы преобразования ортогональных проекций
Изображения – виды, разрезы, сечения (ГОСТ 2.305-2008)

Номер темы	Тема лекционного занятия
9	Многогранные поверхности.
	Пересечение многогранников плоскостью, прямой линией.
	Развертки многогранников, способы построения
10	Кривые линии и поверхности. Пересечение кривых
	поверхностей. Развертки кривых поверхностей
11	Аксонометрические проекции

Студенты заочной формы обучения в виде контактной работы изучают темы $3{\text -}10$, а темы $1,\,2,\,11$ изучают самостоятельно.

Тематический план лекционных занятий (ЛЗ) (4 семестр) представлен в таблице 2.

Таблица 2 – Объем (трудоемкость освоения) и структура ЛЗ

таолица 2	Объем (грудоемкость бевоения) и структура 313
Номер темы	Тема лекционного занятия
12	Виды и состав изделий. Виды конструкторских документов.
	Стадии разработки конструкторских документов
13	Резьбы. Основные элементы и параметры резьбы.
	Классификация резьб
14	Стандартные крепежные изделия. Изображения на
	чертежах. Условные обозначения
15	Соединения: разъемные и неразъемные
16	Эскизирование. Выполнение эскиза детали. Элементы
	деталей
17	Сборочные чертежи (СБ) и чертежи общего вида (ВО).
	Деталирование чертежа общего вида.
18	Основные понятия и определения теории зубчатого
	зацепления
19	Схемы. Виды и типы

Студенты заочной формы обучения в виде контактной работы изучают темы 13–18, а темы 12, 19 изучают самостоятельно.

Тема 1. Компьютерная графика, геометрическое моделирование и решаемые ими задачи.

2D-моделирование в графических системах. **3D-**моделирование в графических системах

Ключевые вопросы темы

- 1. Цели и задачи курса «Инженерная компьютерная графика».
- 2. Компьютерная графика, геометрическое моделирование и решаемые ими задачи. Основные принципы работы в графическом пакете КОМПАС. Алгоритмы построения 2D-объектов средствами двухмерной графики. 3D-моделирование в графических системах.

Ключевые понятия: автоматизированная графическая система проектирования КОМПАС; типы графических документов в КОМПАСЕ; элементы интерфейса: графический экран, главное меню, строка закладок документов, инструментальные панели, сервисная панель (панель быстрого доступа), дерево документа; локальная система координат; глобальная система координат; объектные привязки; слои чертежа; тип линии; твердотельное моделирование; создание эскиза; смещенная плоскость; инструментальная панель элементы тела (элемент выдавливания (элемент по сечениям, элемент вращения), вырезать выдавливанием); ассоциативные виды; создание чертежа по модели; стандартные виды с модели; проекционный вид; ориентация модели.

Литература: [3], [8], [13], [14], [29], [32]

Методические рекомендации

Первая тема курса «Инженерная компьютерная графика» направлена на получение у обучающихся представления о базовых понятиях дисциплины, определении места дисциплины в структуре образовательной программы, планируемых результатов освоения дисциплины, возможных рисках освоения дисциплины, знакомит обучающихся с формами текущего и промежуточного контроля.

При изучении данной темы необходимо выяснить, каковы цели и задачи курса «Инженерная компьютерная графика», из каких разделов состоит изучаемая дисциплина.

При рассмотрении второго вопроса необходимо сформировать представление о компьютерной графике, геометрическом моделировании и решаемых ими задачах. Уделить внимание основным принципам работы в графическом пакете КОМПАС. КОМПАС-3D — это система автоматизированного проектирования с возможностями оформления проектной и конструкторской документации согласно стандартам ЕСКД и СПДС. При изучении темы обучающиеся должны усвоить, что КОМПАС-3D — это динамически развивающаяся инженерная система проектирования самых

разнообразных объектов. Основная задача — моделирование изделий с целью существенного сокращения периода проектирования [13]. При изучении данной темы нужно рассмотреть алгоритмы построения 2D-объектов средствами двухмерной графики, а также 3D-моделирование в графических системах.

Вопросы для самоконтроля

- 1. Назовите основные задачи компьютерной графики.
- 2. Какие существуют типы графических документов в КОМПАСЕ?
- 3. Каковы основные элементы графического интерфейса?
- 4. Какие существуют типы объектной привязки?
- 5. Какие общие требования к простановке размеров? Какие типы размеров можно проставлять в КОМПАСЕ?
 - 6. Как отредактировать размерный стиль?
 - 7. Каковы характеристики слоев чертежа в КОМПАСЕ?
 - 8. Каковы особенности 3D-моделирования?
- 9. Как в КОМПАС-3D называется точный чертеж объекта, выполненный по правилам ортогонального проецирования в различных плоскостях проекций, состоящий из плоских графических объектов и используемый для задания формы или траектории перемещения сечения?
- 10. Как при построении чертежа детали в системе КОМПАС-3D называются виды, связанные с моделью?
- 11. Какой стиль линии в КОМПАС-3D используется при построении эскиза?
- 12. Назовите типы трехмерных (пространственных) геометрических моделей в компьютерной графике.
- 13. Какие плоскости проекций в КОМПАС-3D при твердотельном моделировании являются основными плоскостями проекций?

Тема 2. Оформление чертежей. Стандарты Единой системы конструкторской документации (ЕСКД)

Ключевые вопросы темы

- 1. Стандарты Единой системы конструкторской документации (ЕСКД): ГОСТ 2.104-2006 «Основные надписи».
 - 2. ГОСТ 2.301-68 «Форматы».
 - 3. ГОСТ 2.302-68 «Масштабы».
 - 4. ГОСТ 2.303-68 «Линии».
 - 5. ГОСТ 2.304-81 «Шрифты чертежные».
- 6. ГОСТ 2.306-68 «Обозначения графические материалов и правила их нанесения на чертежах».
- 7. ГОСТ 2.316-2008 «Правила нанесения надписей, технических требований и таблиц на графических документах».
 - 8. ГОСТ 2.307-2011 «Нанесение размеров и предельных отклонений».

Ключевые понятия: основная надпись, дополнительная графа, основные форматы, дополнительные форматы, предельные отклонения сторон форматов, натуральный масштаб, масштабы уменьшения, масштабы увеличения, сплошная толстая основная линия, сплошная тонкая линия, сплошная волнистая линия, штриховая линия, штрихпунктирная линия, штрихпунктирная утолщенная линия, разомкнутая линия, сплошная тонкая с изломами линия, штрихпунктирная с двумя точками линия, шрифт типа А, шрифт типа Б, размеры шрифта, штриховка, выносные и размерные линии, размерные числа, предельные отклонения.

Литература: [1], [26].

Методические рекомендации

При изучении темы «Оформление чертежей. Стандарты Единой системы конструкторской документации (ЕСКД)» необходимо уяснить, что основное назначение стандартов ЕСКД — установление единых правил выполнения, оформления и обращения конструкторской документации.

ГОСТ 2.104-2006 «Основные надписи» (первый вопрос темы) устанавливает форму, размеры и порядок заполнения основной надписи и дополнительной графы.

При изучении ГОСТ 2.301-68 «Форматы» следует отметить, что форматы бывают основные и дополнительные. В данном вопросе обратить внимание, в каких случаях целесообразно применять дополнительные форматы и как они обозначаются.

При изучении ГОСТ 2.302-68 «Масштабы» (третий вопрос) необходимо уяснить, что называется масштабом, какие бывают масштабы (натуральный масштаб, масштабы уменьшения, масштабы увеличения); обратить внимание, что размеры на чертежах проставляются действительные и не зависят от масштаба.

ГОСТ 2.303-68 «Линии» (четвертый вопрос) предполагает, что при выполнении чертежей используют линии разных толщины и начертания. Данный стандарт устанавливает начертание и назначение девяти типов линий, которые применяются на чертежах всех отраслей промышленности и строительства.

При изучении пятого вопроса ГОСТ 2.304-81 «Шрифты чертежные» необходимо отметить, что надписи на чертежах и других технических документах должны выполняться стандартным шрифтом. Шрифты бывают двух типов: шрифт типа А и шрифт типа Б.

ГОСТ 2.306 «Обозначения графические материалов и правила их нанесения на чертежах» (шестой вопрос) рассматривает общее графическое обозначение материалов в сечениях (независимо от вида материала) и графические обозначения в зависимости от вида материалов, а также правила нанесения штриховки в сечениях при выполнении чертежей.

При изучении седьмого и восьмого вопросов (ГОСТ 2.316-2008, ГОСТ 2.307-2011) обсуждаются правила нанесения надписей, технических требований и таблиц на графических документах и правила нанесения размеров и предельных отклонений.

Вопросы для самоконтроля

- 1. Какие форматы называют основными?
- 2. Как образуются дополнительные форматы? Какие размеры имеет формат А4х3?
 - 3. Перечислите масштабы увеличения; уменьшения.
 - 4. Какова толщина разомкнутой линии по ГОСТ 2.303-68?
- 5. Какие размеры основной надписи и дополнительной графы по ГОСТ 2.106-2006?
- 6. В каких случаях при выполнении чертежей используется штрихпунктирная тонкая линии (ГОСТ 2.303-68)?
- 7. Каково по ГОСТ 2.306-68 общее графическое обозначение материалов в сечениях независимо от вида материалов?
- 8. Каковы особенности выполнения штриховки группы смежных деталей в сечениях (ГОСТ 2.306-68)?
- 9. На каком расстоянии от линии основного контура по ГОСТ 2.307-2011 на чертежах проводят первую размерную линию?
- 10. Какая линия по ГОСТ 2.303-68 используется для нанесения выносных и размерных линий на чертеже?
 - 11. В чем отличие по ГОСТ 2.304-81 шрифтов типа А и типа Б?

Тема 3. Методы проецирования. Проецирование точки. Эпюр Монжа. Октанты

Ключевые вопросы темы

- 1. Методы проецирования. Свойства центрального и параллельного проецирования.
 - 2. Проецирование точки. Комплексный чертеж точки (эпюр Монжа).
 - 3. Октанты.

Ключевые понятия: проецирующие лучи, центр проецирования, центральное проецирование, параллельное проецирование; ортогональное проецирование; горизонтальная, фронтальная и профильная плоскости проекций, координатные точки A_x , A_y , A_z , линии проекционной связи, проекции точки (горизонтальная, фронтальная, профильная), координаты точки X_A , Y_A , Z_A , точки общего и частного положений, октанты.

Литература: [2], [4], [17], [18], [31].

Методические рекомендации

При рассмотрении первого вопроса необходимо изучить методы проецирования, а также свойства центрального и параллельного проецирования.

При изучении второго и третьего вопросов необходимо усвоить проецирование точки на три взаимно перпендикулярные плоскости проекций: горизонтальную, фронтальную и профильную; освоить составление комплексного чертежа точки (эпюра Монжа точки); рассмотреть понятия точки общего и частного положений, октанты.

Вопросы для самоконтроля

- 1. Назовите методы проецирования.
- 2. Как строится центральная проекция точки?
- 3. В чем заключается метод проецирования, называемый параллельным?
- 4. Какое проецирование называется ортогональным?
- 5. Какими координатами определяется горизонтальная (фронтальная, профильная) проекция точки?
- 6. Какая координата (X, Y или Z) определяет расстояние от точки A до горизонтальной плоскости проекций?
- 7. Какая линия проекционной связи (горизонтальная, вертикальная или ломаная) соединяет фронтальную и профильную проекции точки А?
- 8. Какие знаки имеют координаты X, Y и Z точки, находящейся в I–VIII октантах?
 - 9. Какой октант имеет отрицательное направление всех осей?

Тема 4. Проецирование отрезка прямой общего и частного положений. Следы прямой. Определение натуральной величины отрезка прямой. Взаимное положение прямых линий

Ключевые вопросы темы

- 1. Проецирование прямой линии. Прямые общего положения. Прямые частного положения: прямые уровня и проецирующие прямые. Деление отрезка прямой в данном отношении.
- 2. Следы прямой. Определение следов прямых общего и частного положения.
- 3. Определение натуральной величины отрезка прямой. Метод прямоугольного треугольника.
 - 4. Взаимное положение прямых линий. Метод конкурирующих точек.

Ключевые понятия: прямая общего положения; прямые уровня: горизонтальные, фронтальные профильные; проецирующие прямые: горизонтально-проецирующие, фронтально-проецирующие, профильнопроецирующие; прямоугольного треугольника; следы прямой; метод

параллельные прямые; пересекающиеся прямые; скрещивающиеся прямые; конкурирующие точки.

Литература: [2], [4], [17], [18], [31].

Методические рекомендации

При изучении первого вопроса темы необходимо усвоить проецирование прямой линии на три взаимно перпендикулярные плоскости проекций: горизонтальную, фронтальную и профильную. Рассмотреть классификацию прямых линий: существуют прямые общего положения и прямые частного положения. Прямые частного положения могут быть прямыми уровня (параллельными какой-либо плоскости проекций) и проецирующими прямыми (перпендикулярными какой-либо плоскости проекций).

При рассмотрении второго вопроса необходимо изучить понятие «следы прямой», а также освоить определение следов прямых общего и частного положений на комплексном чертеже.

При изучении третьего вопроса темы следует изучить метод прямоугольного треугольника для определения натуральной величины отрезка прямой общего положения.

В четвертом вопросе необходимо рассмотреть взаимное положение прямых линий – прямые в пространстве могут быть параллельны, пересекаться и скрещиваться, а также изучить метод конкурирующих точек для определения видимости элементов на чертеже.

- 1. Какие прямые называют прямыми общего положения?
- 2. Какие прямые относятся к прямым уровня?
- 3. В каком случае прямая проецируется в натуральную величину на фронтальную плоскость проекций?
- 4. Какая прямая проецируется в точку на горизонтальную плоскость проекций?
 - 5. Что называется следом прямой линии на плоскости проекций?
- 6. Какая координата равна нулю: а) для горизонтального следа прямой; б) для фронтального следа прямой; в) для профильного следа прямой.
 - 7. Какие следы имеет фронтальная прямая?
- 8. Через сколько октантов проходит горизонтально-проецирующая прямая?
- 9. Как построить на чертеже прямоугольные треугольники для определения длины отрезка прямой линии общего положения и ее углов с плоскостями проекций π_1 , π_2 и π_3 ?
- 10. Как разделить на чертеже отрезок прямой линии в заданном отношении?
- 11. Какие прямые называются параллельными, пересекающимися, скрещивающимися?

12. В чем сущность метода конкурирующих точек?

Тема 5. Проецирование плоскости. Прямая и точка в плоскости, признаки принадлежности

Ключевые вопросы темы

- 1. Способы задания плоскости на чертеже. Следы плоскости.
- 2. Положения плоскости относительно плоскостей проекций.

Плоскости общего положения. Плоскости частного положения: плоскости уровня и проецирующие плоскости.

- 3. Проведение проецирующей плоскости через прямую линию.
- 4. Прямая и точка в плоскости, признаки принадлежности.
- 5. Прямые особого положения в плоскости: горизонталь, фронталь и профильная прямая. Линии наибольшего наклона к плоскостям проекций.

Ключевые понятия: плоскость общего положения; плоскости уровня: горизонтальные, фронтальные и профильные; проецирующие плоскости: горизонтально-проецирующие, фронтально-проецирующие, профильно-проецирующие; следы плоскости; признаки принадлежности точки и прямой плоскости; горизонталь, фронталь, профильная прямая; линии наибольшего наклона к плоскостям проекций; линия ската плоскости.

Литература: [2], [4], [17], [18], [31].

Методические рекомендации

При изучении первого вопроса темы необходимо рассмотреть способы задания плоскости на чертеже. Выяснить, каким образом можно перейти от одного способа задания плоскости на чертеже к другим способам.

Во втором вопросе необходимо рассмотреть классификацию плоскостей: существуют плоскости общего положения и плоскости частного положения. Плоскости частного положения ΜΟΓΥΤ быть плоскостями какой-либо проекций) (параллельными плоскости И проецирующими плоскостями (перпендикулярными какой-либо плоскости проекций). Также обратить внимание на TO, как рассматриваемые проецируются на комплексном чертеже.

В третьем вопросе темы изучаются свойства проецирующих плоскостей, рассматривается проведение проецирующей плоскости через прямую линию.

В четвертом и пятом вопросах следует изучить признаки принадлежности точки и прямой плоскости, а также освоить построение прямых особого положения в плоскости: горизонтали, фронтали и профильной прямой. Также необходимо уделить внимание построению линий наибольшего наклона к плоскостям проекций.

Вопросы для самоконтроля

- 1. Назовите способы задания плоскости.
- 2. Какую плоскость называют плоскостью общего положения?
- 3. Какие плоскости называются проецирующими?
- 4. Что называют следом плоскости на плоскости проекций?
- 5. Где располагаются фронтальная проекция горизонтального следа и горизонтальная проекция фронтального следа плоскости?
- 6. Как провести на чертеже через прямую общего положения горизонтально-проецирующую плоскость?
- 7. Как определить на чертеже принадлежность прямой данной плоскости?
 - 8. В каком случае точка принадлежит плоскости?
 - 9. Что такое фронталь, горизонталь и линия ската плоскости?
- 10. Как определить с помощью линии ската плоскости угол наклона этой плоскости к плоскости проекций π_1 ?

Тема 6. Взаимное положение прямой и плоскости, двух плоскостей, двух прямых

Ключевые вопросы темы

- 1. Признак параллельности двух плоскостей. Построение на чертеже взаимно параллельных плоскостей.
- 2. Признак параллельности прямой и плоскости. Построение на чертеже прямой, параллельной заданной плоскости.
- 3. Пересечение прямой линии с плоскостью, перпендикулярной к одной или к двум плоскостям проекций (частный случай).
- 4. Пересечение прямой линии с плоскостью общего положения. Алгоритм определения точки пересечения прямой с плоскостью, его реализация на эпюре. Определение видимости.
- 5. Методы построения линии пересечения плоскостей: а) метод вспомогательных секущий плоскостей; б) построение линии пересечения двух плоскостей по точкам пересечения прямых линий с плоскостью. Определение видимости плоскостей.
- 6. Теорема о проецировании прямого угла. Построение взаимно перпендикулярных прямой и плоскости; двух прямых; двух плоскостей.

Ключевые понятия: параллельные плоскости; пересекающиеся плоскости; видимость плоскостей; проецирование прямого угла; перпендикулярные плоскости; метод вспомогательных секущих плоскостей; плоскостипосредники; взаимно перпендикулярные прямая и плоскость; взаимно перпендикулярные плоскости.

Литература: [2], [4], [17], [18], [21], [24], [31].

Методические рекомендации

При рассмотрении первого и второго вопросов необходимо изучить признаки параллельности двух прямых, прямой и плоскости. Рассмотреть построение на комплексном чертеже взаимно параллельных плоскостей и прямой, параллельной заданной плоскости.

Изучая третий и четвертый вопросы темы, следует усвоить алгоритм определения точки пересечения прямой линии с плоскостью, перпендикулярной к одной или к двум плоскостям проекций (частный случай) и с плоскостью общего положения. Рассмотреть реализацию этого алгоритма на комплексном чертеже (эпюре), также освоить метод конкурирующих точек для определения видимости прямой.

В пятом вопросе изучаемой темы необходимо рассмотреть методы построения линии пересечения плоскостей: а) метод вспомогательных секущий плоскостей; б) построение линии пересечения двух плоскостей по точкам пересечения прямых линий с плоскостью, а также углубить знания по методу конкурирующих точек для определения видимости плоскостей.

При изучении шестого вопроса темы следует обратить особое внимание на теорему о проецировании прямого угла, изучить признаки перпендикулярности прямой и плоскости, двух прямых, двух плоскостей и рассмотреть построение на комплексном чертеже взаимно перпендикулярных прямых и плоскостей.

- 1. В каком случае две плоскости взаимно параллельны? Как провести через точку плоскость, параллельную заданной плоскости?
- 2. Как взаимно располагаются одноименные следы двух параллельных между собой плоскостей?
 - 3. Сформулируйте признак параллельности прямой линии и плоскости?
 - 4. В каком случае две прямые взаимно перпендикулярны?
- 5. В каком случае прямая перпендикулярна плоскости? Как на чертеже располагаются проекции перпендикуляра к плоскости?
- 6. Назовите признак перпендикулярности двух плоскостей. Как построить взаимно перпендикулярные плоскости?
 - 7. Как установить взаимное положение прямой и плоскости?
 - 8. Как определить видимость при пересечении прямой с плоскостью?
- 9. В чем заключается метод построения линии пересечения двух плоскостей с помощью вспомогательных секущих плоскостей (плоскостей-посредников)?
- 10. Каков алгоритм определения линии пересечения плоскостей по точкам пересечения прямых одной плоскости с другой плоскостью?

Тема 7. Способы преобразования ортогональных проекций

Ключевые вопросы темы

- 1. Способ замены плоскостей проекций.
- 2. Способы вращения. Элементы вращения.
- 2.1 Способ вращения вокруг оси, перпендикулярной к плоскости проекций.
- 2.2 Способ вращения вокруг оси, параллельной плоскости проекций (вращение вокруг линии уровня).
- 2.3 Способ плоскопараллельного перемещения (способ безосного вращения).
 - 2.4 Способ вращения вокруг следа плоскости (способ совмещения).

Ключевые понятия: преобразование чертежа; дополнительная плоскость проекций; элементы вращения; ось вращения; плоскость вращения; центр вращения; радиус вращения; плоскопараллельное перемещение; плоскости перемещения; совмещенный горизонтальный (фронтальный)след.

Литература: [2], [4], [17–19], [31].

Методические рекомендации

При изучении данной темы курса необходимо обратить особое внимание на сущность и назначение способов преобразования чертежа. Следует отметить, что задание прямых линий и плоских фигур в частных положениях относительно плоскостей проекций значительно упрощает построения и решение задач, а иногда позволяет получить ответ или непосредственно по данному чертежу, или при помощи простейших построений. Рассматриваемые способы преобразования проекций дают возможность переходить от общих положений прямых линий и плоских фигур в системе π_1/π_2 к частным в той же системе или в дополнительной.

При изучении первого и второго вопросов темы необходимо освоить способ замены плоскостей проекций и способы вращения: способ вращения вокруг оси, перпендикулярной к плоскости проекций, способ вращения вокруг оси, параллельной плоскости проекций (вращение вокруг линии уровня), способ плоскопараллельного перемещения (способ безосного вращения), способ вращения вокруг следа плоскости (способ совмещения). Необходимо научиться определять натуральную величину прямых и плоскостей, решать позиционные и метрические задачи.

- 1. В чем заключается способ замены плоскостей проекций?
- 2. Сколько преобразований необходимо выполнить, чтобы перевести плоскость общего положения в проецирующую плоскость?

- 3. При замене плоскостей проекций каким образом необходимо провести вспомогательную плоскость проекций относительно оставшейся плоскости?
- 4. Как найти длину отрезка прямой линии и углы этой прямой с плоскостями π_1 и π_2 , проводя новые плоскости проекций?
- 5. Как найти расстояние: а) от точки до прямой; б) от точки до плоскости; в) между двумя параллельными прямыми; г) между двумя скрещивающимися прямыми; д) между двумя параллельными плоскостями?
 - 6. Какова сущность способов вращения?
- 7. Как строятся: а) плоскость вращения точки; б) центр вращения точки; в) радиус вращения точки?
 - 8. Какие способы относят к способам вращения?
- 9. Как найти длину отрезка прямой линии и угол этой прямой с плоскостью проекций, применяя способ вращения?
 - 10. Как найти величину двугранного угла?

Тема 8. Изображения – виды, разрезы, сечения (ГОСТ 2.305-2008)

Ключевые вопросы темы

- 1. Виды (ГОСТ 2.305-2008): основные, дополнительные, местные.
- 2. Разрезы (ГОСТ 2.305-2008): классификация, выполнение и оформление.
- 3. Сечения (ГОСТ 2.305-2008): классификация, выполнение и оформление.
 - 4. Выносные элементы.
 - 5. Условности и упрощения на чертежах.

Ключевые понятия: вид (предмета); основные виды (вид спереди (главный вид), вид сверху, вид слева, вид справа, вид снизу, вид сзади), дополнительный вид, местный вид, разрез (предмета), горизонтальный разрез, вертикальный (фронтальный и профильный) разрез, наклонный разрез, простой разрез, сложный разрез, ступенчатый разрез, ломаный разрез, продольный разрез, поперечный разрез, местный разрез, сечение (предмета), вынесенное сечение, наложенное сечение, выносной элемент.

Литература: [1], [33].

Методические рекомендации

Изучение данной темы предполагает обсуждение основных положений ГОСТ 2.305-2008 «Изображения – виды, разрезы, сечения».

В первом вопросе необходимо изучить, что называется видом (предмета), рассмотреть классификацию видов (основные, дополнительные, местные). Следует уяснить правила выполнения и оформления видов на чертежах.

При рассмотрении второго вопроса предполагается ознакомление с понятием разреза (предмета), а также изучение классификации разрезов: по расположению относительно горизонтальной плоскости проекций (горизонтальные, вертикальные (фронтальные и профильные), наклонные разрезы), по количеству секущих плоскостей (простые и сложные (ступенчатые и ломаные)), продольные, поперечные, местные. Обучающиеся должны получить представление о выполнении и оформлении разрезов на чертежах.

В третьем вопросе необходимо обсудить, что называется сечением и какова классификация сечений (вынесенные и наложенные), особое внимание уделить правилам выполнения и оформления сечений на чертежах.

В четвертом вопросе требуется рассмотреть, в каких случаях применяют выносные элементы и как их оформляют на чертежах.

При рассмотрении пятого вопроса следует обратить внимание, что при выполнении чертежей используют ряд упрощений и условностей, которые, в ряде случаев, значительно сокращают время разработки графического документа.

Вопросы для самоконтроля

- 1. Что называется видом? Назовите классификацию видов. Перечислите основные виды.
- 2. Какое изображение называется разрезом? Приведите классификацию разрезов.
 - 3. Что называется местным видом?
 - 4. В каких случаях выполняют дополнительные виды?
 - 5. Какие разрезы называют сложными?
 - 6. В каких случаях на чертежах не подписывают разрезы?
 - 7. Что называется сечением? Какова классификация сечений?
 - 8. Каковы особенности оформления наложенных сечений?
 - 9. В каких случаях целесообразно выполнение выносных элементов?
- 10. Укажите условности и упрощения по ГОСТ 2.305-2008, применяемые на чертежах.

Тема 9. Многогранные поверхности. Пересечение многогранников плоскостью, прямой линией. Развертки многогранников, способы построения

Ключевые вопросы темы

- 1. Многогранные поверхности: виды, задание на эпюре. Точка на поверхности.
 - 2. Пересечение многогранников плоскостью. Построение сечения.
- 3. Пересечение многогранников прямой линией. Алгоритм определения точек пересечения прямой с поверхностью, его реализация на эпюре.

- 4. Развертки многогранников, способы построения.
 - 4.1 Способ построения нормального сечения.
 - 4.2 Способ треугольников (способ триангуляции).
 - 4.3 Способ раскатки.

Ключевые понятия: многогранные поверхности; призмы; пирамиды, тела Платона (тетраэдр, гексаэдр, октаэдр, додекаэдр, икосаэдр); признак развертываемости; развертка поверхности; способ триангуляции (треугольников); способ построения нормального сечения; способ раскатки.

Литература: [2], [4], [17], [18], [22], [23], [27], [31].

Методические рекомендации

Данная тема курса дисциплины «Инженерная компьютерная графика» позволит обучающимся получить представление о проецировании многогранных поверхностей.

При изучении первого вопроса необходимо выяснить, какие поверхности относятся к многогранным поверхностям и как эти поверхности задаются на комплексном чертеже. Также важно усвоить правила построения точек на поверхностях призмы и пирамиды.

Во втором вопросе следует обратить внимание на алгоритм построения сечений многогранников (призмы и пирамиды) плоскостью.

При рассмотрении третьего вопроса необходимо усвоить алгоритм определения точек пересечения прямой линии с многогранной поверхностью и обсудить вопрос видимости прямой.

Изучение четвертого вопроса позволит обучающимся получить представление о способах построения разверток многогранных поверхностей — о способе треугольников (триангуляции), способе построения нормального сечения, способе раскатки, а также обсудить реализацию этих способов на комплексном чертеже.

- 1. Какие поверхности относят к многогранным поверхностям?
- 2. Какие признаки позволяют установить, что на данном чертеже изображена призма?
 - 3. Чем задается поверхность пирамиды?
- 4. Как строятся точки пересечения призмы или пирамиды прямой линией (точки входа и выхода)?
- 5. Как строится фигура, получаемая при пересечении призмы или пирамиды плоскостью?
 - 6. Назовите признак развертываемости поверхности.
- 7. Какую развертку имеют многогранные поверхности точную, приближенную или условную?
 - 8. Назовите способы построения разверток многогранных поверхностей.

- 9. В чем сущность способа построения нормального сечения?
- 10. Какова последовательность построения развертки многогранной поверхности способом триангуляции (треугольников)?
 - 11. Как строится развертка наклонной призмы способом раскатки?

Тема 10. Кривые линии и поверхности Пересечение кривых поверхностей. Развертки кривых поверхностей

Ключевые вопросы темы

- 1. Кривые линии и их классификация. Определение типа, длины кривой. Пространственные кривые линии. Винтовые линии, их развертки.
- 2. Кривые поверхности. Классификация, способы задания. Линейчатые поверхности. Определители. Точка на поверхности. Нелинейчатые поверхности. Поверхности вращения.
- 3. Пересечение кривых поверхностей прямой линией. Алгоритм построения точек пересечения прямой с поверхностью, его реализация на эпюре.
- 4. Построение линии взаимного пересечения поверхностей с применением вспомогательных секущих плоскостей. Применение способа вспомогательных секущих сфер для построения линии пересечения кривых поверхностей.
 - 5. Развертки кривых поверхностей (точные, приближенные, условные).

Ключевые понятия: плоские и пространственные кривые линии; цилиндрические винтовые линии одинакового уклона (гелисы); конические винтовые линии; способы задания поверхности (аналитический, каракасный, кинематический); определитель поверхности; образующая и направляющая;

линейчатые развертываемые поверхности с одной направляющей; неразвертываемые поверхности с линейчатые ДВУМЯ направляющими (поверхности с плоскостью параллелизма – поверхности Каталана); линейчатые неразвертываемые поверхности с тремя направляющими; нелинейчатые поверхности с образующей постоянного вида (трубчатые поверхности); нелинейчатые поверхности с образующей переменного вида (циклические поверхности); поверхности вращения (общего вида и закономерные); винтовые поверхности; метод вспомогательных секущих плоскостей; вспомогательных секущих сфер; точные, приближенные и условные развертки кривых поверхностей.

Литература: [2], [4], [16–18], [31].

Методические рекомендации

Изучение данной темы позволит обучающимся получить представление о проецировании кривых линий и поверхностей.

При рассмотрении первого вопроса темы необходимо обсудить классификацию кривых линий, представление плоских и пространственных кривых на комплексном чертеже, а также рассмотреть решение типовых задач.

Во втором вопросе изучаемой темы следует обратить внимание на способы задания поверхностей: аналитический, каркасный, кинематический. Также необходимо усвоить основные понятия: определитель поверхности, образующая и направляющая. Проанализировать классификацию поверхностей по типу образующей: линейчатые (образующая — прямая линия) и нелинейчатые (образующая — кривая линия). Также следует рассмотреть классификацию линейчатых поверхностей — поверхности развертываемые (с одной направляющей) и неразвертываемые (с двумя направляющими (с плоскостью параллелизма), с тремя направляющими). Указать определители этих поверхностей, обсудить построение точек на поверхности.

В третьем вопросе следует обсудить алгоритм определения точек пересечения кривых поверхностей прямой линией и вопрос видимости элементов чертежа.

При рассмотрении четвертого вопроса необходимо сформировать представление о методах построения линии пересечения поверхностей с помощью вспомогательных секущих плоскостей вспомогательных секущих сфер. Обратить внимание, при каких условиях возможно применение этих методов при решении задач.

В пятом вопросе следует рассмотреть способы построения разверток кривых поверхностей, а также реализацию на комплексном чертеже.

- 1. Какие кривые линии относят к плоским кривым, а какие к пространственным кривым линиям?
- 2. Как на комплексном чертеже проецируется цилиндрическая винтовая линия; коническая винтовая линия?
 - 3. Как определить длину кривой линии?
 - 4. Перечислите способы задания поверхностей.
 - 5. Какова классификация поверхностей по типу образующей?
 - 6. Что является определителем поверхности?
- 7. Какие поверхности относят к линейчатым развертываемым поверхностям; к линейчатым неразвертываемым поверхностям?
- 8. Какие поверхности относят к нелинейчатым поверхностям с постоянной образующей; к нелинейчатым поверхностям с переменной образующей?
- 9. Какова последовательность определения на комплексном чертеже точек пересечения прямой линии с кривой поверхностью?
- 10. Какие методы существуют для определения линии пересечения поверхностей?

- 11. При выполнении каких условий возможно применение метода вспомогательных секущих сфер для определения линии пересечения поверхностей?
 - 12. Какие кривые поверхности имеют точную развертку?
 - 13. Какова последовательность построения приближенных разверток?
 - 14. Для каких кривых поверхностей строят условную развертку?

Тема 11. Аксонометрические проекции

Ключевые вопросы темы

- 1. Сущность аксонометрического проецирования.
- 2. Основная теорема аксонометрии: теорема К. Польке-Г. Шварца.

Основное уравнение аксонометрии.

- 3. Классификация аксонометрических проекций.
- 4. Прямоугольные аксонометрические проекции. Построение окружности в аксонометрии.
 - 5. Косоугольные аксонометрические проекции.

Ключевые понятия: плоскость аксонометрических проекций (картинная плоскость); направление проецирования; аксонометрические масштабы; коэффициенты искажения по осям; приведенные коэффициенты искажения; аксонометрическая проекция точки; вторичная проекция точки; изометрия, диметрия, триметрия; прямоугольные аксонометрические проекции; косоугольные аксонометрические проекции; эллипс, овал.

Литература: [2], [4], [31].

Методические рекомендации

При изучении данной темы курса необходимо обратить внимание на сущность аксонометрического проецирования. Усвоить термины: картинная плоскость (плоскость аксонометрических проекций); коэффициенты искажения по осям; аксонометрическая проекция точки; вторичная проекция точки.

При рассмотрении второго вопроса необходимо изучить основную теорему аксонометрии — теорему К.Польке– Γ . Шварца — и основное уравнение аксонометрии.

В третьем вопросе следует рассмотреть классификацию аксонометрических проекций: по направлению проецирования (прямоугольные и косоугольные) и по коэффициентам искажения (изометрия, диметрия, триметрия).

При изучении четвертого и пятого вопросов следует обратить внимание на коэффициенты искажения и величины углов между аксонометрическими осями для прямоугольных и косоугольных аксонометрий. Обсудить построение окружности в прямоугольной изометрии.

Вопросы для самоконтроля

- 1. В чем заключается сущность аксонометрического проецирования?
- 2. Какова классификация аксонометрических проекций?
- 3. В чем заключается основная теорема аксонометрии; основное уравнение аксонометрии?
- 4. Какие пять видов аксонометрических проекций рекомендует использовать ГОСТ 2.317-2011?
- 5. Каковы коэффициенты искажения и величины углов между аксонометрическими осями для прямоугольной изометрии и прямоугольной диметрии?
- 6. Назовите коэффициенты искажения и величины углов между аксонометрическими осями для фронтальной косоугольной изометрии и фронтальной косоугольной диметрии?
- 7. Как определить координаты точек, заданных в прямоугольной аксонометрической проекции на поверхности: а) цилиндра вращения; б) конуса вращения?
- 8. Какова последовательность построения окружности в прямоугольной изометрии?

Тема 12. Виды и состав изделий. Виды конструкторских документов. Стадии разработки конструкторских документов

Ключевые вопросы темы

- 1. Виды и состав изделий (ГОСТ 2.101-2016). Унифицированное изделие, оригинальное изделие, деталь, сборочная единица, комплекс, комплект.
- 2. Виды и комплектность конструкторских документов (ГОСТ 2.102-2013). Чертеж детали. Спецификация. Сборочный чертеж. Чертеж общего вида. Схема.
- 3. Стадии разработки конструкторской документации (ГОСТ 2.103-2013). Проектные документы (техническое задание, техническое предложение, эскизный проект, технический проект) и рабочие документы (рабочая документация).

Ключевые понятия: унифицированное изделие, оригинальное изделие, деталь, сборочная единица, комплекс, комплект; виды конструкторских документов, комплектность конструкторских документов; чертеж детали, спецификация, сборочный чертеж, чертеж общего вида, схема; стадии разработки конструкторской документации; проектные документы (техническое задание, техническое предложение, эскизный проект, технический проект), рабочие документы (рабочая документация).

Литература: [1], [7], [15], [33].

Методические рекомендации

При изучении первого вопроса темы необходимо ознакомиться с основными положениями ГОСТ 2.101-2016. Уяснить, что называется изделием, какие бывают виды изделий (деталь, сборочная единица, комплекс, комплект). Усвоить понятия «унифицированное изделие», «оригинальное изделие».

При рассмотрении второго вопроса необходимо изучить виды и комплектность конструкторских документов на изделия (ГОСТ 2.102-2013). Следует обратить внимание, что к конструкторским документам относят которые в графические и текстовые документы, отдельности устройство изделия совокупности определяют состав И необходимые данные для его разработки или изготовления, контроля, приемки, эксплуатации и ремонта. При изучении этого вопроса уделить внимание понятиям чертеж детали, спецификация, сборочный чертеж, чертеж общего вида, схема.

В третьем вопросе темы рассматриваются стадии разработки конструкторской документации (ГОСТ 2.103-2013): техническое задание, техническое предложение, эскизный проект, технический проект, изучается рабочая конструкторская документация, а также содержание этих работ.

Вопросы для самоконтроля

- 1. Что называется изделием?
- 2. Перечислите виды изделий.
- 3. Назовите виды конструкторских документов.
- 4. Что называется чертежом детали?
- 5. Какие конструкторские документы относятся к основным?
- 6. Назовите стадии разработки конструкторской документации.

Тема 13. Резьбы. Основные элементы и параметры резьбы. Классификация резьб

Ключевые вопросы темы

- 1. Основные элементы и параметры резьбы.
- 2. Изображение и обозначение резьбы (ГОСТ 2.311-68).
- 3. Классификация резьб. Цилиндрические и конические резьбы. Крепежные и ходовые резьбы. Специальные резьбы.

Ключевые понятия: профиль резьбы; угол профиля резьбы; шаг резьбы; ход резьбы; однозаходная и многозаходная резьба; наружный, внутренний и средний диаметры резьбы; номинальный диаметр резьбы; длина резьбы; сбег резьбы; фаска; условное обозначение резьбы; крупный шаг резьбы; мелкий шаг резьбы; цилиндрические и конические резьбы; метрическая, дюймовая, трубная, круглая резьбы; крепежные резьбы; трапецеидальная, упорная, прямоугольная резьбы; ходовые (кинематические) резьбы; специальные резьбы.

Литература: [1], [7], [10], [15], [20], [33].

Методические рекомендации

При изучении первого вопроса данной темы необходимо рассмотреть основные элементы и параметры резьбы: ось резьбы, профиль резьбы, боковая сторона резьбы, угол профиля резьбы, наружный, внутренний, средний диаметр резьбы, номинальный диаметр резьбы, шаг и ход резьбы.

Во втором вопросе следует изучить основные положения ГОСТ 2.311-68 «Изображение резьбы». Необходимо уяснить правила изображения наружной и внутренней резьбы, а также рассмотреть условные обозначения резьбы на чертежах.

В третьем вопросе изучаемой темы необходимо сформировать представление о классификации резьб: по эксплуатационному назначению, по форме поверхности, по расположению на детали, по форме профиля, по направлению винтового выступа, по единице измерения, по числу заходов. Рассмотреть примеры условного обозначения крепежных резьб (метрической, дюймовой, трубной и круглой), ходовых резьб (трапецеидальной, упорной, прямоугольной) и специальных резьб.

Вопросы для самоконтроля

- 1. Что называется резьбой?
- 2. Каковы основные элементы и параметры резьбы?
- 3. Какой диаметр называют номинальным диаметром резьбы?
- 4. Что называют шагом резьбы?
- 5. Что называют ходом резьбы?
- 6. Как изображают резьбу на стержне (наружную резьбу) и резьбу в отверстии (внутреннюю резьбу)?
 - 7. Какие бывают резьбы по форме профиля резьбы?
- 8. Как классифицируются резьбы по направлению винтовой поверхности?
 - 9. Какова классификация резьбы по форме поверхности?
 - 10. Какие бывают резьбы по назначению?
 - 11. Какие резьбы относят к специальным резьбам?

Тема 14. Стандартные крепежные изделия. Изображения на чертежах. Условные обозначения

Ключевые вопросы темы

- 1. Стандартные крепежные изделия.
- 2. Изображение болта. Варианты исполнений. Условное обозначение болта.
 - 3. Изображение и условное обозначение гайки.
 - 4. Изображение и условное обозначение шайбы.

5. Шпильки. Классификация шпилек. Изображение и обозначение шпильки. Сверленое и нарезанное гнездо под шпильку.

Ключевые понятия: стандартные крепежные изделия; болт; варианты исполнений; гайка; шайба; шпильки фланцевые (двусторонние) и общего применения (односторонние и двусторонние); ввинчиваемый конец шпильки; гаечный конец шпильки; сверленое и нарезанное гнездо под шпильку; условное обозначение стандартного крепежного изделия.

Литература: [1], [7], [10], [15], [20], [33].

Методические рекомендации

При освоении данной темы курса необходимо сформировать представление о стандартных крепежных изделиях, их применении в промышленности.

Во втором вопросе темы следует обратить внимание на изображение на чертеже болта, рассмотреть варианты исполнения болтов и примеры условного обозначения болта.

В третьем и четвертом вопросах темы необходимо изучить стандартные гайки и шайбы, обратить внимание на их изображение на чертежах, варианты исполнений, а также на условные обозначения гаек и шайб на чертежах.

При изучении пятого вопроса следует получить представление – шпильке, изделии являющейся одной стандартном крепежном соединительных деталей разъемного соединения. Необходимо проанализировать классификацию шпилек, a также рассмотреть конструкцию. Уделить внимание изображению на чертежах односторонних шпилек общего применения и их условному обозначению. Рассмотреть последовательность выполнения сверленого и нарезанного гнезда под шпильку.

- 1. Какие резьбовые изделия относятся к стандартным?
- 2. Какое резьбовое изделие называют болтом?
- 3. Что означает в условном обозначении Болт 2M20x1,5x100 ГОСТ 7805-70 цифра 2?
 - 4. Какие возможны варианты исполнений для болта?
 - 5. Какие возможны исполнения у гайки?
 - 6. Для чего предназначена шайба?
 - 7. Каким образом определяется длина ввинчиваемой части шпильки?
 - 8. От каких параметров зависит длина гаечного конца шпильки?
- 9. Как определяется диаметр сверленого отверстия при конструировании гнезда под шпильку?
- 10. Какова длина сверленой части глухого отверстия при конструировании гнезда под шпильку?
 - 11. Как определяется длина нарезанной части гнезда под шпильку?

Тема 15. Соединения: разъемные и неразъемные

Ключевые вопросы темы

- 1. Соединения разъемные и неразъемные.
- 2. Резьбовые соединения. Изображение соединений наружной и внутренней резьбы.
- 3. Болтовое соединение. Изображение болтового соединения: по действительным размерам, упрощенное и условное.
- 4. Шпилечное соединение. Изображение шпилечного соединения: по действительным размерам, упрощенное и условное.
- 5. Сварные соединения. Типы соединений. Условные изображения и обозначения швов сварных соединений (ГОСТ 2.312-72). Обозначение паяных и склеиваемых швов.

Ключевые понятия: разъемные и неразъемные соединения; изображение болтового соединения по действительным размерам; упрощенное изображение болтового соединения; условное изображение болтового изображение шпилечного действительным размерам; соединения ПО упрощенное изображение шпилечного соединения; условное изображение шпилечного соединения; изображение сварного шва; условное обозначение сварного шва; катет шва; типы соединений; способ сварки.

Литература: [1], [7], [10], [11], [15], [20], [33].

Методические рекомендации

При изучении темы необходимо уяснить, что соединения бывают разъемными (повторная сборка и разборка которых происходит без нарушения целостности составных частей изделия) и неразъемными (соединения, которые нельзя разобрать, не нарушив деталей или скрепляющих их элементов).

Во втором вопросе рассматриваются разъемные резьбовые соединения. Необходимо уделить особое внимание правилу изображения соединений наружной и внутренней резьбы.

В третьем и четвертом вопросах требуется уяснить, что называется болтовым и шпилечным соединениями, в каких случаях они используются. Изучить как эти соединения изображаются на чертежах по действительным размерам, упрощенно и условно.

Пятый вопрос темы позволит обучающимся получить представление о неразъемном соединении — сварном. При освоении этой темы необходимо проанализировать типы соединений: стыковое, нахлесточное, тавровое, угловое и ознакомиться с условными изображениями и обозначениями швов сварных соединений (ГОСТ 2.312-72). Также при изучении темы следует уяснить, как на чертежах изображаются и обозначаются паяные и склеиваемые швы.

Вопросы для самоконтроля

- 1. Какие соединения называют разъемными?
- 2. Какие соединения называют болтовыми; шпилечными?
- 3. Какова последовательность выполнения изображения болтового соединения по действительным размерам?
- 4. Какие упрощения принимают при изображении болтового соединения упрощенно?
- 5. Какие упрощения принимают при изображении шпилечного соединения упрощенно?
- 6. В каких случаях допускается изображать крепежные соединения условно?
- 7. Какие соединения называют неразъемными? Каким образом осуществляется соединение деталей в таких случаях?
 - 8. Перечислите типы сварных швов.
- 9. Какие линии используются при изображении на чертежах видимого и невидимого сварных швов?
 - 10. Какие позиции включает условное обозначение сварного шва?

Тема 16. Эскизирование. Выполнение эскиза детали. Элементы деталей

Ключевые вопросы темы

- 1. Эскиз детали. Группы деталей.
- 2. Последовательность выполнения эскиза детали. Выбор главного вида детали и количества изображений.
 - 3. Особенности выполнения эскизов литых деталей.
 - 4. Элементы деталей (стандартные и нестандартные).

Ключевые понятия: эскизирование; группа стандартных деталей; группа деталей со стандартным изображением; группа оригинальных деталей; технология изготовления детали; литые детали; глазомерный масштаб; конструкторская технологическая база; измерительные приборы И инструменты: кронциркуль, нутромер, резьбомер, шаблон радиусный, штангенциркуль; фаски; галтели; центровые отверстия; рифления; лыски; шлицы; бобышки (приливы); проточки (канавки); шпоночные пазы; шлицы.

Литература: [1], [7], [15], [20], [33].

Методические рекомендации

При рассмотрении темы необходимо ознакомиться с понятием «эскиз детали», изучить, в каких случаях выполняют эскизы деталей, проанализировать, какие группы деталей существуют (стандартные детали, детали со стандартным изображением, оригинальные детали).

Во втором вопросе следует уяснить последовательность выполнения эскиза оригинальной детали. Обратить особое внимание на выбор главного вида и количества изображений эскизируемой детали, получить представление об измерительных приборах и инструментах: кронциркуле, нутромере, резьбомере, шаблоне радиусном.

При освоении третьего вопроса темы необходимо выявить, какими особенностями обладают литые детали и как эти особенности отображаются при выполнении чертежей.

Изучение четвертого вопроса темы позволит обучающимся получить представление о классификации элементов деталей. Обратить внимание, что элементы деталей могут быть стандартными (к ним относятся фаски, галтели, проточки (канавки), рифления, центровые отверстия, шпоночные пазы) и нестандартными (буртики, бобышки, приливы). Также необходимо рассмотреть особенности изображения этих элементов на чертежах.

Вопросы для самоконтроля

- 1. Какой чертеж называется эскизом?
- 2. В каких случаях выполняют эскизы?
- 3. Какие группы деталей существуют?
- 4. Как выбирается главный вид детали и число изображений при выполнении эскиза детали?
 - 5. Какова последовательность выполнения эскиза?
- 6. Перечислите характерные особенности литых деталей при выполнении эскиза?
- 7. Какие измерительные инструменты используют при обмере детали при выполнении эскиза?
 - 8. Какие элементы деталей относят к стандартным?
 - 9. Какие элементы деталей встречаются, как правило, на валах?
 - 10. Что называют лыской и как лыска изображается на чертежах?
- 11. Какое количество изображений требуется для выявления на чертеже призматического шпоночного паза; сегментного шпоночного паза?
- 12. Какие бывают рифления? Как рифления изображаются и обозначаются на чертежах?

Тема 17. Сборочные чертежи (СБ) и чертежи общего вида (ВО). Деталирование чертежа общего вида

Ключевые вопросы темы

- 1. Чертеж общего вида (BO). Выбор главного вида и количества изображений. Нанесение размеров на чертеже. Номера позиций. Таблица составных частей изделия.
- 2. Сборочный чертеж (СБ). Выбор главного вида и количества изображений. Спецификация.

- 3. Условности и упрощения на чертежах общего вида и сборочных чертежах.
 - 4. Изображение уплотнительных устройств.
 - 5. Деталирование чертежа общего вида (ВО).

Ключевые понятия: сборочная единица; чертеж общего вида (ВО); номера позиций; габаритные размеры, установочные размеры, присоединительные размеры; таблица составных частей изделия; изображение соседних изделий («обстановка»); сборочный чертеж (СБ); спецификация; разделы спецификации; уплотнительные устройства, сальниковые устройства.

Литература: [1], [7], [15], [20], [33].

Методические рекомендации

При изучении первого и второго вопросов темы необходимо уяснить, какое изделие называют сборочной единицей и какие документы называются чертежом общего вида (ВО) и сборочным чертежом (СБ). Следует обратить особое внимание при составлении этих чертежей на выбор главного вида и количества изображений. Следует выяснить, какие размеры должны быть нанесены на сборочном чертеже и чертеже общего вида. Необходимо рассмотреть правила выполнения номеров позиций на этих чертежах. Также обратить внимание на то, что к чертежам СБ разрабатывается спецификация, а к чертежам ВО — таблица составных частей. Необходимо изучить порядок заполнения этих текстовых документов.

В третьем и четвертом вопросах следует обсудить условности и упрощения, применяемые при выполнении чертежей общего вида и сборочных чертежей, а также рассмотреть изображение уплотнительных устройств на этих чертежах.

При освоении пятого вопроса необходимо уяснить последовательность чтения чертежа общего вида и последовательность деталирования чертежа ВО.

- 1. Какое изделие называют сборочной единицей?
- 2. Дайте определение чертежа общего вида (ВО).
- 3. Какой чертеж называется сборочным чертежом (СБ)?
- 4. Каковы требования к выбору главного вида и количества изображений при выполнении сборочных чертежей; чертежей общего вида?
- 5. Как на сборочных чертежах (СБ) и чертежах общего вида (ВО) изображают соседние изделия «обстановку»?
- 6. Какой линией на сборочных чертежах и чертежах общего вида показывают перемещающиеся части изделия?
- 7. Перечислите условности и упрощения, применяемые при выполнении сборочных чертежей и чертежей общего вида.

- 8. Какой документ называется спецификацией? На каких форматах выполняют спецификацию?
- 9. Для какого документа разрабатывают таблицу составных частей изделия?
 - 10. В какой последовательности располагаются разделы спецификации?
- 11. Назовите правила нанесения номеров позиций на сборочных чертежах и чертежах общего вида.
 - 12. С какой целью применяют уплотнительные устройства?
 - 13. Какова последовательность деталирования чертежа общего вида?

Тема 18. Основные понятия и определения теории зубчатого зацепления

Ключевые вопросы темы

- 1. Теория зубчатого зацепления. Основные понятия и определения. Элементы и параметры зубчатых колес. Методы нарезания эвольвентных зубчатых колес.
 - 2. Коррекция зубчатых колес.
 - 3. Последовательность расчета размеров зубчатых колес.
 - 4. Выполнение чертежа зубчатого колеса с натуры.

Ключевые понятия: зубчатая передача; внешнее зацепление; внутреннее цилиндрические зубчатые колеса: прямозубые, косозубые, шевронные; коническая зубчатая передача; червячная зубчатая передача; реечная передача; шестерня; зубчатое колесо; профиль зубьев; делительная окружность; толщина зуба; ширина впадины; модуль зацепления; шаг зацепления; головка зуба; ножка зуба; окружность вершин зубьев; окружность впадин зубьев; метод копирования; метод обкатки; коррекция зубчатых колес: нулевые колеса (нормальные колеса с некорригированным профилем), колеса (корригированные колеса положительные c положительным смещением), отрицательные колеса (корригированные колеса с отрицательным коэффициент смещения исходного контура (коэффициент смещением), коррекции).

Литература: [1], [7], [15], [33].

Методические рекомендации

Данная тема курса позволит обучающимся получить представление об основных понятиях и определениях теории зубчатого зацепления.

В первом вопросе следует рассмотреть виды передаточных механизмов, виды зубчатых передач (цилиндрические, конические, червячные), а также особенности их изображений на чертежах. Необходимо уделить внимание понятиям: профиль зубьев, делительная окружность, толщина зуба, ширина впадины, модуль зацепления, шаг зацепления, головка зуба, ножка зуба,

окружность вершин зубьев, окружность впадин зубьев. Изучить методы нарезания зубчатых колес с эвольвентным профилем: метод копирования и метод обкатки.

При освоении второго вопроса темы необходимо сформировать представление о коррекции зубчатых колес. Уяснить, что существуют следующие виды зубчатых колес: нулевые колеса (нормальные колеса с некорригированным профилем), положительные колеса (корригированные колеса с положительным смещением), отрицательные колеса (корригированные колеса с отрицательным смещением).

В третьем четвертом вопросах необходимо рассмотреть расчета размеров зубчатых колес и особенности последовательность выполнения чертежа цилиндрического зубчатого колеса с натуры. Следует изучить основные положения ГОСТ 2.403 -75. Обратить внимание, что помимо изображения колеса на чертежах необходимо размещать таблицу параметров зубчатого колеса, где указывают основные данные (данные для изготовления), данные для контроля и справочные данные.

Вопросы для самоконтроля

- 1. Назовите методы изготовления зубчатых колес.
- 2. Что называется шагом зацепления; модулем зацепления?
- 3. Каковы основные элементы и параметры зубчатых колес?
- 4. Какие линии используют в качестве профилей зубьев?
- 5. Какова последовательность выполнения расчета размеров зубчатого колеса?
- 6. Какие данные должны быть приведены в первой части таблицы параметров (основные данные (для изготовления)) на учебном чертеже цилиндрического зубчатого колеса?
- 7. С какой целью выполняют коррекцию зубчатых колес? Назовите виды зубчатых колес.
- 8. Каковы особенности выполнения чертежа цилиндрического зубчатого колеса?

Тема 19. Схемы. Виды и типы

Ключевые вопросы темы

- 1. Схемы. Виды и типы (ГОСТ 2.701-84).
- 2. Правила выполнения схем. Способы изображения элементов и устройств на схемах. Перечень элементов.

Ключевые понятия: виды схем: вакуумные, гидравлические, деления, кинематические, оптические, пневматические, комбинированные, энергетические, газовые (кроме пневматических), электрические; типы схем: структурные, функциональные, принципиальные полные для электрических

схем, соединений (монтажные), подключения, общие, расположения, объединенные; буквенно-цифровой код схем; перечень элементов.

Литература: [1], [5–7], [15], [20], [33].

Методические рекомендации

При освоении первого вопроса темы необходимо изучить, какие документы относят к схемам. Получить представление о видах схем и соответствующих им буквенных обозначениях, установленных в зависимости от видов элементов и связей, входящих в состав изделия (ГОСТ 2.701-84): вакуумные — В, гидравлические — Г, деления — Е, кинематические — К, оптические — О, пневматические — П, комбинированные — С, энергетические — Р, газовые (кроме пневматических) — X, электрические — Э. Ознакомиться с понятием «типы схем» и соответствующим им цифровым обозначением, установленным в зависимости от назначения схемы: структурные — 1, функциональные — 2, принципиальные полные для электрических схем — 3, соединений (монтажные) — 4, подключения — 5, общие- 6, расположения — 7, объединенные — 8.

Во втором вопросе темы необходимо рассмотреть правила выполнения схем. Обсудить способы изображения элементов и устройств на схемах. Следует отметить, что данные об элементах должны быть записаны в перечень элементов, который располагают на листе схемы или выполняют в виде самостоятельного документа на формате А4 согласно требованиям ГОСТ 2.104-2006. Необходимо изучить порядок заполнения граф перечня элементов.

- 1. Какие бывают виды схем?
- 2. Назовите типы схем и соответствующие им цифровые обозначения.
- 3. Чем определяется буквенно-цифровой код схем?
- 4. Каковы основные правила выполнения схем?
- 5. Какие форматы и масштабы используют при выполнении схем?
- 6. Каковы требования к выполнению перечня элементов?

2. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ПРОВЕДЕНИЮ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

Практические занятия проводятся с целью формирования у студентов умений и навыков чтения и составления чертежей; углубления знания стандартов Единой системы конструкторской документации (ЕСКД); развития технического мышления.

Практические занятия по дисциплине «Инженерная компьютерная графика» являются важной составной частью учебного процесса изучаемого курса, поскольку помогают лучшему усвоению курса дисциплины, закреплению знаний.

Задания расчетно-графических работ по инженерной компьютерной графике выполняются в графической системе КОМПАС-3D. Практические занятия по дисциплине проводятся в специализированных аудиториях (компьютерных классах).

Тематический план практических (ПЗ) занятий (3 семестр) представлен в таблице 3.

Таблица 3 – Тематический план практических (ПЗ) занятий

Таолица 5 — Гематический план практических (115) занятий		
Номер темы	Содержание практического занятия	
1	Введение в КОМПАС. Выполнение заданий «Контур учебный», «Контур индивидуальный» (2D-моделирование)	
2	Стандарты Единой системы конструкторской документации (ЕСКД). Решение задач по теме «Проецирование точки».	
3	Проецирование многогранных поверхностей. Графическое задание «Многогранник». Решение задач по теме «Проецирование прямой линии»	
4	Построение сечений многогранных поверхностей проецирующими плоскостями. Решение задач по теме «Проецирование плоскости»	
5	Контрольное задание по теме «Многогранные поверхности»	
6	Проецирование поверхностей вращения. Графическое задание «Тела вращения»	
7	Решение задач по теме «Взаимное положение прямой и плоскости, двух прямых, двух плоскостей». Графическое задание «Пересечение плоскостей»	
8	Решение задач по теме «Способы преобразования чертежа». Графическое задание «Позиционные и метрические задачи»	
9	Контрольное задание по теме «Поверхности вращения»	
10	Изображения — виды, разрезы, сечения (ГОСТ 2.305-2008). Графическое задание «Выполнение чертежа схематизированной детали». Решение задач по теме «Многогранные поверхности»	
11	Решение задач по теме «Кривые линии и поверхности». Графическое задание «Сопряжения»	

Студенты заочной формы обучения в виде контактной работы изучают темы 1, 3, 4, 6–8, 10, а темы 2, 11 изучают самостоятельно.

Тематический план практических (ПЗ) занятий (4 семестр) представлен в таблице 4.

Таблица 4 – Тематический план практических (ПЗ) занятий

Номер темы	Содержание практического занятия
12	Основы 3D-моделирования
13	Стандартные крепежные изделия. Графическое задание «Изделия крепежные»
14	Соединения разъемные и неразъемные. Графическое задание «Соединения»
15	Выполнение эскиза детали с натуры. Графическое задание «Эскиз оригинальной детали. Технический рисунок». Графическое задание «Выполнение рабочего чертежа колеса зубчатого»
16	Эскизирование деталей сборочной единицы. Графическое задание «Эскизы деталей сборочной единицы»
17	Контрольное задание по теме «Эскизирование»
18	Сборочный чертеж. Спецификация. Графическое задание «Сборочный чертеж»
19	Деталирование чертежа общего вида. Графическое задание «Деталирование»
20	Контрольное задание по теме «Деталирование чертежа общего вида»

Студенты заочной формы обучения в виде контактной работы изучают темы 13–15, 18, 19, а темы 12, 16 изучают самостоятельно.

2.1 Введение в КОМПАС. Выполнение заданий «Контур учебный», «Контур индивидуальный» (2D- моделирование)

Цель занятия — приобретение навыков работы в среде автоматизированной графической системы проектирования КОМПАС-3D, изучение и освоение команд построения и редактирования графических примитивов, режимов черчения, средств объектной привязки.

Ключевые вопросы темы

- 1. Введение в КОМПАС.
- 2. Выполнение заданий «Контур учебный», «Контур индивидуальный» (2D-моделирование).

Методические рекомендации

При рассмотрении первого вопроса следует уделить внимание основным принципам работы в графическом пакете КОМПАС. Необходимо отметить, что КОМПАС-3D — это система автоматизированного проектирования с возможностями оформления проектной и конструкторской документации согласно стандартам ЕСКД и СПДС. Основная задача графической системы — моделирование изделий с целью сокращения периода проектирования [13]. На занятии требуется рассмотреть алгоритмы построения 2D-объектов средствами двухмерной графики.

Во втором вопросе темы предполагается выполнение заданий «Контур учебный», «Контур индивидуальный» (2D-моделирование) с целью приобретения навыков автоматизированного вычерчивания плоских изображений в системе КОМПАС-3D. Предусматривается изучение и освоение команд построения и редактирования графических примитивов, режимов черчения, средств объектной привязки [13].

Литература: [3], [8], [13], [29], [32].

Вопросы для самоконтроля

- 1. Как в компьютерной графике называется способ ввода, использующий геометрию графических примитивов (объектов), уже созданных в чертеже?
 - 2. Каковы режимы функционирования объектной привязки?
- 3. Как называется вспомогательный тип графического документа, отличающийся от чертежа отсутствием рамки, основной надписи и других атрибутов оформления?
 - 4. Опишите элементы интерфейса системы КОМПАС-3D.
- 5. Какие системы координат применяются в графической системе КОМПАС-3D?
 - 6. Назовите способы ввода команд в КОМПАСе.
- 7. Какое назначение панели «Дерево документа» в системе КОМПАС-3D?
 - 8. Какие типы размеров можно проставлять в КОМПАСе?
 - 9. Каково назначение слоев в системе КОМПАС?

2.2 Стандарты Единой системы конструкторской документации (ЕСКД). Решение задач по теме «Проецирование точки»

Цель занятия — приобретение умений и навыков оформления конструкторской документации, а также приобретение навыков проецирования точек общего и частного положений.

Ключевые вопросы темы

1. Стандарты Единой системы конструкторской документации (ЕСКД). ГОСТ 2.104-2006 «Основные надписи», ГОСТ 2.301-68 «Форматы», ГОСТ

- 2.302-68 «Масштабы», ГОСТ 2.303-68 «Линии», ГОСТ 2.304-81 «Шрифты чертежные», ГОСТ 2.316-2008 «Правила нанесения надписей, технических требований и таблиц на графических документах».
- Решение задач по теме «Проецирование точки» (задачи № 1.1, 1.3 (а, б) [17]).

Методические рекомендации

Рассмотрение первого вопроса темы позволит обучающимся получить представление об оформлении конструкторской документации. Следует рассмотреть стандарты: ГОСТ 2.104 -2006 «Основные надписи», ГОСТ 2.301-68 «Форматы», ГОСТ 2.302-68 «Масштабы», ГОСТ 2.303-68 «Линии», ГОСТ 2.304-81 «Шрифты чертежные», ГОСТ 2.316-2008 «Правила нанесения надписей, технических требований и таблиц на графических документах».

При изучении второго вопроса необходимо усвоить проецирование точки на три взаимно перпендикулярные плоскости проекций: горизонтальную, фронтальную и профильную; освоить составление комплексного чертежа точки (эпюра Монжа точки); рассмотреть понятия точки общего и частного положений, октанты. По теме «Проецирование точки» необходимо выполнить задачи № 1.1, 1.3 (а, б). Условия задач приведены в учебно-методическом пособии [17]. Решение задач должно быть представлено в отдельной тетради формата А4. Правила оформления задач приведены в пособии [17].

Литература: [1], [2], [4], [17], [18], [31].

Вопросы для самоконтроля

- 1. Какие форматы называют основными?
- 2. Как образуются дополнительные форматы? Какие размеры имеет формат А4х3?
 - 3. Перечислите масштабы увеличения; уменьшения.
 - 4. Какова толщина разомкнутой линии по ГОСТ 2.303-68?
- 5. Какие размеры основной надписи и дополнительной графы по ГОСТ 2.106-2006?
- 6. В каких случаях при выполнении чертежей используется штрихпунктирная тонкая линии?
 - 7. Какими координатами определяется горизонтальная проекция точки?
- 8. Какой координатой определяется расстояние от точки до фронтальной плоскости проекций?

2.3 Проецирование многогранных поверхностей. Графическое задание «Многогранник». Решение задач по теме «Проецирование прямой линии»

Цель занятия — приобретение умений и навыков проецирования многогранных поверхностей; приобретение навыков проецирования прямых общего и частного положений. Текущий контроль знаний по теме «Стандарты Единой системы конструкторской документации (ЕСКД): ГОСТ 2.104-2006 «Основные надписи», ГОСТ 2.301-68 «Форматы», ГОСТ 2.302-68 «Масштабы», ГОСТ 2.303-68 «Линии», ГОСТ 2.304-81 «Шрифты чертежные», ГОСТ 2.316-2008 «Правила нанесения надписей, технических требований и таблиц на графических документах».

Ключевые вопросы темы

- 1. Проецирование поверхности призмы и пирамиды. Построение точек на поверхностях призмы и пирамиды.
 - 2. Построение прямоугольной диметрии многогранных поверхностей.
 - 3. Графическое задание «Многогранник».
- 4. Решение задач по теме «Проецирование прямой линии» (задачи № 2.1, 2.4, 2.6, 2.7 [17]).
- 5. Тестовое задание ПО теме: «Стандарты Единой системы (ЕСКД): ГОСТ 2.104-2006 «Основные конструкторской документации надписи», ГОСТ 2.301-68 «Форматы», ГОСТ 2.302-68 «Масштабы», ГОСТ 2.303-68 «Линии», ГОСТ 2.304-81 «Шрифты чертежные», ГОСТ 2.316-2008 «Правила нанесения надписей, технических требований и таблиц графических документах».

Методические рекомендации

При изучении первого вопроса необходимо усвоить проецирование поверхностей призмы и пирамиды, а также изучить способы построения точек на поверхностях призмы и пирамиды.

Во втором вопросе требуется рассмотреть этапы построения прямоугольной диметрии многогранников: построение внешней формы комбинированной многогранной фигуры (призмы и пирамиды), вырез одной четверти, построение во фронтальной плоскости формы сквозного отверстия, построение точек сквозного отверстия.

При освоении третьего вопроса следует отметить, что задание на работу «Многогранник» и образец данной работы приведены в пособии [22]. Задание «Многогранник» выполняется по вариантам. Варианты заданий (графическая часть) размещены в ЭИОС.

В четвертом вопросе необходимо обратить внимание, что задачи второго раздела пособия [17] — по теме 2 лекционных занятий, а именно: задача № 2.1 — деление отрезка на n равных частей; задача № 2.4 — определение следов прямой

линии и октантов, через которые эта прямая проходит; задачи № 2.6, 2.7 – определение натуральной величины отрезка прямой общего положения.

На занятии (пятый вопрос) предполагается выполнение тестового задания по теме: «Стандарты Единой системы конструкторской документации (ЕСКД): ГОСТ 2.104-2006 «Основные надписи», ГОСТ 2.301-68 «Форматы», ГОСТ 2.302-68 «Масштабы», ГОСТ 2.303-68 «Линии», ГОСТ 2.304-81 «Шрифты чертежные», ГОСТ 2.316-2008 «Правила нанесения надписей, технических требований и таблиц на графических документах». Примерный вариант тестового задания по этой теме приведен в пособии [26].

Литература: [1], [2], [4], [17], [18], [22], [26], [31].

Вопросы для самоконтроля

- 1. Какие поверхности относят к многогранным?
- 2. Как располагаются оси прямоугольной диметрии и каковы коэффициенты искажения по осям?
- 3. Какова последовательность построения аксонометрической проекции многогранной поверхности со сквозным фронтально-проецирующим отверстием?
- 4. Какие прямые относятся к прямым общего положения; частного положения?
- 5. Как на комплексном чертеже осуществляется деление отрезка на n равных частей?
- 6. В чем сущность метода прямоугольного треугольника для определения натуральной величины отрезка прямой общего положения?

2.4 Построение сечений многогранных поверхностей проецирующими плоскостями. Решение задач по теме «Проецирование плоскости»

Цель занятия — приобретение умений и навыков построения сечений многогранных поверхностей проецирующими плоскостями; навыков проецирования плоскостей общего и частного положений. Текущий контроль знаний по теме «Проецирование точки».

Ключевые вопросы темы

- 1. Последовательность построения сечений поверхностей призмы и пирамиды горизонтально-проецирующими, фронтально-проецирующими и профильно-проецирующими плоскостями.
 - 2. Графическое задание «Многогранник». Построение сечения.
- 3. Решение задач по теме «Проецирование плоскости» (задачи № 3.2 (а, б), 3.4 [17]).
 - 4. Тестовое задание по теме «Проецирование точки».
 - 5. Проверка графического задания «Многогранник» (построение

проекций).

Методические рекомендации

При рассмотрении первого вопроса необходимо обсудить построения сечений поверхностей призмы и пирамиды проецирующими плоскостями: первый этап – построение сечения от внешней формы (без сквозного отверстия); второй этап – построение сечения от сквозного отверстия Изучить особенности построений сечений (окна). горизонтальнопроецирующими плоскостями (положение секущей плоскости задается на виде сверху), фронтально-проецирующими плоскостями (положение плоскости – на главном виде), профильно-проецирующими плоскостями (сечение – на виде слева).

Во втором вопросе следует рассмотреть продолжение выполнения графического задания «Многогранник»: построение сечения проецирующей плоскостью. Обратить внимание, что примеры построения сечений приведены в пособиях [22], [27].

В третьем вопросе при решении задач по теме «Проецирование плоскости» (задачи 3.2, 3.4) необходимо обсудить признаки принадлежности точки и прямой плоскости.

На данном занятии (четвертый вопрос) следует провести тестовый контроль по теме «Проецирование точки» с целью проверки усвоения теоретического материала изучаемой темы. Примерный вариант тестового задания приведен в пособии [17].

В пятом вопросе темы предполагается проверка графического задания «Многогранник» (построение проекций).

Литература: [1], [2], [4], [17], [18], [22], [27], [31].

Вопросы для самоконтроля

- 1. Какова последовательность построения сечения поверхностей призмы и пирамиды горизонтально-проецирующей плоскостью?
 - 2. Дайте определение плоскости общего положения.
 - 3. Какие плоскости называют плоскостями уровня?
- 4. В каком случае прямая принадлежит плоскости; точка принадлежит плоскости?
- 5. Каким образом на комплексном чертеже через прямую провести фронтально-проецирующую плоскость?

2.5 Контрольное задание по теме «Многогранные поверхности»

Цель занятия — проверка приобретенных умений и навыков проецирования многогранных поверхностей.

Ключевые вопросы темы

1. Контрольное задание по теме «Многогранные поверхности».

Методические рекомендации

На данном занятии планируется провести контрольное задание по теме «Многогранные поверхности». Задание включает построение трех проекций (необходимо достроить вид сверху и построить вид слева) многогранника (призмы или пирамиды) со сквозным фронтально-проецирующим отверстием или со срезами фронтально-проецирующими плоскостями. На виде слева для вариантов со сквозными отверстиями с целью выявления внутренней формы необходимо выполнить разрез профильной плоскостью. Также в данной работе необходимо построить фигуру сечения проецирующей плоскостью. Положение секущей плоскости задает преподаватель. Данное задание выполняется по вариантам. Примерные варианты заданий приведены в пособии [22]. Задание оформляется в соответствии со стандартами ЕСКД.

Литература: [1], [22], [27].

Вопросы для самоконтроля

- 1. Как на чертеже отличить проекции призмы от пирамиды?
- 2. Каким образом строятся на чертеже проекции точки, принадлежащей граням пирамиды?
- 3. В какой графе основной надписи должен быть указан масштаб изображения?
 - 4. Какой разрез называют профильным разрезом?

2.6 Проецирование поверхностей вращения. Графическое задание «Тела вращения»

Цель занятия — приобретение умений и навыков проецирования поверхностей вращения. Текущий контроль знаний по теме «Проецирование прямой линии».

Ключевые вопросы темы

- 1. Проецирование поверхностей вращения: цилиндра, конуса и сферы.
- 2. Построение точек на поверхностях вращения.
- 3. Варианты сечений поверхностей вращения проецирующими плоскостями.
 - 4. Графическое задание «Тела вращения».
 - 5. Тестовое задание по теме «Проецирование прямой линии».
 - 6. Проверка графического задания «Многогранник».

Методические рекомендации

В первом и втором вопросах темы необходимо освоить проецирование поверхностей вращения: прямого кругового цилиндра; прямого кругового конуса и сферы на три взаимно перпендикулярные плоскости проекций, а также получить навык построения точек на поверхностях вращения.

При рассмотрении третьего вопроса требуется изучить варианты сечений конуса, цилиндра и сферы проецирующими плоскостями.

Следует отметить, что в графическом задании «Тела вращения» (четвертый вопрос) предполагается построение трех проекций комбинированной поверхности (включающей поверхности конуса, цилиндра и сферы) со сквозным фронтально-проецирующим отверстием («окном»). Задание на данную работу и последовательность выполнения представлены в пособии [25].

На данном практическом занятии следует провести текущий тестовый контроль по теме «Проецирование прямой линии». Примерный вариант тестового задания по этой теме приведен в пособии [17].

В шестом вопросе предполагается проверка графического задания «Многогранник».

Литература: [1], [2], [4], [17], [18], [22], [25], [31].

Вопросы для самоконтроля

- 1. Какие поверхности относятся к поверхностям вращения?
- 2. Как образуются поверхности вращения: конуса, цилиндра, сферы?
- 3. В каком случае при пересечении конической поверхности проецирующей плоскостью получается парабола?
 - 4. Как называются очерки сферы на плоскости проекций π_1 , π_2 и π_3 ?
- 5. Какая последовательность построения фигуры сечения прямого кругового цилиндра фронтально-проецирующей плоскостью?
- 6. Какие образующие поверхности вращения называют очерковыми (очерками)?
- 7. Как построить проекции точки на поверхности прямого кругового конуса?
- 8. Какие возможны варианты сечений поверхности цилиндра, конуса, сферы проецирующими плоскостями?

2.7 Решение задач по теме «Взаимное положение прямой и плоскости, двух прямых, двух плоскостей». Графическое задание «Пересечение плоскостей»

Цель занятия — приобретение умений и навыков решения позиционных и метрических задач (без применения способов преобразования чертежа). Текущий контроль знаний по теме «Проецирование плоскости».

Ключевые вопросы темы

- 1. Решение задач по теме «Взаимное положение прямой и плоскости, двух прямых, двух плоскостей» (задачи № 4.4 (а, б, в), 4.5 (а, в), 4.6, 4.7, 4.10, 4.12 [17]).
 - 2. Графическое задание «Пересечение плоскостей».
 - 3. Тестовое задание по теме «Проецирование плоскости».
 - 4. Проверка графического задания «Тела вращения».

Методические рекомендации

В первом вопросе необходимо рассмотреть решение задач по теме «Взаимное положение прямой и плоскости, двух прямых, двух плоскостей»: задачи № 4.4, 4.5 — определение точки пересечения прямой с плоскостью и определение линии пересечения плоскостей; № 4.6 — построение плоскости, параллельной заданной; № 4.7 — построение прямой, параллельной заданным плоскостям; задача № 4.10 — определение расстояния от точки до плоскости (перпендикулярность прямой и плоскости); задача № 4.12 — определение расстояния между двумя прямыми (перпендикулярность двух прямых).

При рассмотрении второго вопроса необходимо отметить, что задание «Пересечение плоскостей» предполагает построение линии пересечения двух плоскостей, определение видимости этих плоскостей, нахождение следов линии пересечения плоскостей и октантов, через которые проходит эта прямая. Работа выполняется по вариантам. Задание на данную работу и последовательность выполнения представлены в пособии [21].

На данном практическом занятии планируется проведение текущего тестового контроля по теме «Проецирование плоскости». Примерный вариант тестового задания по этой теме приведен в пособии [17].

В четвертом вопросе темы предполагается проверка графического задания «Тела вращения».

Литература: [1], [2], [4], [17], [18], [21], [25], [31].

Вопросы для самоконтроля

- 1. Какой метод используют для определения видимости элементов на чертежах?
- 2. Какие существуют методы определения линии пересечения плоскостей?
- 3. Какова последовательность определения точки пересечения прямой с плоскостью?
- 4. Как на комплексном чертеже построить проекции прямой, перпендикулярной заданной плоскости?
- 5. Каков алгоритм определения на чертеже расстояния от точки до плоскости?
 - 6. Назовите признак перпендикулярности двух прямых.

2.8 Решение задач по теме «Способы преобразования чертежа». Графическое задание «Позиционные и метрические задачи»

Цель занятия — приобретение умений и навыков решения позиционных и метрических задач, навыков использования способов преобразования чертежа для решения задач начертательной геометрии.

Ключевые вопросы темы

- 1. Решение задач по теме «Способы преобразования чертежа» (задачи № 5.1, 5.3, 5.5, 5.9, 5.11 [17]).
 - 2. Графическое задание «Позиционные и метрические задачи».
 - 3. Проверка графического задания «Пересечение плоскостей».

Методические рекомендации

В первом вопросе следует обсудить решение задач по теме «Способы преобразования проекций». Задачи № 5.1, 5.3, 5.5 необходимо решить способом замены плоскостей проекций; задачу № 5.9 — способом вращения, а именно вращением вокруг проецирующей оси; задачу № 5.11 — способом плоскопараллельного перемещения (безосное вращение).

При рассмотрении второго вопроса необходимо отметить, что в задании «Позиционные и метрические задачи» требуется определить расстояния от точки до плоскости и построение плоскости, параллельной заданной. Задачи решаются: 1) без преобразования плоскостей проекций; 2) способом замены плоскостей проекций. Работа выполняется по вариантам. Задание на данную работу и последовательность выполнения представлены в пособии [24].

В третьем вопросе темы предполагается проверка графического задания «Пересечение плоскостей».

Литература: [1], [2], [4], [17–19], [24], [25], [31].

Вопросы для самоконтроля

- 1. Каково назначение способов преобразования проекций?
- 2. Какие способы преобразования проекций существуют?
- 3. В чем сущность способа замены плоскостей проекций?
- 4. Какова сущность способов вращения?
- 5. Назовите элементы вращения.
- 6. Какие способы вращения существуют?

2.9 Контрольное задание по теме «Поверхности вращения»

Цель занятия — проверка приобретенных умений и навыков проецирования поверхностей вращения.

Ключевые вопросы темы

1. Контрольное задание по теме «Поверхности вращения».

Методические рекомендации

На занятии планируется провести контрольное задание по теме «Поверхности вращения». Задание включает построение трех проекций (необходимо достроить вид сверху и построить вид слева) поверхности конуса или сферы) (цилиндра, co сквозным фронтальнопроецирующим отверстием или со срезами фронтально-проецирующими плоскостями. Для вариантов со сквозными отверстиями с целью выявления внутренней формы на виде слева требуется выполнить разрез профильной плоскостью. Также в данной работе необходимо построить фигуру сечения плоскостью. Положение секущей проецирующей плоскости Данное задание выполняется по вариантам. преподаватель. варианты заданий приведены в пособии [25]. Задание оформляется в соответствии со стандартами ЕСКД.

Литература: [1], [25], [28].

Вопросы для самоконтроля

- 1. Как на чертеже строятся проекции точки, принадлежащей поверхности цилиндра, конуса, сферы?
- 2. Как построить на чертеже сечение конуса профильно-проецирующей плоскостью?
- 3. Какова последовательность построения сечения поверхности вращения со сквозным отверстием проецирующей плоскостью?
- 4. Какая линия на поверхности сферы называется фронтальным меридианом?

2.10 Изображения – виды, разрезы, сечения (ГОСТ 2.305-2008). Графическое задание «Выполнение чертежа схематизированной детали». Решение задач по теме «Многогранные поверхности»

Цель занятия — приобретение умений и навыков проецирования схематизированных деталей. Изучить методы построения разверток многогранных поверхностей.

Ключевые вопросы темы

- 1. Изображения виды, разрезы, сечения (ГОСТ 2.305-2008).
- 2. Графическое задание «Схематизированная деталь».
- 3. Решение задач по теме «Многогранные поверхности» (задачи № 6.1, 6.2, 6.3, 6.4 [17]).

4. Проверка графического задания «Позиционные и метрические задачи».

Методические рекомендации

В первом вопросе следует обсудить основные положения ГОСТ 2.305-2008 «Изображения — виды, разрезы, сечения». Рассмотреть классификацию видов (основные, дополнительные, местные); классификацию разрезов (по расположению относительно горизонтальной плоскости проекций, по количеству секущих плоскостей, продольные, поперечные, местные); классификацию сечений (вынесенные и наложенные).

При рассмотрении второго вопроса необходимо отметить, что задание на работу «Схематизированная деталь» и последовательность выполнения изложены в учебном пособии [9].

Третий вопрос темы предполагает решение задач по теме «Многогранные поверхности». В задачах № 6.1, 6.2 требуется построить проекции многогранников (пирамиды) со сквозным отверстием (№ 6.1), со срезами фронтально-проецирующими плоскостями (№ 6.2); в задаче № 6.3 необходимо выполнить развертку наклонной призмы методом построения нормального сечения; в задаче № 6.4 — построить развертку пирамиды методом треугольников (триангуляции).

В четвертом вопросе темы планируется осуществить проверку графического задания «Позиционные и метрические задачи».

Литература: [1], [2], [4], [9], [17], [18], [24], [23], [31].

Вопросы для самоконтроля

- 1. Что называется видом? Назовите классификацию видов. Перечислите основные виды.
- 2. Какое изображение называется разрезом. Приведите классификацию разрезов.
- 3. Какое изображение называется разрезом? Какова классификация разрезов?
 - 4. Что называется местным видом?
 - 5. В каких случаях выполняют дополнительные виды?
 - 6. Какие разрезы называют сложными?
 - 7. В каких случаях на чертежах не подписывают разрезы?
- 8. Какую развертку имеют многогранные поверхности: точную, приближенную или условную?
 - 9. Назовите способы построения разверток многогранных поверхностей.

2.11 Решение задач по теме «Кривые линии и поверхности». Графическое задание «Сопряжения»

Цель занятия — приобретение умений и навыков проецирования кривых линий и поверхностей, построения линии пересечения поверхностей, построения разверток кривых поверхностей. Приобретение навыков построения сопряжений.

Ключевые вопросы темы

- 1. Решение задач по теме «Кривые линии и поверхности» (задачи № 7.1, 7.2, 7.9, 7.10, 7.11, 7.12 [17]).
 - 2. Графическое задание «Сопряжения».

Методические рекомендации

рассмотрении необходимо первого вопроса темы обсудить классификацию кривых линий (плоские пространственные), И последовательность определения длины кривой линии (задача 7.1). При решении задач 7.1, 7.2 (построение на комплексном чертеже проекций конической и цилиндрической винтовых линий) необходимо обсудить, какие винтовые линии называют гелисами, как построить проекции цилиндрической винтовой линии (проекция на плоскости, параллельной оси цилиндра, подобна синусоиде, а на плоскости, перпендикулярной оси цилиндра - окружности) и проекции конической винтовой линии (в этом случае проекция на плоскости, параллельной оси конуса подобна угасающей синусоиде, а на плоскости, перпендикулярной оси конуса – спирали Архимеда). При рассмотрении задач 7.1, 7.2 следует усвоить построение разверток винтовых линий. Решение задачи 7.9 предполагает изучение алгоритма определения точек пересечения прямой линии с кривой поверхностью и решение вопроса видимости прямой. Задача 7.10 – по теме «Пересечение поверхностей». При рассмотрении необходимо обсудить, в каких случаях целесообразно выполнить решение, используя метод вспомогательных секущих плоскостей, а в каких - метод вспомогательных секущих сфер. В задачах 7.11, 7.12 требуется построить развертки наклонного (эллиптического) цилиндра и наклонного конуса. Необходимо усвоить, какие развертки (точные, приближенные или условные) строятся поверхностей, и каков будет алгоритм построения этих разверток.

Во втором вопросе предполагается выполнение графического задания «Сопряжения». Следует отметить, что геометрические построения сопряжений условно разделены на два типа: 1) непосредственные переходы (сопряжения), в которых участвуют только два геометрических элемента; 2) сопряжения двух и более геометрических элементов при помощи промежуточных линий (прямых или кривых).

Литература: [1], [2], [4], [16–18], [33].

Вопросы для самоконтроля

- 1. Как на комплексном чертеже определить тип и длину кривой линии?
- 2. Назовите алгоритм определения точек пересечения прямой линии с кривой поверхностью.
- 3. Какова последовательность построения линии пересечения поверхностей с использованием метода вспомогательных секущих плоскостей?
- 4. В каких случаях возможно применение метода вспомогательных секущих сфер для определения линии пересечения поверхностей?
- 5. Как на комплексном чертеже построить проекции цилиндрической винтовой линии?
 - 6. Каким образом построить развертку цилиндрической винтовой линии?
- 7. Как на чертеже проецируется на фронтальную плоскость проекций коническая винтовая линия (с горизонтально-проецирующей осью)?
- 8. Какая развертка (точная, приближенная или условная) строится для наклонного конуса?
- 9. Как нанести на развертку прямого кругового конуса коническую винтовую линию?
 - 10. Что называется сопряжением?
- 11. Какова последовательность построения сопряжения двух элементов дугой окружности заданного радиуса?
 - 12. Какие элементы называют элементами сопряжения?
- 13. Какова последовательность построения внутренней касательной к двум окружностям?

2.12 Основы 3D-моделирования

Цель занятия — приобретение умений и навыков 3D-моделирования схематизированных геометрических объектов, создания по этим моделям плоских проекций (видов и разрезов).

Ключевые вопросы темы

- 1. 3D-моделирование схематизированных геометрических объектов.
 - 1.1 Задание «Многогранники».
 - 1.2 Задание «Тела вращения».
 - 1.3 Задание «Схематизированная деталь».
- 2. Проверка графических заданий.

Методические рекомендации

На занятии (первый вопрос) необходимо 1) создать трехмерную модель детали, состоящей из комбинации многогранников: призмы и пирамиды, просеченных сквозным фронтально-проецирующим отверстием. По созданной модели необходимо сформировать комплексный чертеж; 2) создать трехмерную модель детали, состоящей из комбинации поверхностей вращения: конуса, цилиндра и сферы, просеченных сквозным фронтально-проецирующим отверстием; 3) создать трехмерную модель детали, состоящей из комбинации

различных объемных элементов. Необходимо сформировать чертеж детали. Выполнить аксонометрическую проекцию с вырезом условной четверти [14].

Во втором вопросе темы планируется осуществить проверку графических заданий.

Вопросы для самоконтроля

- 1. Назовите типы трехмерных (пространственных) геометрических моделей в компьютерной графике.
- 2. Как в КОМПАС-3D (трехмерное моделирование) осуществляется управление изображением?
 - 3. Какие плоскости проекций используют при 3D-моделировании?
 - 4. Какой стиль линии используется при создании эскиза?
- 5. Что называют эскизом в системе КОМПАС-3D (трехмерное моделирование)?
 - 6. Какой вид называют ассоциативным?
 - 7. Как можно получить чертеж детали по созданной модели?
- 8. Каковы особенности построения поверхностей вращения в системе трехмерного моделирования?
- 9. Как в системе КОМПАС-3D (трехмерное моделирование) задается положение секущей плоскости?
- 10. Какова последовательность построения трехмерных моделей многогранных поверхностей при выполнении задания «Многогранники»?

2.13 Стандартные крепежные изделия. Графическое задание «Изделия крепежные»

Цель занятия — приобретение умений и навыков изображения и обозначения на чертежах резьб, стандартных крепежных изделий; навыков использования нормативных документов и справочной литературы.

Ключевые вопросы темы

- 1. Графическое задание «Изделия крепежные». Выполнение изображений стандартных болта, гайки и шайбы к болту.
- 2. Выполнение изображений стандартной шпильки, сверленого и нарезанного гнезда под шпильку.
 - 3. Выполнение изображений деталей с нестандартной резьбой.

Методические рекомендации

Необходимо отметить, что графическое задание «Изделия крепежные» выполняется по вариантам. Данные по вариантам для выполнения этой работы приведены в пособии [10] в приложениях 1–3. Масштаб изображений выбирают в зависимости от значения номинального диаметра резьбы крепежной детали. Образец данной работы приведен в пособии [10].

В задании для этой работы определены основные характеристики резьбовых изделий. Недостающие размеры, которые требуются для вычерчивания изображений, подбирают по соответствующим стандартам.

В первом вопросе темы необходимо вычертить стандартные болт, гайку и шайбу к болту, нанести размеры для этих крепежных изделий и указать условные обозначения для болта, гайки и шайбы к болту. Основные данные приведены в приложении 1 пособия [10].

Во втором вопросе необходимо подобрать размеры для стандартной шпильки (данные – в приложении 2 пособия [10]). Затем следует вычертить шпильку, проставить размеры и выполнить условное обозначение этой крепежной детали. В задании также требуется сконструировать и выполнить чертеж резьбового отверстия (гнезда) для ввинчиваемого конца шпильки. В работе вычерчивается шпилька общего применения односторонняя.

В третьем вопросе темы необходимо выполнить изображения условных деталей с нестандартной резьбой. Данные для этой части работы приведены в приложении 3 пособия [10].

Литература: [1], [7], [10], [15], [20], [33].

Вопросы для самоконтроля

- 1. В зависимости от какого параметра определяется масштаб для изображения болта, гайки, шайбы или шпильки?
- 2. В каком случае в условном обозначении крепежной детали не указывают шаг резьбы?
- 3. Что означает в условном обозначении Шайба A24 ГОСТ 11371-78 буква A?
 - 4. Какое количество изображений требуется для изображения болта?
- 5. Какие конструктивные особенности характерны для болта пятого исполнения, выполненного по ГОСТ 7796-70?
- 6. В каком случае в условном обозначении шайбы указывают класс точности?
- 7. При изображении ввинчиваемого и гаечного концов шпильки в зависимости от какого параметра определяют размер сбега?
- 8. Что означает в условном обозначении Шпилька M24x2x100 ГОСТ 22034-76 величина 100?
- 9. С какой целью в месте соединения цилиндрической части болта и головки выполняют галтель (скругление)?
- 10. Перечислите два этапа технологии изготовления резьбового отверстия для ввинчиваемого конца шпильки.

2.14 Соединения разъемные и неразъемные. Графическое задание «Соединения»

Цель занятия — приобретение умений и навыков изображения крепежных разъемных соединений (болтового и шпилечного) и неразъемного (сварного). Текущий контроль знаний по теме «Изображения — виды, разрезы, сечения (ГОСТ 2.305-2008)».

Ключевые вопросы темы

- 1. Графическое задание «Соединения». Выполнение изображения болтового соединения: по действительным размерам, упрощенного и условного.
- 2. Выполнение изображения шпилечного соединения: по действительным размерам, упрощенного и условного.
- 3. Выполнение изображений сварного соединения. Условные изображения и обозначения швов сварных соединений (ГОСТ 2.312-72).
- 4. Тестовое задание по теме «Изображения виды, разрезы, сечения (ГОСТ 2.305-2008)».
 - 5. Проверка графического задания «Изделия крепежные».

Методические рекомендации

На занятии следует обсудить, что графическое задание «Соединения» является продолжением работы «Изделия крепежные» (номера вариантов остаются прежними). Данная работа предполагает вычерчивание разъемных (крепежных) и неразъемного (сварного) соединений.

В первом и втором вопросах необходимо в зависимости от номера варианта начертить изображения крепежных соединений (болтовых и шпилечных) по действительным размерам (без упрощений), упрощенно и условно.

Третий вопрос темы предполагает выполнение чертежа условной сварной конструкции (вид спереди и сечение) с простановкой необходимых размеров и обозначением сварных швов [11]. В варианте определяется конструкция сварного изделия, типы соединений и стандарты на сварку. Основные данные приведены в приложении 2, 3 пособия [11]. Работу следует оформить в соответствии со стандартами ЕСКД.

На данном практическом занятии в четвертом вопросе планируется проведение текущего тестового контроля по теме «Изображения — виды, разрезы, сечения (ГОСТ 2.305-2008)». Примерный вариант тестового задания по этой теме приведен в пособии [20].

В пятом вопросе темы предполагается проверка графического задания «Изделия крепежные».

Литература: [1], [7], [10], [11], [15], [20], [33].

Вопросы для самоконтроля

- 1. В каких случаях применяют шпилечное соединение?
- 2. В каком случае размеры головки болта, гайки и шайбы рассчитываются в долях от номинального диаметра крепежной детали?
- 3. Как определяется диаметр сквозного отверстия под крепежную деталь при изображении болтового соединения, выполненного по действительным размерам?
- 4. При каком значении номинального диаметра болта или шпильки целесообразно выполнять условные изображения?
- 5. На чертежах какой шов сварного соединения условно изображают штриховой линией?
- 6. В каких случаях в условном обозначении сварного шва используют буквы С, Н, У и Т?
- 7. Приведите примеры вспомогательных знаков при условном обозначении сварных изделий.

2.15 Выполнение эскиза детали с натуры. Графическое задание «Эскиз оригинальной детали. Технический рисунок». Графическое задание «Выполнение рабочего чертежа колеса зубчатого»

Цель занятия — приобретение умений и навыков выполнения эскизов деталей с натуры и технического рисунка. Текущий контроль знаний по теме «Нанесение размеров (ГОСТ 2.307-2011)».

Ключевые вопросы темы

- 1. Графическое задание «Эскиз детали. Технический рисунок». Выполнение эскиза оригинальной детали с натуры.
 - 2. Выполнение технического рисунка детали.
 - 3. Графическое задание «Выполнение рабочего чертежа колеса зубчатого».
 - 4. Тестовое задание по теме «Нанесение размеров (ГОСТ 2.307-2011)».
 - 5. Проверка графического задания «Соединения».

Методические рекомендации

В первом вопросе предполагается выполнение эскиза детали с натуры. Данное графическое задание выполняется по вариантам. Следует обсудить, что эскизом называется чертеж, выполненный от руки, без применения чертежных инструментов, без точного соблюдения масштаба, но с обязательным соблюдением пропорций элементов деталей. Также необходимо усвоить последовательность выполнения эскиза оригинальной детали. Уделить особое внимание выбору главного вида и количества изображений. Обсудить последовательность выполнения изображений, правила нанесения размеров в соответствии с ГОСТ 2.307-2011, а также рассмотреть, какие измерительные приборы используются для обмера детали. Уделить внимание вопросам оформления эскиза.

По второму вопросу следует отметить, что технический рисунок — это аксонометрическое изображение детали, выполненное от руки, без применения чертежных инструментов, в глазомерном масштабе с соблюдением пропорций элементов детали. Технический рисунок, как и эскиз, рекомендуется выполнять на бумаге в клетку. Последовательность выполнения технического рисунка соответствует этапам выполнения аксонометрической проекции детали.

В третьем вопросе предполагается выполнение эскиза колеса зубчатого с натуры. Необходимо обсудить последовательность расчета размеров зубчатых колес, а также особенности выполнения чертежа цилиндрического зубчатого колеса (ГОСТ 2.403-75). Помимо изображения колеса на чертежах необходимо размещать таблицу параметров зубчатого колеса, где указывают основные данные (данные для изготовления), данные для контроля и справочные данные.

В четвертом вопросе планируется проведение текущего тестового контроля по теме «Нанесение размеров (ГОСТ 2.307-2011)» с целью контроля усвоения теоретического материала. Примерный вариант тестового задания приведен в пособии [26].

В пятом вопросе темы предполагается проверка графического задания «Соединения».

Литература: [1], [7], [11], [15], [20], [26], [33].

Вопросы для самоконтроля:

- 1. Какова последовательность выполнения эскиза оригинальной детали?
- 2. На какие детали не выполняют эскизы?
- 3. На каком этапе выполнения эскиза производят обмер детали?
- 4. Как называются плоские срезы на поверхностях вращения? Как они изображаются?
- 5. Как называются конические или плоские узкие срезы (притупления) острых кромок деталей? Какие правила изображения этих элементов на чертеже?
 - 6. Что называют техническим рисунком?
- 7. Какова последовательность построения эллипса при выполнении технического рисунка?
- 8. Как при выборе главного вида эскизируемой детали учитывается способ изготовления?
- 9. От чего зависит количество изображений детали при составлении эскиза оригинальной детали?
 - 10. Назовите основные элементы и параметры зубчатых колес?
 - 11. Что называют модулем зацепления?
- 12. Какова последовательность расчета параметров цилиндрического зубчатого колеса?
 - 13. С какой целью выполняется корригирование зубчатых колес?

2.15 Эскизирование деталей сборочной единицы. Графическое задание «Эскизы деталей сборочной единицы»

Цель занятия — приобретение умений и навыков выполнения эскизов деталей сборочной единицы.

Ключевые вопросы темы

- 1. Графическое задание «Эскизы деталей сборочной единицы». Выполнение эскиза корпусной детали сборочной единицы.
- 2. Выполнение эскизов деталей средней сложности, входящих в состав сборочной единицы.
 - 3. Проверка графического задания «Эскиз детали».

Методические рекомендации

На данном занятии необходимо выполнить эскизы деталей сборочной единицы. Следует отметить, что сборочной единицей называется изделие, составные части которого подлежат соединению между собой на предприятии-изготовителе путем сборочных операций — свинчиванием, клепкой, сваркой, пайкой, опрессовкой, развальцовкой, склеиванием.

При рассмотрении первого вопроса необходимо обсудить характерные особенности чертежей деталей, изготовленных литьем, ковкой, штамповкой. Следует обратить внимание, что важным этапом выполнения эскиза корпусной детали является обсуждение выбора главного вида (главный вид должен давать наиболее полное представление о форме и размерах детали) и количества изображений (количество изображений должно быть наименьшим, но достаточным для однозначного прочтения формы детали).

Второй вопрос темы предполагает выполнение эскизов деталей средней сложности, входящих в состав сборочной единицы. Необходимо уточнить, что эскизы этих деталей выполняются на отдельных форматах A4 или A3 в зависимости от сложности и размеров деталей. Особое внимание следует уделить изображению и оформлению стандартных и нестандартных элементов деталей: фасок, галтелей, центровых отверстий, рифлений, лысок, пазов, шлицов, а также буртиков, бобышек и приливов. Последовательность выполнения эскизов оригинальных деталей подробно обсуждалась при выполнении графического задания «Эскиз».

В третьем вопросе планируется проверка графического задания «Эскиз».

Литература: [1], [7], [15], [20], [33].

Вопросы для самоконтроля

1. Как называется изделие, составные части которого соединены на предприятии – изготовителе сборочными операциями – сваркой, свинчиванием, клепкой и т. д?

- 2. Как выбрать главный вид детали, основной технологической операцией которой является обработка на токарном станке?
- 3. При выполнении эскизов обмер детали производят с помощью каких инструментов?
- 4. Какой измерительный инструмент используется при определении шага резьбы?
 - 5. Как определить радиусы скруглений при обмере эскизируемой детали?
 - 6. Приведите пример условного обозначения сетчатого рифления.
- 7. Какие бывают центровые отверстия? Как центровые отверстия изображаются и обозначаются на чертежах?
- 8. Какой параметр является определяющим при определении размеров стандартной метрической проточки?
- 9. Для какого способа изготовления детали характерны следующие элементы: ребра жесткости, приливы, бобышки?
- 10. Приведите примеры изделий, относящихся к группе деталей со стандартным изображением.
- 11. В каких случаях выполняют канавки (проточки)? Как они изображаются на чертежах?

2.16 Контрольное задание по теме «Эскизирование»

Цель занятия — контроль приобретенных умений и навыков выполнения эскиза детали с натуры и технического рисунка.

Ключевые вопросы темы

- 1. Выполнение контрольного задания по теме
- «Эскизирование». Составление рабочего чертежа детали (эскизно) с натуры.
 - 2. Выполнение технического рисунка детали.

Методические рекомендации

На данном занятии предполагается выполнение контрольного задания по теме «Эскизирование».

В первом вопросе предусматривается составление рабочего чертежа (эскизно) детали с натуры. После выполнения анализа геометрической формы необходимо выбрать главный вид и количество изображений для детали. Затем в глазомерном масштабе эскизно выполнить необходимые изображения, нанести выносные и размерные линии (без указания числовых значений), оформить графическую работу в соответствии со стандартами ЕСКД.

Во втором вопросе задания требуется выполнить технический рисунок для данной детали.

Литература: [1], [7], [15], [20], [33].

Вопросы для самоконтроля

- 1. В какой последовательности выполняют эскиз оригинальной детали?
- 2. Как влияет способ изготовления детали на выбор главного вида при выполнении эскиза детали?
- 3. Какие особенности литых деталей при выполнении эскиза должны быть отражены на чертеже?
 - 4. Что называют техническим рисунком?

2.18 Сборочный чертеж. Спецификация. Графическое задание «Сборочный чертеж»

Цель занятия — приобретение умений и навыков выполнения сборочных чертежей и спецификации.

Ключевые вопросы темы

- 1. Графическое задание «Сборочный чертеж». Выполнение сборочного чертежа сборочной единицы.
 - 2. Выполнение спецификации к сборочному чертежу.
- 3. Проверка графического задания «Эскизы деталей сборочной единицы».

Методические рекомендации

При рассмотрении первого вопроса темы необходимо обсудить понятие «Сборочный чертеж». Рассмотреть последовательность выполнения сборочного чертежа. Обсудить основные требования к выбору главного вида: 1) изделие на сборочном чертеже на главном виде располагается в рабочем положении; 2) изображение сборочной единицы на главном виде должно давать наиболее полное представление о количестве и взаимодействии составных частей изделия. Особо обратить внимание на условности и упрощения, применяемы на сборочных чертежах и чертежах общего вида. Важным этапом выполнения сборочного чертежа является нанесение номеров позиций и простановка размеров (габаритных, установочных, присоединительных и необходимых справочных размеров).

Выполнение второго вопроса темы позволит обучающимся получить навыки составления спецификации — основного конструкторского документа (ГОСТ 2.106-96). Необходимо обсудить, на каких форматах выполняют спецификацию, и по какой форме в соответствии с ГОСТ 2.104-2006 должна быть выполнена основная надпись для первого листа спецификации и для второго и последующих листов спецификации. Также следует обратить внимание, из каких разделов состоит спецификация, обсудить порядок заполнения граф данного конструкторского документа.

В третьем вопросе предполагается проверка графического задания «Эскизы деталей сборочной единицы».

Литература: [1], [7], [15], [20], [33].

Вопросы для самоконтроля

- 1. Какие требования предъявляются к выбору главного вида и количества изображений сборочной единицы при составлении сборочного чертежа (СБ)?
- 2. Какие размеры наносят на сборочных чертежах (СБ) и чертежах общего вида (ВО)?
- 3. Каким образом на сборочных чертежах и чертежах общего вида показывают при необходимости мелкие элементы (типа пластин, отверстий, фасок, пазов) с размерами на чертеже не более 2 мм?
- 4. Какой линией на чертежах СБ и ВО отмечают линии-выноски для номеров позиций?
- 5. Каким должен быть размер шрифта для номеров позиций на сборочных чертежах и чертежах общего вида?
- 6. Как называется документ, определяющий состав сборочной единицы, комплекса или комплекта?
- 7. Какой текстовый документ разрабатывают для сборочных чертежей; чертежей общего вида?
 - 8. В какой последовательности в спецификации располагают разделы?
- 3. Для каких разделов не заполняется графа «Обозначение» в спецификации?
- 9. Какие детали на сборочных чертежах (СБ) и чертежах общего вида (ВО) при выполнении продольного разреза показывают нерассечеными?
- 10. Каким образом выполняется штриховка смежных деталей при выполнении разрезов на чертежах СБ и ВО?

2.19 Деталирование чертежа общего вида. Графическое задание «Деталирование»

Цель занятия — приобретение умений и навыков чтения чертежей общего вида и составления рабочих чертежей деталей по чертежу общего вида.

Ключевые вопросы темы

- 1. Графическое задание «Деталирование». Выполнение рабочих чертежей деталей по чертежу общего вида.
 - 2. Выполнение аксонометрии детали с вырезом условной четверти.
 - 3. Проверка графического задания «Сборочный чертеж».

Методические рекомендации

При рассмотрении данной темы необходимо уяснить понятие чертежа общего вида (BO) – документа, который поясняет конструкцию изделия и принцип его работы. Чертеж BO является основой для разработки рабочей

документации. Для чертежей общего вида перечень составных частей изделия оформляют в виде таблицы.

В задании «Деталирование» необходимо выполнить рабочие чертежи нескольких деталей по чертежу общего вида. Работа выполняется по вариантам.

В первом вопросе при выполнении данного задания следует обратить внимание на последовательность чтения чертежа общего вида – процесс, который позволяет правильно понять принцип работы всего изделия и функциональное назначение каждой отдельной детали [12]. Следует отметить, что чтение чертежа общего вида предполагает: ознакомление с содержанием основной надписи (наименование чертежа); последовательный анализ таблицы перечня составных частей изделий (с целью уяснения устройства изделия); работы содержания принципа изделия; ознакомление изображениями на чертеже общего вида. В работе необходимо по номерам позиций чертежа и таблице последовательно найти на всех изображениях проекции всех деталей и изучить конструкцию каждой детали. Целью чтения чертежа общего вида является мысленное представление формы и внутреннего устройства детали. При выявлении формы детали следует учитывать проекционные связи изображений и штриховку, которая одинакова (по направлению и шагу) для этой детали на всех разрезах и сечениях [12]. Также при чтении чертежа ВО следует отметить, что на сборочных чертежах и чертежах общего вида допускается помещать изображение соседних изделий, сопрягаемых с конструируемым («обстановку»). Обратить внимание особенности оформления «обстановки»: линии «обстановки» – тонкие линии отсутствующего контура.

В первом вопросе также следует обсудить последовательность деталирования чертежа ВО: определение формы детали; выбор главного вида и количества изображений, выбор масштаба чертежа; вычерчивание изображений; нанесение размеров; оформление чертежа.

Во втором вопросе предполагается выполнение аксонометрической проекции детали с вырезом условной четверти. Необходимо построить прямоугольную изометрию для одной из деталей задания.

В третьем вопросе предполагается проверка графического задания «Сборочный чертеж».

 Π *umepamypa*: [1], [7], [12], [15], [20], [33].

Вопросы для самоконтроля

- 1. Как называют документ, определяющий конструкцию изделия, взаимодействие его основных составных частей и поясняющий принцип работы изделия?
- 2. Какова последовательность чтения чертежа общего вида при выполнении работы «Деталирование чертежа общего вида (ВО)»?
- 3. В какой последовательности выполняется деталирование чертежа общего вида?

- 4. Какой линией на сборочных чертежах и чертежах общего вида изображают «обстановку»?
 - 5. Как выделяют на чертежах ВО и СБ повторяющиеся номера позиций?
- 6. Какие условности и упрощения необходимо учитывать при чтении чертежа ВО?
- 7. Каким образом (в каком положении) на рабочем чертеже располагают пружины сжатия?
- 8. Какие данные указывают в таблице параметров при выполнении чертежа цилиндрического зубчатого колеса?

2.20 Контрольное задание по теме «Деталирование чертежа общего вида»

Цель занятия — контроль приобретенных умений и навыков чтения чертежей общего вида и составления рабочих чертежей деталей по чертежу общего вида.

Ключевые вопросы темы

- 1. Выполнение контрольного задания по теме
- «Деталирование чертежа общего вида». Составление рабочего чертежа детали (эскизно) по чертежу общего вида.
 - 2. Выполнение технического рисунка детали.

Методические рекомендации

На данном занятии предполагается выполнение контрольного задания по теме «Деталирование чертежа общего вида».

В первом вопросе предусматривается составление рабочего чертежа (эскизно) одной детали сборочной единицы по чертежу общего вида. Первым этапом выполнения данной работы является чтение заданного чертежа общего вида. Необходимо ознакомиться с описанием работы сборочной единицы, представленным на учебном чертеже, таблицей составных частей изделия, изображениями, размещенными на чертеже. После определения формы детали необходимо выбрать главный вид и количество изображений для заданной детали. Затем в глазомерном масштабе эскизно выполнить необходимые изображения, нанести выносные и размерные линии (без указания числовых значений), оформить графическую работу в соответствии со стандартами ЕСКД.

Во втором вопросе задания требуется выполнить технический рисунок для данной детали.

Литература: [1], [7], [12], [15], [20], [33].

Вопросы для самоконтроля

1. Какой документ называют чертежом детали?

- 2. Как называется чертеж, выполненный от руки, без применения чертежных инструментов, без точного соблюдения масштаба, но с обязательным соблюдением пропорций элементов деталей?
 - 3. Какие размеры содержит чертеж общего вида?
- 4. Как выбирается главный вид и количество изображений для детали при деталировании чертежа общего вида?
- 5. Как рекомендуется располагать размеры, относящиеся к одному и тому же конструктивному элементу (пазу, выступу, отверстию)?

3. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ

При изучении дисциплины «Инженерная компьютерная графика» часть необходимой информации студенты должны приобретать в процессе самостоятельного изучения учебной и справочной литературы и выполнения графических заданий.

Содержание самостоятельной работы студентов представлено в таблице 5.

Таблица 5 – Структура самостоятельной работы студентов (* для очной формы)

№ п/п	Содержание самостоятельной работы	Форма контроля, аттестации
1	Освоение теоретических основ дисциплины, изучение учебной и справочной литературы	Тесты* Защита работ
2	Подготовка к аудиторным (практическим) занятиям, к текущему контролю знаний	Тесты*, Контрольные задания
3	Решение и оформление задач в рабочей тетради по начертательной геометрии (в дополнение к практическим занятиям)	Проверка Тетради*
4	Выполнение и оформление графических заданий (в дополнение к практическим занятиям)	Защита работ

4. МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ РАСЧЕТНО-ГРАФИЧЕСКИХ РАБОТ (РГР)

Согласно учебному плану дисциплины «Инженерная компьютерная графика» направления подготовки 15.03.01 Машиностроение (профиль «Технологии, оборудование и автоматизация машиностроительных производств») студенты очной формы выполняют расчетно-графические работы (РГР) № 1, 2. Задания расчетно-графических работ по инженерной компьютерной графике выполняются в графической системе КОМПАС-3D.

Расчетно-графическая работа № 1 включает:

- задание «Многогранник»;
- задание «Тела вращения»;
- задание «Деталь»;
- задание «Пересечение плоскостей»;
- задание «Позиционные и метрические задачи»;
- задание «Сопряжения».

Расчетно-графическая работа № 2 включает:

- задание «Изделия крепежные»;
- задание «Соединения»;
- задание «Эскиз детали»;
- задание «Выполнение рабочего чертежа колеса зубчатого»
- задание «Эскизы деталей сборочной единицы»;
- задание «Сборочный чертеж»;
- задание «Деталирование».

Все графические задания выполняются по вариантам. Номер варианта указывается преподавателем. Графическая часть заданий размещена в ЭИОС.

Необходимо отметить, что объем работы для всех графических заданий и последовательность выполнения подробно изложены в разделе «Методические рекомендации по проведению практических занятий» данного пособия.

В соответствии с учебным планом дисциплины студенты заочной формы обучения закрепляют изучаемый материал самостоятельно в виде выполнения расчетно-графических работ (РГР) № 1, 2.

Вариант задания для РГР определяется в соответствии с двумя последними цифрами номера зачетной книжки (две последние цифры суммируются). Например, если шифр 535, номер варианта выбирается сложением двух последних цифр -8. По номеру варианта выполняются задания расчетно-графических работ.

Задания выполняются на отдельных форматах АЗ чертежной бумаги. Основные требования к оформлению заданий приведены в пособии [34].

Пример оформления титульного листа РГР приведен в приложении 3.

Выполненная расчетно-графическая работа представляется для регистрации на кафедре, затем поступает на рецензирование преподавателю. Работа, выполненная не по своему варианту, не рецензируется.

Защита РГР производится во время консультаций преподавателя по дисциплине по соответствующему расписанию.

В состав РГР № 1, выполняемой студентами заочной формы обучения в первом семестре, входят графические задания, содержащие решения некоторых типовых задач начертательной геометрии. Графическая часть заданий приведена в учебно-методическом пособии [34]. В расчетно-графической работе № 1 должны быть выполнены следующие задания:

- задача 1 (лист 1). Пересечение пластин;
- задача 2 (лист 1). Построение пирамиды;
- задача 3 (лист 2). Двугранный угол;
- задача 4 (лист 2). Натуральная величина треугольника;
- задача 7.1 (лист 4). Конус с вырезом (или окном);
- задача 8 (лист 4). Пересечение поверхностей;
- задание 2 (лист 2). Корпус.

Содержанием РГР № 2, выполняемой во втором семестре, являются графические задания, содержащие чертежи схематизированных пространственных тел и реальных деталей машиностроительного производства. Графическая часть заданий приведена в учебно-методическом пособии [34]. В расчетно-графической работе № 2 должны быть выполнены следующие задания:

- задание 5. Корпус (или плита);
- задание 8. Соединения;
- задание 9. Корпус. Эскиз;
- задание 12. Деталирование.

Обе расчетно-графические работы после их выполнения подлежат защите, содержанием которой являются вопросы, позволяющие выяснить самостоятельность выполнения заданий.

Промежуточная аттестация по дисциплине за первый семестр проводится в форме зачета. Студенты заочной формы обучения допускаются к зачёту по результатам РГР № 1 (выполненной и защищенной). В ходе текущей аттестации в качестве зачётной работы предлагается выполнить чертёж комбинированного тела, состоящего из многогранника и тела вращения, просечённого сквозным призматическим отверстием.

Студент, обнаруживший полное знание учебного и справочного материала, усвоивший взаимосвязь основных понятий дисциплины в их значении для приобретаемой специальности, показавший систематический характер знаний по дисциплине и способный к их самостоятельному пополнению и обновлению в ходе дальнейшей учебной работы и в будущей профессиональной деятельности получает положительную оценку.

Промежуточная аттестация по дисциплине проводится в форме экзамена. Студенты заочной формы обучения допускаются к экзамену по результатам

РГР № 2 (выполненной и защищенной). Экзаменационный билет содержит один из экзаменационных вопросов, а также вопрос по чертежу общего вида и задание на графическую работу (выполнение эскиза и технического рисунка одной детали с этого чертежа), которую студент должен выполнить на экзамене. Во время проведения экзамена с разрешения преподавателя студент может пользоваться справочной литературой.

Успеваемость студента оценивается следующими оценками: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно». Критерии оценки (уровня освоения дисциплины) рассмотрены подробно во введении данного пособия.

ЗАКЛЮЧЕНИЕ

Следует отметить, что при преподавании дисциплины учитываются особенности учебного плана подготовки по данному направлению, требования непрерывности геометрического и графического образования и преемственности знаний при переходе к профилирующим учебным дисциплинам, новейшие достижения науки и техники.

Формами учебной работы являются: лекционные и практические занятия. Важной составляющей учебного процесса являются консультации (индивидуальная работа студента под контролем преподавателя). Здесь происходит доработка графических заданий, их защита, исправление неудовлетворительных оценок, полученных студентом при промежуточной аттестации знаний.

Залогом успешного освоения дисциплины является непрерывность и системность выполнения всех графических заданий, своевременное решение в рабочей тетради предлагаемых геометрических задач, обязательная подготовка к практическим занятиям всех вопросов, рассматриваемых на лекциях. Современные информационные технологии с использованием интернетресурсов дают возможность дополнить недостающие знания.

По всем темам дисциплины «Инженерная компьютерная графика» на кафедре имеются в изданном через издательство университета и в электронном виде учебно-методические пособия по изучению дисциплины и выполнению соответствующих графических заданий. Пособия содержат задания на работы, методические рекомендации по их выполнению, требования к оформлению, справочные материалы, ссылки на информационные источники, списки литературы.

Результаты освоения дисциплины используются при изучении последующих дисциплин, обеспечивающих дальнейшую подготовку в графической области.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Государственные стандарты ЕСКД.
- 2. Бубенников, А. В. Начертательная геометрия / А. В. Бубенников. Москва: Высшая школа, 1985. 288 с.
- 3. Герасимов, А. А. Самоучитель КОМПАС-3D v19 / А. А.Герасимов. Санкт-Петербург: «БХВ-Петербург», 2021. 624 с.
- 4. Гордон, В. О. Курс начертательной геометрии: учеб. пособие / В. О. Гордон, М. А. Семенцов-Огиевский. 27 -е изд., стер. Москва: Высшая школа, 2007. 272 с.
- 5. Курилло, Т. Н. Схема электрическая принципиальная: метод. указания по выполнению графической работы / Т. Н. Курилло, Ю. С. Обрехт. Калининград: Изд-во КГТУ, 2009. 36 с.
- 6. Курилло, Т. Н. Схема электрическая принципиальная (ч. 2). Методические указания по выполнению графической работы Т. Н. Курилло, Ю. С. Обрехт. Калининград: Изд-во КГТУ, 2011. 33 с.
- 7. Левицкий, В. С. Машиностроительное черчение и автоматизация выполнения чертежей: учебник для втузов / В. С. Левицкий. 7-е изд., стер. Москва: Высшая школа, 2006. 435 с.
- 8. Никонов, В. В. КОМПАС-3D: создание моделей и 3D-печать / В. В. Никонов.— Издательство: Питер, 2020. 208 с.
- 9. Обрехт, Ю. С. Выполнение чертежа схематизированной детали / Ю. С. Обрехт. Калининград: ФГБОУ ВПО «КГТУ», 2012. 39 с.
- 10. Обрехт, Ю. С. Резьбы. Изделия крепежные резьбовые / Ю. С. Обрехт. Калининград: ФГБОУ ВПО «КГТУ», 2016. 57 с.
- 11. Обрехт, Ю. С. Соединения резьбовые и сварные / Ю. С. Обрехт. Калининград: ФГБОУ ВПО «КГТУ», 2017. 39 с.
- 12. Обрехт, Ю. С. Чтение и деталирование чертежей общего вида / Ю. С. Обрехт. Калининград: ФГБОУ ВПО «КГТУ», 2021. 61 с.
- 13. Обрехт, Ю. С. Компьютерная графика. Плоская графика «Компаса» / Ю. С. Обрехт. Калининград: Изд-во ФГБОУ ВО «КГТУ», 2023. 61 с.
- 14. Обрехт, Ю. С. Компьютерная графика. Трехмерное моделирование в «Компасе» / Ю. С. Обрехт. Калининград: Изд-во ФГБОУ ВО «КГТУ», 2023. 37 с.
- 15. Попова, Г. Н. Машиностроительное черчение: справочник / Г. Н. Попова, С. Ю. Алексеев. Ленинград: Машиностроение, 1986. 447 с.
- 16. Рудаченко, С. В. Кривые линии и поверхности. Решение типовых задач: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2010. 54 с.
- 17. Рудаченко, С. В. Решение задач по начертательной геометрии. Учебно-методическое пособие для практических занятий и самостоятельной работы для студентов 1-го курса / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВПО «КГТУ», 2011. 100с.
- 18. Рудаченко, С. В. Сборник задач для практических занятий и самостоятельной работы по начертательной геометрии и инженерной графике с

- модульными классификаторами теоретической информации. Учебнометодическое пособие для студентов высших учебных заведений / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВПО «КГТУ», 2012. 48 с.
- 19. Рудаченко, С. В. Способы преобразования проекций. Решение типовых задач: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2013. 25 с.
- 20. Рудаченко, С. В. Инженерная графика. Машиностроительное черчение с модульными классификаторами теоретической информации: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВПО «КГТУ», 2014. 25 с.
- 21. Рудаченко, С. В. Инженерная графика. Пересечение прямой с плоскостью. Пересечение плоскостей: учеб.-метод. Пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2016. 29 с.
- 22. Рудаченко, С. В. Многогранные поверхности / С. В. Рудаченко, Т. В. Рудаченко Калининград: ФГБОУ ВПО «КГТУ», 2017. 28с.
- 23. Рудаченко, С. В. Инженерная графика. Развертки поверхностей: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2017. 27 с.
- 24. Рудаченко, С. В. Инженерная графика. Решение типовых задач по теме «Перпендикулярность прямых и плоскостей»: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2018. 32 с.
- 25. Рудаченко, С. В. Инженерная графика. Поверхности вращения: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2019. 27с.
- 26. Рудаченко, С. В. Инженерная графика. Оформление чертежей: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2020. 32 с.
- 27. Рудаченко, С. В. Инженерная графика. Многогранные поверхности. Построение сечений: учеб.-метод. пособие / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2021. 26 с.
- 28. Рудаченко, С. В. Инженерная графика. Проекционное черчение с модульными классификаторами теоретической информации / С. В. Рудаченко, Т. В. Рудаченко. Калининград: Издательство ФГБОУ ВО «КГТУ», 2024. 42 с.
- 29. Стриганова, Л. Ю. Основы работы в Компас-3D. / Л. Ю. Стриганова, Н. В. Семёнова. Екатеринбург: Изд-во Урал. ун-та, 2020.-160c.
- 30. Федоренко, В. А. Справочник по машиностроительному черчению / В. А. Федоренко, А. И. Шошин. Ленинград: Машиностроение, 1983. 416 с.
- 31. Фролов, С. А. Начертательная геометрия / С. А. Фролов. Москва : Машиностроение, 1983. 240 с.

- 32. Чагина, А. В. 3D-моделирование в КОМПАС-3D версий v17 и выше. Учебное пособие для вузов / А. В. Чагина, В. П. Большаков. Издательство: Питер, 2021.-256 с.
- 33. Чекмарев, А. А. Справочник по машиностроительному черчению / А. А. Чекмарев, В. К. Осипов. 5-е изд., стер. Москва: Машиностроение, 2004.-493 с.
- 34. Чекмарев, А.А. Начертательная геометрия. Инженерная и машинная графика. Программа, контрольные задания и методические указания для студентов-заочников направлений подготовки (специальностей) в области техники, технологии, педагогики, сельского и рыбного хозяйства / А. А. Чекмарев, А. В. Верховский, А. А. Пузиков; под ред. А. А. Чекмарева.— Москва, Высшая школа. 2006. 155 с.

ПРИЛОЖЕНИЯ

Приложение 1

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ

- 1. Предмет начертательной геометрии. Понятие проекции.
- 2. Способы получения обратимых изображений. Метод Монжа. Октанты. Проецирование точки и отрезка прямой. Эпюр Монжа.
- 3. Проецирование отрезка прямой общего и частного положения. Взаимное положение точки и прямой. Деление отрезка прямой в данном отношении.
 - 4. Следы прямой. Определение натуральной величины отрезка прямой.
 - 5. Взаимное положение прямых линий. Конкурирующие точки.
 - 6. Задание плоскости на эпюре Монжа.
- 7. Прямая и точка в плоскости, условия принадлежности, алгоритмы построения.
- 8. Взаимное положение прямой и плоскости. Алгоритм определения точки пересечения прямой с плоскостью, его реализация на эпюре. Определение видимости.
- 9. Взаимное положение двух плоскостей. Определение линии пересечения.
- 10. Проецирование прямого угла. Построение взаимно перпендикулярных прямой и плоскости, двух прямых, двух плоскостей.
 - 11. Способ замены плоскостей проекций. Примеры использования.
- 12. Метод вращения вокруг прямых, перпендикулярных плоскости проекций, его применение. Способ плоскопараллельного перемещения. Примеры использования.
 - 13. Кривые линии и их классификация. Определение типа, длины кривой.
 - 14. Пространственные кривые линии. Винтовые линии, их развертки.
- 15. Многогранные поверхности: виды, задание на эпюре. Точка на поверхности.
 - 16. Пересечение многогранников плоскостью. Построение сечения.
- 17. Пересечение многогранников прямой линией. Алгоритм определения точек пересечения прямой с поверхностью, его реализация на эпюре.
 - 18. Развертки многогранников, способы построения.
- 19. Кривые поверхности. Классификация, способы задания и конструирования.
 - 20. Линейчатые поверхности. Определители. Точка на поверхности.
- 21. Поверхности вращения. Основные разновидности. Точка на поверхности.
 - 22. Пересечение кривых поверхностей плоскостью, приемы построения.
- 23. Пересечение кривых поверхностей прямой линией. Алгоритм построения точек пересечения прямой с поверхностью, его реализация на эпюре.

- 24. Построение линии взаимного пересечения двух кривых поверхностей с применением вспомогательных секущих плоскостей.
- 25. Применение способа вспомогательных секущих сфер для построения линии пересечения кривых поверхностей.
 - 26. Развертки кривых поверхностей (точные, приближенные, условные).
- 27. Аксонометрические проекции, их получение, классификация, основные термины.
 - 28. Стандартные аксонометрии. Окружность в аксонометрии.

КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ

- 1. Форматы основные и дополнительные (ГОСТ 2.301-68): размеры, предельные отклонения. Основные надписи (ГОСТ 2.104-2006), реквизиты заполнения.
 - 2. Масштабы изображений (ГОСТ 2.302-68): термины, обозначения.
 - 3. Линии чертежа (ГОСТ 2.303-68): наименование, назначение.
- 4. Шрифты чертёжные (ГОСТ 2.304-81): термины и определения, типы и размеры.
 - 5. Виды (ГОСТ 2.305-2008): основные, дополнительные, местные.
- 6. Разрезы (ГОСТ 2.305-2008): классификация, выполнение и оформление.
- 7. Сечения (ГОСТ 2.305-2008): классификация, выполнение и оформление.
- 8. Обозначения графические материалов и правила их нанесения на чертежах (ГОСТ 2.306-68).
 - 9. Нанесение размеров и предельных отклонений (ГОСТ 2.307-2011).
- 10. Виды изделий (ГОСТ 2.101-68). Виды и комплектность конструкторских документов (ГОСТ 2.102-68).
 - 11. Стадии разработки конструкторских документов (ГОСТ 2.103-68).
- 12. Резьба: термины, определения, элементы, параметры. Классификация резьб.
 - 13. Изображение (ГОСТ 2.311-68) и обозначение резьбы.
- 14. Изображение и обозначение стандартных крепёжных (резьбовых) деталей.
 - 15. Конструирование нарезанного отверстия под шпильку.
- 16. Изображения упрощённые и условные крепёжных деталей (ГОСТ 2.315-68).
- 17. Изображение болтового соединения: по действительным размерам, упрощённое и условное.
- 18. Изображение шпилечного соединения: по действительным размерам, упрощённое и условное.
- 19. Условные изображения и обозначения швов сварных соединений (ГОСТ 2.312-68).
- 20. Эскиз детали: последовательность выполнения. Выбор главного изображения и общего количества изображений. Технический рисунок.
- 21. Стандартные элементы деталей (фаски, проточки, рифления и т. п.): изображение и обозначение.
- 22. Чертежи сборочной единицы: общего вида, сборочный; условности и упрощения при выполнении. Оформление спецификации (ГОСТ 2.106-96).
- 23. Деталирование чертежей общего вида. Последовательность выполнения рабочего чертежа детали.

- 24. Компьютерная графика, геометрическое моделирование и решаемые ими задачи. Графический пакет AutoCad, интерфейс, структура меню, панели инструментов.
- 25. 2D-моделирование в графических системах. Чертеж плоского контура.
 - 26. 3D-моделирование в графических системах.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО РЫБОЛОВСТВУ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Институт агроинженерии и пищевых систем Кафедра инжиниринга технологического оборудования

допущена к должность (афическая работа защите: звание), ученая степень Фамилия И.О.	Расчетно-графическая работа защищена должность (звание), ученая степень Фамилия И.О.
« <u> » </u>	202r.	«»202г.
	Расчетно-гра	фическая работа №
	ОМ КАНЧЕНЕЖНИ» С фиШ	исциплине ИПЬЮТЕРНАЯ ГРАФИКА» гудента нт №
		Работу выполнил: студент грФамилия И.О. «»202г.
	Калини	инград — 20

Локальный электронный методический материал

Светлана Владимировна Рудаченко Татьяна Владимировна Рудаченко

ИНЖЕНЕРНАЯ КОМПЬЮТЕРНАЯ ГРАФИКА

Редактор С. Кондрашова Корректор Т. Звада

Уч.-изд. л. 5,2. Печ. л. 4,7.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет». 236022, Калининград, Советский проспект,