

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ И.о. директора института

Фонд оценочных средств (приложение к рабочей программе дисциплины)

«АДАПТИВНЫЕ И ОПТИМАЛЬНЫЕ СИСТЕМЫ УПРАВЛЕНИЯ»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

15.03.04 АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ

ИНСТИТУТ РАЗРАБОТЧИК цифровых технологий

кафедра цифровых систем и автоматики

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование компе- тенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями	
ПК-1 Способен разрабатывать проект автоматизированной системы управления технологическими процессами	Адаптивные и опти- мальные системы управления	знать: - методологические основы проектирования и функционирования адаптивных и оптимальных систем автоматического управления (САУ); - основные способы синтеза адаптивных и оптимальных САУ; уметь: - проводить анализ адаптивных и оптимальных САУ; - выбирать средства при проектировании адаптивных и оптимальных САУ; - определять показатели качества функционирования САУ; владеть: - навыками проектирования систем автоматического управления системами и процессами; - навыками наладки, настройки и обслуживания технических средств и систем управления.	

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов;
- контрольная работа (для заочной формы обучения).

К оценочным средствам для промежуточной аттестации относятся:

- экзаменационные задания по дисциплине, представленные в виде тестовых заданий закрытого и открытого типов.
 - 1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
	тельно»	тельно»		
Критерий	«не зачтено»		«зачтено»	
1 Системность	Обладает частич-	Обладает мини-	Обладает набо-	Обладает полно-
и полнота зна-	ными и разрознен-	мальным набором	ром знаний, до-	той знаний и си-
ний в отноше-	ными знаниями, ко-	знаний, необходи-	статочным для	стемным взглядом
нии изучаемых	торые не может	мым для систем-	системного	на изучаемый объ-
объектов	научно-корректно	ного взгляда на	взгляда на изуча-	ект
	связывать между со-	изучаемый объект	емый объект	
	бой (только некото-			
	рые из которых мо-			
	жет связывать			
2 D C	между собой)	Maria	M	Maria
2 Работа с ин-	Не в состоянии	Может найти не-	Может найти,	Может найти, си-
формацией	находить необходи-	обходимую ин-	интерпретиро-	стематизировать
	мую информацию,	формацию в рам-	вать и система-	необходимую ин-
	либо в состоянии	ках поставленной	тизировать необ-	формацию, а
	находить отдельные	задачи	ходимую инфор-	также выявить но-
	фрагменты информации в рамках по-		мацию в рамках поставленной за-	вые, дополнительные источники ин-
	ставленной задачи			
	ставленной задачи		дачи	формации в рам-
3 Научное	Не может делать	В состоянии осу-	В состоянии осу-	задачи В состоянии осу-
осмысление	научно корректных	ществлять научно	ществлять систе-	ществлять систе-
изучаемого яв-	выводов из имею-	корректный ана-	матический и	матический и
ления, про-	щихся у него сведе-	лиз предоставлен-	научно коррект-	научно-коррект-
цесса, объекта	ний, в состоянии	ной информации	ный анализ	ный анализ предо-
цесса, объекта	проанализировать	поп ппформации	предоставленной	ставленной ин-
	только некоторые		информации, во-	формации, вовле-
	из имеющихся у		влекает в иссле-	кает в исследова-
	него сведений		дование новые	ние новые реле-
			релевантные за-	вантные постав-
			даче данные	ленной задаче дан-
				ные, предлагает
				новые ракурсы по-
				ставленной задачи
4 Освоение	В состоянии решать	В состоянии ре-	В состоянии ре-	Не только владеет
стандартных	только фрагменты	шать поставлен-	шать поставлен-	алгоритмом и по-
алгоритмов ре-	поставленной за-	ные задачи в соот-	ные задачи в со-	нимает его ос-
шения профес-	дачи в соответствии	ветствии с задан-	ответствии с за-	новы, но и предла-
сиональных за-	с заданным алгорит-	ным алгоритмом	данным алгорит-	гает новые реше-
дач	мом, не освоил		мом, понимает	ния в рамках по-
	предложенный ал-		основы предло-	ставленной задачи
	горитм, допускает		женного алго-	
	ошибки		ритма	

4

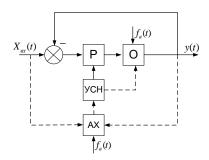
2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Компетенция ПК-1: Способен разрабатывать проект автоматизированной системы управления технологическими процессами.

Тестовые задания открытого типа

1. Классическое ограничение вида $\int\limits_{t_0}^{t_k} G(x,u,t)dt = C$ называется ______

Ответ: изопериметрическим


2. Автоматическую систему, обеспечивающую наилучшие технические и технико-экономические показатели при заданных условиях работы и ограничениях, называют

Ответ: оптимальной

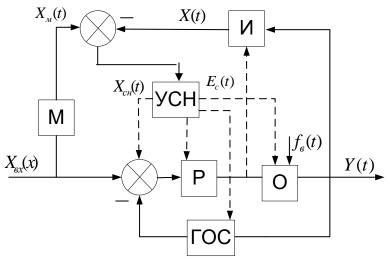
3. При применении принципа максимума для определения оптимального управления системами с ограничениями на управление, функции управления являются ______

Ответ: кусочно-непрерывными

4. На рисунке приведена структурная схема самонастраивающейся системы с ______

Ответ: анализатором характеристик

5. В задачах оптимального управления ограничения в виде равенств относятся к _____


Ответ: классическим

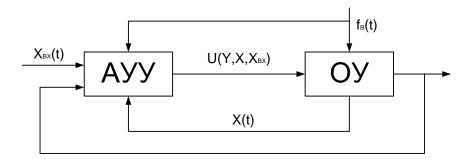
6. Определить функционал Гамильтона – Понтрягина «Н» (принцип максимума) , если уравнение движения объекта имеет вид $\begin{vmatrix} \dot{y}_1 = y_2 \\ \dot{y}_2 = u \end{vmatrix}$, а оптимизирующий функционал представлен в

виде
$$J=T=\int\limits_{t_0}^{t_k}1dt o \min$$
 . :_____

Ответ:
$$H = \psi_0 \cdot 1 + \psi_1 \cdot y_2 + \psi_2 \cdot u$$

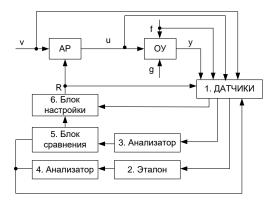
7. На рисунке приведена структурная схема самонастраивающейся системы с ______

Ответ: эталонной моделью


8. Ошибка восстановления стремится к нулю при числе шагов $i \to \infty$ для всех значений начальной ошибки $e(i_0)$, если наблюдатель _____ устойчив

Ответ: асимптотически

9. Автоматические системы, в которых параметры управляющих воздействий, или алгоритмы управления автоматически и целенаправленно меняются для достижения наилучших показателей, причем характеристики объекта и внешних воздействий меняющиеся заранее неизвестным образом, называются ______


Ответ: адаптивными (системами)

10. Обобщенная функциональная схема адаптивной системы представлена на рисунке. На ней элемент АУУ – это ______

Ответ: адаптивное управляющее устройство

11. В блоке настройки 6 обобщенной структуры беспоисковой системы прямого адаптивного управления (рис) производится расчет закона ______

Ответ:изменения настраиваемых параметров регулятора

12. Нестационарная система – это система, параметры которой _____ от времени

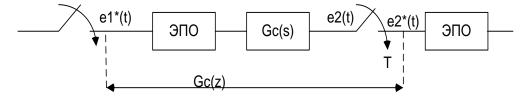
Ответ: зависят

13. Самонастраивающиеся системы с автоматической настройкой структуры называются

Ответ: самоорганизующимися

14. Стохастическими системами управления называются системы, параметры или сигналы в которых являются _____

Ответ: случайными


15. В случае представления начальных и конечных условий задачи оптимального управления в виде точек фазового пространства — это задача с концами.

Ответ: закрепленными

16. Критерий оптимальности системы, оптимальной по расходу энергии на управление, записывается в виде

Ответ:
$$J = \int_{t_0}^{t_k} r \cdot u^2(t) dt$$

17. На данном рисунке приведена схема цифрового регулятора, реализованного в виде _____ импульсного фильтра:

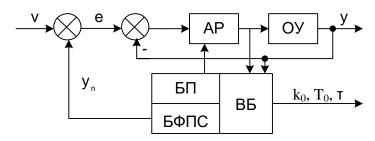
Ответ: последовательного

18. В структуру системы управления с самонастраивающимся регулятором входят следующие элементы:

Ответ: упредитель (предсказатель), оцениватель, управляемый объект

19. Задача Майера записывается в виде _____:

Otbet: $J = \varphi(t_k) = \varphi_1(x(t_k))$


20. Критерий оптимальности системы, оптимальной по точности в динамическом режиме, записывается в виде ______:

OTBET:
$$J = \int_{t_0}^{t_k} E^2(t) dt$$

21. Квазистационарным называется объект, характеристики которого изменяются по истечении периода квазистационарности

Ответ: скачкообразно

22. На рисунке приведена структурная схема системы управления с автоматически настраиваемым ПИ – регулятором. БФПС – это блок

Ответ: (блок) формирования пробных сигналов

23. Функции Ляпунова используются при построении самонастраивающихся систем для определения закона изменения _____

Ответ: настраиваемых параметров

Тестовые задания закрытого типа

1. Задача Лагранжа записывается в виде:

$$\mathbf{a)} \ J = \int_{t_0}^{t_k} F(x, \dot{x}, t) dt$$

$$\int J = \varphi(t_k) = \varphi_1(x(t_k))$$

B)
$$J = \int_{t_0}^{t_k} F(x, \dot{x}, t) dt + \varphi(x(t_1))$$

$$\Gamma) \ J = \int_{t_0}^{t_k} F(X, U, t) dt$$

2. Критерий оптимальности системы, оптимальной по быстродействию, записывается в виде:

a)
$$J = \int_{t_0}^{t_k} E^2(t) dt$$

$$\delta) \ J = \int_{t_0}^{t_k} r \cdot u^2(t) dt$$

$$\mathrm{B)} \ J = \int\limits_{t_0}^{t_k} r \big| u(t) \big| dt$$

$$\Gamma) J = \int_{t_0}^{t_1} dt$$

3. Расчет оптимального управления непрерывной системы с использованием уравнения Риккати возможен при следующем оптимизирующем функционале:

a)
$$I = \int_{t_0}^{t_1} (x_1 + ku) dt$$

б)
$$I = \int_{t_0}^{t_1} (x_1 + ku^2) dt$$

$$B) I = \int_{t_0}^{t_1} (x_1^2 + ku) dt$$

$$\Gamma) I = \int_{t_0}^{t_1} (x_1^2 + ku^2) dt$$

- 4. Основные математические методы теории оптимальных процессов:
- а) линейная алгебра
- б) операционное исчисление
- в) принцип максимума Понтрягина, динамическое программирование Беллмана, математическое программирования
- г) преобразование Фурье
- 5. При использовании уравнения Риккати для оптимизирующего функционала

$$I = \int_{t_0}^{t_1} (x_1^2 + 0.1x_2^2 + u^2) dt$$
 матрицы R_1 и R_2 имеют вид:

a)
$$R_1 = \begin{pmatrix} 0 & 0.1 \\ 0.1 & 0 \end{pmatrix}$$
, $R_2 = 0.1$

6)
$$R_1 = \begin{pmatrix} 0 & 0.1 \\ 0.1 & 0 \end{pmatrix}$$
, $R_2 = 1$

B)
$$R_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0, 1 \end{pmatrix}$$
, $R_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$

$$\Gamma$$
) $R_1 = \begin{pmatrix} 1 & 0 \\ 0 & 0, 1 \end{pmatrix}$, $R_2 = 1$

- 6. По виду характеристик, используемых при формировании показателя качества I, беспоисковые системы прямого адаптивного управления **HE** делятся на:
- а) системы с информацией о частотных характеристиках
- б) системы с информацией о временных характеристиках
- в) системы с информацией о статических характеристиках
- г) системы с моделью объекта

- 7. Существование оптимального управления:
- а) оптимальное решение всегда существует, но не является единственным
- б) оптимальное решение существует не всегда
- в) оптимальное решение всегда существует и является единственным
- г) оптимальное решение всегда существует

З ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/ КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Учебным планом предусмотрено выполнение контрольной работы (для студентов заочной формы обучения).

Типовые задания:

Задание 1

- 1 Показатели оптимальности процесса управления.
- 2 Структурная схема самонастраивающейся системы и ее основные элементы.

Задание 2

- 1 Определение оптимального управления для непрерывных систем при квадратичном оптимизирующем функционале.
 - 2 Применение анализатора характеристик. Использование эталонной модели.

Задание 3

- 1 Оптимальные системы с обратной связью по наблюдаемым координатам.
- 2 Адаптивные системы с идентификатором.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Адаптивные и оптимальные системы управления» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств.

Преподаватель-разработчик – к.т.н., доцент В.И. Устич.

Фонд оценочных средств рассмотрен и одобрен на кафедре цифровых систем и автоматики.

И.о. заведующего кафедрой

В.И. Устич

Фонд оценочных средств рассмотрен и одобрен методической комиссией института цифровых технологий (протокол №5 от $29.08.2024 \, \Gamma$).

Председатель методической комиссии

О.С. Витренко