

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ») Балтийская государственная академия рыбопромыслового флота

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе дисциплины «ТЕОРИЯ МЕХАНИЗМОВ И МАШИН»

основной профессиональной образовательной программы специалитета по специальности

26.05.06 ЭКСПЛУАТАЦИЯ СУДОВЫХ ЭНЕРГЕТИЧЕСКИХ УСТАНОВОК

Специализация программы «Эксплуатация главной судовой двигательной установки»

ИНСТИТУТ Морской

РАЗРАБОТЧИК кафедра инженерной механики и технологии материалов

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Результаты освоения дисциплины представлены в таблице 1.

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с компетенциями

Код и наименование компетенции	Результаты обучения, соотнесенные с компетенциями
ОПК-2: Способен при-	<u>Знать:</u> способы определения КПД цилиндрического, червячного и
менять естественнона-	планетарного редукторов; способы определения КПД цилиндриче-
учные и общеинженер-	ского, червячного и планетарного редукторов при разных режимах
ные знания, аналитиче-	движения, кинематических параметров V-образного механизма
ские методы в профес-	ДВС по приближенным формулам; способы записи и хранения ре-
сиональной деятельно-	зультатов измерений и методы обработки и представления экспе-
сти.	риментальных данных;
	<u>Уметь:</u> определять КПД цилиндрического, червячного и планетар-
	ного редукторов; определять КПД цилиндрического, червячного и
	планетарного редукторов при разных режимах движения, кинема-
	тических параметров V-образного механизма ДВС по приближен-
	ным формулам; записывать и хранить результаты измерений и ме-
	тодов обработки экспериментальных данных;
	<u>Владеть:</u> навыками работы с измерительными приборами и ин-
	струментами; навыками работы с измерительными приборами при
	определении КПД цилиндрического, червячного и планетарного
	редукторов при разных режимах движения, кинематических пара-
	метров; методами математического анализа и моделирования, тео-
	ретического и экспериментального исследования в теории меха-
	низмов и машин для выполнения элементов расчетно-проектиро-
	вочной работы по созданию и модернизации систем и средств экс-
	плуатации транспортных и транспортно-технологических машин и
	оборудования.

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов с ключами правильных ответов;
- типовые задания по контрольным работам.

К оценочным средствам для промежуточной аттестации относятся типовые задания по расчетно-графической работе.

Промежуточная аттестация по окончанию изучения дисциплины проводится в форме зачета, который выставляется по результатам прохождения всех видов текущего контроля

успеваемости. При необходимости для проведения промежуточной аттестации могут быть использованы тестовые задания закрытого и открытого типов.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (таблица 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
	тельно»	тельно»		
Критерий	«не зачтено»		«зачтено»	
1 Системность и	Обладает частич-	Обладает мини-	Обладает набо-	Обладает полно-
полнота знаний	ными и разрознен-	мальным набором	ром знаний, до-	той знаний и си-
в отношении	ными знаниями, ко-	знаний, необходи-	статочным для	стемным взглядом
изучаемых объ-	торые не может	мым для систем-	системного	на изучаемый объ-
ектов	научно- корректно	ного взгляда на	взгляда на изуча-	ект
	связывать между со-	изучаемый объект	емый объект	
	бой (только некото-			
	рые из которых мо-			
	жет связывать			
	между собой)			
2 Работа с ин-	Не в состоянии	Может найти не-	Может найти,	Может найти, си-
формацией	находить необходи-	обходимую ин-	интерпретиро-	стематизировать
	мую информацию,	формацию в рам-	вать и система-	необходимую ин-
	либо в состоянии	ках поставленной	тизировать необ-	формацию, а
	находить отдельные	задачи	ходимую инфор-	также выявить но-
	фрагменты инфор-		мацию в рамках	вые, дополнитель-
	мации в рамках по-		поставленной за-	ные источники ин-
	ставленной задачи		дачи	формации в рам-
				ках поставленной
				задачи
3 Научное	Не может делать	В состоянии осу-	В состоянии осу-	В состоянии осу-
осмысление	научно корректных	ществлять научно	ществлять систе-	ществлять систе-
изучаемого яв-	выводов из имею-	корректный ана-	матический и	матический и
ления, про-	щихся у него сведе-	лиз предоставлен-	научно коррект-	научно-коррект-
цесса, объекта	ний, в состоянии	ной информации	ный анализ	ный анализ предо-
	проанализировать		•	ставленной ин-
	только некоторые		информации, во-	формации, вовле-
	из имеющихся у		влекает в иссле-	кает в исследова-
	него сведений		дование новые	ние новые реле-
			релевантные за-	вантные постав-
			даче данные	ленной задаче дан-
				ные, предлагает

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
	тельно»	тельно»		
Критерий	«не зачтено»	«зачтено»		
				новые ракурсы по-
				ставленной задачи
4 Освоение	В состоянии решать	В состоянии ре-	В состоянии ре-	Не только владеет
стандартных	только фрагменты	шать поставлен-	шать поставлен-	алгоритмом и по-
алгоритмов ре-	поставленной за-	ные задачи в соот-	ные задачи в со-	нимает его ос-
шения профес-	дачи в соответствии	ветствии с задан-	ответствии с за-	новы, но и предла-
сиональных за-	с заданным алгорит-	ным алгоритмом	данным алгорит-	гает новые реше-
дач	мом, не освоил		мом, понимает	ния в рамках по-
	предложенный ал-		основы предло-	ставленной задачи
	горитм, допускает		женного алго-	
	ошибки		ритма	

1.4 Оценивание тестовых заданий закрытого типа осуществляется по системе зачтено/ не зачтено («зачтено» — 41-100% правильных ответов; «не зачтено» — менее 40 % правильных ответов) или пятибалльной системе (оценка «неудовлетворительно» - менее 40 % правильных ответов; оценка «удовлетворительно» - от 41 до 60 % правильных ответов; оценка «хорошо» - от 61 до 80% правильных ответов; оценка «отлично» - от 81 до 100 % правильных ответов).

Тестовые задания открытого типа оцениваются по системе «зачтено/не зачтено». Оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Компетенция ОПК-2 Способен применять естественнонаучные и общеинженерные знания, аналитические методы в профессиональной деятельности.

Тестовые задания закрытой формы

- 1. Механизм предназначен
- а) для передачи движения
- б) для совершения полезной работы
- в) для преобразования движения
- г) для преобразования энергии
- 2. Следующая кинематическая цепь является механизмом...
- а) простая незамкнутая, включающая стойку

- б) простая замкнутая, включающая стойку
- в) сложная замкнутая, включающая стойку
- г) сложная незамкнутая, включающая стойку
- 3. Шатун это...
- а) деталь
- б) звено
- в) кинематическая пара
- г) кинематическая цепь
- 4. Из перечисленных соединений является кинематической парой...
- а) две сваренные детали
- б) две спаянные детали
- в) две не соприкасающиеся детали
- г) винт и гайка
- 5. Структурную классификацию плоских механизмов разработал...
- а) Р. Виллис
- б) Ф. Рело
- в) П.Л. Чебышев
- г) Л.В. Ассур
- 6. Низшей кинематической парой является ...
- а) шар на плоскости
- б) кулачковый механизм
- в) цилиндр на плоскости
- г) поступательная
- 7. Неподвижных звеньев в 6-звенном механизме: ...
- а) одно
- б) два
- в) три
- тр пять
- 8. Степень подвижности группы Ассура равна...

	a) mass
	а) трем
	б) двум
	в) единице
	г) нулю
	Тестовые задания открытой формы
	9. Способ изготовления зубчатых колес обеспечивающий наибольшую точность – это
	Ответ: накатка
котки	10. Инструмент, который применяют для образования профилей зубьев по методу об-
катки,	, это Ответ: инструментальная рейка
	11. Пассивным звеном в механизме является звено, которое воспроизводит
	Ответ: заданный закон движения
	12. Стойкой в механизме называется звено, принятое за
	Ответ: неподвижное
	13. Звено, совершающее сложное плоскопараллельное движение, называют
	Ответ: шатуном
	14. Винтовая пара (например, болт-гайка) представляет собой пару
класса	ì
	Ответ: низшую; 5
	15. Шар на плоскости – это кинематическая пара, которая относится к классу
	Ответ: первому
	16. Всего существует классов пространственных кинематических пар
	Ответ: 5
	17. В плоской системе координат существуют только кинематические пары
	классов

	Ответ: 4 и 5
	18 кинематическая пара является плоской
	Ответ: Вращательная
	19. Вид анализа механизма, при проведении которого исследуют его состав, называется анализом
	Ответ: структурным
	20. Скорость толкателя в кулачковых механизмах при фазах его выстаивания равна
	Ответ: нулю
	21. Толкателем в кулачковом механизме называется звено, которое движется Ответ: возвратно-поступательно
	22. Передачи, работающие на принципе зацепления, называются Ответ: зубчатыми
	23. Передачи, работающие на принципе трения, называются Ответ: ременные
визнь	24. Механизмы, в состав которых входит звено, имеющее поверхность переменной кри-
	Ответ: кулачковыми
	25. Ползун – это звено, совершающее
	Ответ: прямолинейное движение
	26. Механизм от кинематической цепи отличается наличием Ответ: стойки
ном д	27. Максимальное число степеней свободы звена кинематической пары в относитель-
	Ответ: 5

28. Кинематическая пара, в которой звенья соприкасаются по линии или в точке, – это

Ответ: высшая кинематическая пара

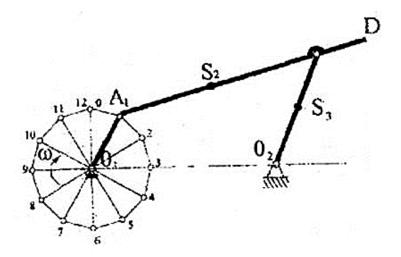
29. Звено, совершающее полный оборот вокруг неподвижной оси, – это _____

Ответ: кривошип

30. Формулой w = 3n - 2p5 - p4 определяется степень ____ механизма

Ответ: подвижности

3 ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ


3.1 Типовые задания на контрольные работы студентам заочной формы обучения

Учебным планом предусмотрена одна контрольная работа, которая представляет собой перечень задач, условия которых включает собой текстовую, а при необходимости и иллюстративную часть, с числовыми значениями исходным величин и перечнем величин, для которых необходимо найти либо числовые значения величин, либо их аналитическое описание.

Формулировки для контрольной работы представлены в учебно-методическом пособии по изучению дисциплины. Типовые варианты контрольной работы представлены ниже.

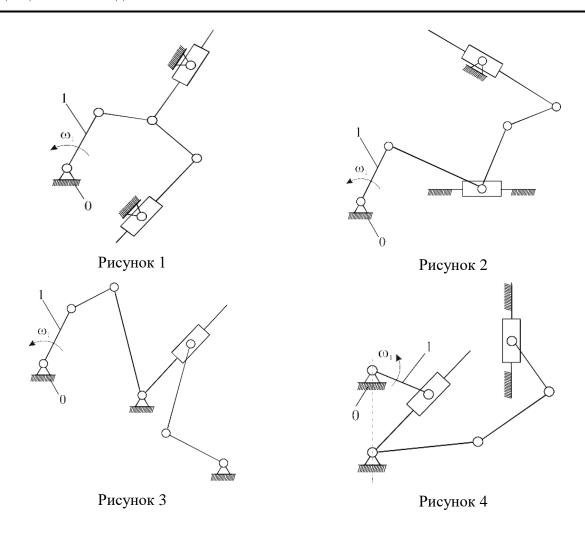
- 1. Определить, используя план ускорений, силы инерции звеньев механизма в заданном положении и нанести их на звенья кинематической схемы. Массы m звеньев находить по их полной длине l и массе q=10 кг/м, приходящейся на 1 м длины звена. Массу ползуна определять по найденной массе m_1 ведущего звена I: для ползуна 3 в кривошипно-ползунном механизме $m_3=4m_1$. Моменты инерции звеньев относительно оси, проходящей через центр масс S, определять приближенно по формуле: $J_3=0,1ml^2$
- 2. Определить реакции связей в кинематических парах механизма от действия сил инерции и сил веса.
- 3. Определить уравновешивающую силу методом планов сил, (считая ее приложенной в точке A перпендикулярно кривошипу O₁A).
- 4. Определить уравновешивающую силу с помощью «жесткого рычага» проф. Жуковского Н.Е. и сравнить ее с уравновешивающей силой, найденной методом планов сил. Расхождение значений указать в процентах.

 $O_1A=60$ мм, $O_1O_2=120$ мм, $BO_2=150$ мм, AB=150 мм, BD=150 мм, $\omega_1=90$ рад/с

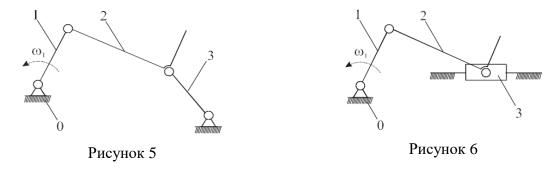
Шкала оценивания результатов выполнения контрольной работы основана на двух-балльной системе.

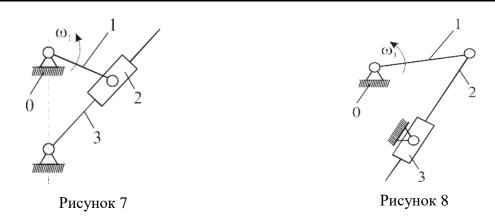
Оценка *«зачтено»* выставляется в случае, если для задач приведено полное теоретическое обоснование решения задач, расчеты выполнены по правильным формулам и алгоритмам и без существенных ошибок, выводы приведены полностью и по существу, студент понимает и может пояснить ход решения и привести экспликацию любой формулы, контрольная работа оформлена в соответствии с требованиями.

Оценка *«незачтено»* выставляется в случае, если теоретическое обоснование при решении задач приведено формально и излишне кратко, или не приведено вовсе, расчеты выполнены с использованием неправильных алгоритмов и формул, контрольная работа оформлена с нарушениями требований, выводы приведены не полностью или не приведены вовсе, студент плохо понимает (или не понимает вовсе) и не может пояснить ход решения.


3.2 Типовые тема и задания на курсовую работу / курсовой проект

Данный вид контроля по дисциплине не предусмотрен учебным планом.


3.3 Типовые задания на расчётно-графическую работу


Учебным планом предусмотрена одна расчётно-графическая работа. Типовые задания представлены ниже.

Задачи 1-4. Даны структурные схемы плоских рычажных механизмов с низшими кинематическими парами, в которых первичный механизм состоит из звеньев 0 и 1 (рисунки 1-4). Заданная подвижность механизмов $W_0 = 1$. Определить число степеней свободы механизмов и преобразовать их структурные схемы путем введения новых или удаления имеющихся звеньев и кинематических пар таким образом, чтобы механизмы обрели заданную подвижность.

Задачи 5-8 Даны структурные схемы плоских четырехзвенных рычажных механизмов с низшими кинематическими парами (рисунки 5-8). Преобразовать данные схемы в структурные схемы плоских шестизвенных рычажных механизмов с низшими кинематическими парами таким образом, чтобы число степеней свободы механизмов не изменило бы своего значения.

Шкала оценивания результатов выполнения расчётно-графических работ основана на четырёхбалльной системе.

Оценка *«отпично»* за расчётно-графическую работу выставляется в случае, если работа выполнена в установленный срок по правильной методике, отчёт выполнен и представлен, полученные результаты характеризуются пренебрежимо малыми погрешностями.

Оценка *«хорошо»* за расчётно-графическую работу выставляется в случае, если работа выполнена в установленный срок по правильной методике, отчёт выполнен и представлен, полученные результаты характеризуются погрешностями, находящимися в рамках допустимых.

Оценка *«удовлетворительно»* за расчётно-графическую работу выставляется в случае, если работа выполнена с превышением отведённого на неё времени по правильной методике, отчёт выполнен и представлен, и (или) полученные результаты характеризуются погрешностями, находящимися вне рамок допустимых, но с соблюдением принципа адекватности.

Оценка *«неудовлетворительно»* за расчётно-графическую работу выставляется в случае, если работа выполнена с превышением отведённого на неё времени (или не выполнена вовсе), но с нарушением методики, и (или) не предоставлен отчёт по работе, и (или) полученные результаты характеризуются погрешностями, находящимися вне рамок допустимых, и не являются адекватными.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине *«Теория механизмов и машин»* основной профессиональной образовательной программы по специальности 26.05.06 «Эксплуатация судовых энергетических установок» (специализация «Эксплуатация главной судовой двигательной установки»).

Преподаватель-разработчик – С.В. Веревкин, кандидат технических наук, доцент

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой инженерной механики и технологии материалов.

Заведующий кафедрой _______ В.Ф. Игушев

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой судовых энергетических установок.

Заведующий кафедрой ______ И.М. Дмитриев

Фонд оценочных средств рассмотрен и одобрен методической комиссией Морского института (протокол № 10 от 14.08.2024 г.)

Председатель методической комиссии ______ И.В. Васькина