

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе дисциплины)

«ТЕОРЕТИЧЕСКИЕ ОСНОВЫ СОЗДАНИЯ МИКРОКЛИМАТА В ЗДАНИИ»

основной профессиональной образовательной программы магистратуры по направлению подготовки

08.03.01 СТРОИТЕЛЬСТВО

Профиль программы **«ТЕПЛОГАЗОСНАБЖЕНИЕ И ВЕНТИЛЯЦИЯ»**

ИНСТИТУТ РАЗРАБОТЧИК

морских технологий, энергетики и строительства

кафедра строительства

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование компетенции	Дисциплина	Результаты обучения	
		(владения, умения и знания),	
		соотнесенные с	
		компетенциями	
ПК-1 Способен разрабатывать проектную документацию систем отопления, вентиляции и кондиционирования воздуха объекта капитального строительства с применением технологий информационного моделирования	Теоретические основы создания микроклимата в здании	Знать: нормативные акты, нормативные технические документы, правила и нормы, относящиеся к сфере строительства в части создания микроклимата в помещении. Уметь: исходя из имеющейся информации о микроклимате помещений, определять состав работ по инженерным изысканиям. Владеть: навыками предварительного анализа сведений об объектах строительства для производства работ по результатам	

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов с ключами правильных ответов.

К оценочным средствам для промежуточной аттестации относятся:

- типовые задания на расчетно-графическую работу;
- экзаменационные задания по дисциплине, представленные в виде тестовых заданий закрытого и открытого типов с ключами правильных ответов.

Промежуточная аттестация по дисциплине проводится в форме дифференцированного зачета (зачета с оценкой), который выставляется по результатам прохождения всех видов текущего контроля успеваемости.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
	тельно»	тельно»		
Критерий	«не зачтено»		«зачтено»	
1 Системность	Обладает частич-	Обладает мини-	Обладает набо-	Обладает полно-
и полнота зна-	ными и разрознен-	мальным набором	ром знаний, до-	той знаний и си-
ний в отноше-	ными знаниями, ко-	знаний, необходи-	статочным для	стемным взглядом
нии изучаемых	торые не может	мым для систем-	системного	на изучаемый объ-
объектов	научно-корректно	ного взгляда на	взгляда на изуча-	ект
	связывать между со-	изучаемый объект	емый объект	
	бой (только некото-			
	рые из которых мо-			
	жет связывать			
	между собой)			
2 Работа с ин-	Не в состоянии	Может найти не-	Может найти,	Может найти, си-
формацией	находить необходи-	обходимую ин-	интерпретиро-	стематизировать
	мую информацию,	формацию в рам-	вать и система-	необходимую ин-
	либо в состоянии	ках поставленной	тизировать необ-	формацию, а
	находить отдельные	задачи	ходимую инфор-	также выявить но-
	фрагменты инфор-		мацию в рамках	вые, дополнитель-
	мации в рамках по-		поставленной за-	ные источники ин-
	ставленной задачи		дачи	формации в рам-
				ках поставленной
				задачи
3 Научное	Не может делать	В состоянии осу-	В состоянии осу-	В состоянии осу-
осмысление	научно корректных	ществлять научно	ществлять систе-	ществлять систе-
изучаемого яв-	выводов из имею-	корректный ана-	матический и	матический и
ления, про-	щихся у него сведе-	лиз предоставлен-	научно коррект-	научно-коррект-
цесса, объекта	ний, в состоянии	ной информации	ный анализ	ный анализ предо-
	проанализировать		предоставленной	ставленной ин-
	только некоторые		информации, во-	формации, вовле-
	из имеющихся у		влекает в иссле-	кает в исследова-
	него сведений		дование новые	ние новые реле-
			релевантные за-	вантные постав-
			даче данные	ленной задаче дан-
				ные, предлагает
				новые ракурсы по-
				ставленной задачи
4 Освоение	В состоянии решать	В состоянии ре-	В состоянии ре-	Не только владеет
стандартных	только фрагменты	шать поставлен-	шать поставлен-	алгоритмом и по-

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«онрицто»
	тельно»	тельно»		
Критерий	«не зачтено»		«зачтено»	
алгоритмов ре-	поставленной за-	ные задачи в соот-	ные задачи в со-	нимает его ос-
шения профес-	дачи в соответствии	ветствии с задан-	ответствии с за-	новы, но и предла-
сиональных за-	с заданным алгорит-	ным алгоритмом	данным алгорит-	гает новые реше-
дач	мом, не освоил		мом, понимает	ния в рамках по-
	предложенный ал-		основы предло-	ставленной задачи
	горитм, допускает		женного алго-	
	ошибки		ритма	

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ

АТТЕСТАЦИИ

Компетенция ПК-1: Способен разрабатывать проектную документацию систем отопления, вентиляции и кондиционирования воздуха объекта капитального строительства с применением технологий информационного моделирования.

Тестовые задания открытого типа

№1

При подвижности воздуха в помещении $v_{\text{в}} = 0.15$ м/с, средней температуре воздуха в помещении $t_{\text{p}} = 22$ °C и средневзвешенной температуре внутренней поверхности ограждений $t_{\text{r}} = 18$ °C, результирующая температура помещения t_{su} будет равна ...

Ответ: $t_{su} = 20$ °С.

№2

Допустимую температуру нагретых или охлажденных поверхностей в помещении определяет ... условие теплового комфорта.

Ответ: второе

№3

Характеристика тепловой инерции D ограждающей конструкции имеет размерность –

Ответ: безразмерная

№4

Расчетное сопротивление паропроницанию замкнутых воздушных прослоек в ограждающей конструкции принимаю равным ...

Ответ: нулю.

№5

Степень неизотермичности струи характеризует критерий ...

Ответ: Архимеда

№6

При теплотехническом расчете ограждающих конструкций в качестве расчетной температуры наружного воздуха t_{ext} принимают температуру ...

Ответ: наиболее холодной пятидневки

№7

Для двух параллельных поверхностей, расстояние между которыми мало по сравнению с их размерами, коэффициент облученности ф₁₋₂ равен ...

Ответ: единице.

№8

Коэффициентом пропорциональности в уравнении Фурье является коэффициент ...

Ответ: теплопроводности.

Тестовые задания закрытого типа

No9

Приведенное сопротивление теплопередаче многослойной ограждающей конструкции R_o с одномерным температурным полем определяется по формуле

1)
$$R_o = \sum_{i=1}^n R_i$$
;

2)
$$R_0 = R_B + \sum_{i=1}^n R_i - R_H$$
;

3)
$$R_o = R_{\rm B} + \sum_{i=1}^n R_i + R_{\rm H}$$

4)
$$R_o = R_{\rm B} * R_{\rm H} + \sum_{i=1}^n R_i$$
,

где R_i — термическое сопротивление i-го конструкционного слоя ограждающей конструкции; $R_{\rm g}$ – сопротивление теплопередаче от внутреннего воздуха к внутренней поверхности ограждения; $R_{\rm H}$ — сопротивление теплопередаче от наружного воздуха к наружной поверхности ограждения.

№10

Плотность теплового потока q_T в однородной плоской стенке определяется соотношением:

1)
$$q_{\mathrm{T}} = \frac{\tau_1 + \tau_2}{\frac{\delta}{\lambda}};$$

2)
$$q_{\mathrm{T}} = \frac{\overline{\tau_{1} - \tau_{2}}}{\frac{\delta}{\lambda}};$$

3) $q_{\mathrm{T}} = \frac{\overline{\tau_{1} - \tau_{2}}}{\frac{\lambda}{\delta}};$

$$3) q_{\mathrm{T}} = \frac{\tau_1 - \tau_2}{\frac{\lambda}{s}},$$

4)
$$q_{\rm T} = \frac{\tau_1 - \tau_2}{\delta \cdot \lambda}$$

где τ_1 , τ_2 – значения температуры на поверхности стенки; λ - коэффициент теплопроводности; δ - толщина стенки.

№11

Коэффициент облученности ϕ_{1-2} характеризует ...

1) плотность теплового потока на поверхности 1, поступающего с поверхности 2;

- 2) долю лучистого потока, попадающего на поверхность 2, от всего потока, излучаемого поверхностью 1;
 - 3) отношение степени черноты поверхности 1 к степени черноты поверхности 2;
- 4) отношение коэффициента излучения поверхности 1 к коэффициенту излучения поверхности 2.

№12

Первое условие теплового комфорта определяет ...

- 1) комфортные условия, для человека, находящегося в середине помещения;
- 2) комфортные условия для человека, находящегося на границах обслуживаемой зоны;
- 3) нормированные значения температуры нагретых поверхностей;
- 4) нормированные значения температуры охлажденных поверхностей.

№13

Значение величины градусо-суток отопительного периода определяют по формуле:

- 1) $\Gamma \text{CO\Pi} = (t_{\text{B}} t_{\text{H.5}}) \cdot Z_{\text{O.II}};$
- 2) $\Gamma CO\Pi = (t_B t_{X,C}) \cdot 24;$
- 3) $\Gamma CO\Pi = (\boldsymbol{t}_{B} \boldsymbol{t}_{CD.OT}) \cdot \boldsymbol{Z}_{O.\Pi}$
- 4) $\Gamma CO\Pi = (t_B t_{X.C}) \cdot Z_{O.\Pi}$

где $t_{\rm B}$ — температура внутреннего воздуха; $t_{\rm H.5}$ — температура наиболее холодной пятидневки; $t_{\rm x.c}$ — температура наиболее холодных суток; $t_{\rm cp.or}$ — средняя температура отопительного периода; $Z_{\rm o.n}$ — продолжительность отопительного периода

№14

Коэффициент теплопроводности λ имеет размерность ...

- Дж/м;
- 2) BT/($\mathbf{M} \cdot \mathbf{K}$);
- 3) BT/($M^2 \cdot K$)
- 4) Дж/м

№15

Характеристика тепловой инерции однослойной однородной ограждающей конструкции D определяется по формуле ...

- 1) $D = R \cdot S$;
- 2) $D = \delta \cdot S$;
- 3) $D = \frac{R}{S}$
- 4) $D = \frac{\delta}{\varsigma}$

где R — термическое сопротивление; S — коэффициент теплоусвоения материала; δ - толщина слоя.

№16

Уравнение теплового баланса на внутренней поверхности ограждения имеет вид:

- 1) $\Pi + K + T = 0$;
- 2) Л+K-T=0;
- 3) Л-K-T=0;
- 4) Л-K+T=0

где Π – лучистая составляющая; K – конвективная составляющая; T – кондуктивная (теплопроводностью) составляющая.

№17

Степень черноты серого тела є определяется по соотношению:

- 1) $\varepsilon = C_0 \cdot C$;
- 2) $\varepsilon = \frac{c_0}{c}$;
- 3) $\varepsilon = \frac{c}{c_0}$;
- 4) $\varepsilon = C_0 C$

где C_0 – коэффициент излучения абсолютно черного тела; C – коэффициент излучения серого тела.

№18

Нормированное значение сопротивления паропроницанию многослойной ограждающей конструкции определяется ...

- 1) для всей конструкции в целом;
- 2) в пределах от наружной поверхности до плоскости возможной конденсации;
- 3) в пределах от внутренней поверхности до плоскости возможной конденсации;
- 4) для слоя утеплителя.

№19

Базовое значение требуемого сопротивления теплопередаче ограждающей конструкции для удовлетворения поэлементным требованиям определяют в зависимости ...

- 1) от назначения помещения и расчетной температуры наиболее холодной пятидневки;
- 2) от назначения помещения, вида ограждающей конструкции и градусо-суток отопительного периода;
- 3) от назначения помещения и допустимой разности температуры внутреннего воздуха и температуры поверхности ограждения;
- 4) от назначения помещения, его объема и расчетной температуры наиболее холодной пятидневки.

№20

В свободной слабонеизотермической струе остается постоянным значение величины ...

- 1) кинетической энергии;
- 2) количества движения секундной массы воздуха в струе;
- 3) расхода воздуха в струе;
- 4) скорости и температуры на оси струи.

№21

Под температурой помещения понимают ...

- 1) среднюю температуру воздуха по объему помещения;
- 2) такую одинаковую температуру воздуха и поверхностей, при которой теплоотдача человеком будет такая же, как и при данных неравных температурах воздуха и поверхностей;
 - 3) средневзвешенную температуру поверхностей в помещении;
 - 4) температуру в обслуживаемой зоне помещения. Ответ:

№22

Требования к теплоустойчивости наружных ограждений сводятся к нормированию значения...

- 1) коэффициента теплопоглощения;
- 2) показателя тепловой инерции;

- 3) амплитуды колебания температуры на внутренней поверхности ограждения;
- 4) показателя теплоусвоения.

No23

Гравитационный перепад давлений Δp_{Γ} , возникающий на наружном ограждении здания, определяют по формуле:

- 1) $\Delta p_{\Gamma} = g(\rho_{H} \rho_{B})h;$
- 2) $\Delta p_{\Gamma} = g \rho_{H} h;$
- 3) $\Delta p_{\Gamma} = g(\ddot{T}_{\rm B} T_{\rm H})h$,
- 4) $\Delta p_{\Gamma} = g \cdot \delta(\rho_{\rm H} \rho_{\rm B}) h$

где $\rho_{\rm H}$, $\rho_{\rm B}-$ соответственно плотность наружного и внутреннего воздуха; $T_{\rm H}$, $T_{\rm B}-$ соответственно температура наружного и внутреннего воздуха; h- высота ограждения; δ - толщина ограждения.

No24

Требования по нормированию воздухопроницаемости ограждающих конструкций изложены в $\text{СНи}\Pi\dots$

- 1) Тепловая зашита зданий;
- 2) Отопление и вентиляция;
- 3) Нагрузки и воздействия;
- 4) Строительная климатология.

№25

Теплофизические свойства строительных материалов определяются для двух условий эксплуатации А и Б, которые зависят ...

- 1) от значения расчетной температуры наружного воздуха в зимний период и температуры внутреннего воздуха;
- 2) от зоны влажности района строительства и относительной влажности воздуха в помещении;
- 3) от значения средней температуры наиболее холодной пятидневки и относительной влажности наружного воздуха в холодный период;
- 4) от зоны влажности района строительства и температуры внутреннего воздуха в помешении.

№26

В соответствии с действующими нормативными документами (СП 50.13330 – Тепловая защита зданий) расчет на теплоустойчивость ограждений производится ...

- 1) в теплый и холодный периоды года;
- 2) в теплый период года при расчетной температуре наружного воздуха параметры Б более 25 °C;
- 3) в теплый период года в районах со среднемесячной температурой июля выше 21 $^{\circ}C$.
- 4) в холодный период года при температуре наиболее холодной пятидневки.

№27

На начальном участке круглой компактной слабонеизотермической струи зона ядра имеет форму ...

- 1) цилиндра;
- 2) сферы;
- 3) конуса;

4) полого цилиндра.

№28

Коэффициент теплотехнической однородности r определяется по формуле ...

- 1) $r = \frac{R_o^{\text{np}}}{R_o^{\text{ycn}}};$ 2) $r = R_o^{\text{np}} \cdot R_o^{\text{ycn}};$ 3) $r = R_o^{\text{np}} \cdot f;$ 4) $r = R_o^{\text{ycn}} \cdot f;$

где $R_o^{\rm np}$ — приведенное сопротивление теплопередаче ограждающей конструкции; $R_o^{\rm ycn}$ условное сопротивление теплопередаче однородной ограждающей конструкции; f — фактор формы.

№29

С теплотехнической и эксплуатационной точек зрения наиболее эффективным является расположение теплоизоляционного слоя в многослойной строительной конструкции ...

- 1) с внешней стороны ограждения;
- 2) с внутренней стороны ограждения;
- 3) внутри ограждения между двумя несущими слоями;
- 4) с внутренней и наружной сторон ограждения.

№30

Отапливаемый объем здания это ...

- 1) объем ограниченный внутренними поверхностями наружных ограждений;
- 2) объем здания, определенный по наружному обмеру;
- 3) объем здания, ограниченный внутренними поверхностями наружных и внутренних ограждений;
- 4) средний объем, определенный по наружному и внутреннему обмерам.

3 ТИПОВОЕ ЗАДАНИЕ НА РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Учебным планом предусмотрено выполнение расчетно-графической работы.

Тема работы: Теплотехнический расчет ограждений.

Расчетно-графическая работа "Теплотехнический расчет ограждений" выполняется студентами самостоятельно в процессе изучения дисциплины "Теоретические основы создания микроклимата в здании". Она включает четыре взаимосвязанные темы:

- 1. Расчет требуемого сопротивления теплопередаче;
- 2. Расчет требуемой теплоустойчивости ограждений;
- 3. Расчет сопротивления воздухопроницанию ограждающих конструкций;
- 4. Расчет сопротивления паропроницанию ограждающих конструкций.

Целями выполнения РГР являются усвоение теоретического материала и приобретение навыков расчета теплозащитных свойств оболочки здания и анализа соответствия строительных конструкций требованиям строительных теплотехнических норм.

Для достижения поставленной цели студенту необходимо решить следующие задачи:

- ознакомиться с воздействиями природно-климатических и микроклиматических факторов на наружные ограждения;
 - ознакомиться с конструкциями наружных ограждений;
 - изучить теоретические основы тепловой защиты здания;
 - освоить методику расчета тепловой защиты здания;
- углубить знания в области конструирования здания и создания комфортных параметров микроклимата помещения с наименьшими энергетическими затратами.

Исходные данные для выполнения РГР выбираются по номеру задания, определяемому преподавателем. В соответствии с номером задания и исходными данными, приведенными в методических указаниях, студент определяет пункт строительства, зону влажности и варианты строительных конструкций.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Теоретические основы создания микроклимата в здании» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 08.03.01 Строительство (профиль «Теплогазоснабжение и вентиляция»).

Преподаватель-разработчик – профессор, д.т.н. А.А. Герасимов

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой строительства.

Заведующий кафедрой

И.С. Александров

Фонд оценочных средств рассмотрен и одобрен методической комиссией института ИМТЭС (протокол № 8 от 26.08.2024 г).

Председатель методической комиссии ИМТЭС

Белих О.А. Белых