

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе дисциплины) «НАСОСНЫЕ И КОМПРЕССОРНЫЕ СТАНЦИИ»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

08.03.01 СТРОИТЕЛЬСТВО

Профиль программы

«<u>ПРОЕКТИРОВАНИЕ, СТРОИТЕЛЬСТВО И ЭКСПЛУАТАЦИЯ</u> <u>ГАЗОНЕФТЕПРОВОДОВ И ГАЗОНЕФТЕХРАНИЛИЩ</u>»

ИНСТИТУТ морских технологий, энергетики и строительства

РАЗРАБОТЧИК кафедра строительства

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 — Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование компетенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями	
ПК-1 Способен организовывать проведение строительства, ремонта, реконструкции и эксплуатации газонефтепроводов и газонефтехранилищ ПК-2 Способен выполнять работы по проектированию газонефтепроводов и газонефтехранилищ	Насосные и компрессорные станции	принципы работы насосного и компрессорного оборудования; Типовые схемы насосных и компрессорных станций; методы расчета и подбора основного оборудования; нормативно-правовую базу в области проектирования, строительства и эксплуатации насосных и компрессорных станций. Уметь: выполнять технологические расчеты при проектировании насосных и компрессорных станций; разрабатывать принципиальные схемы; подбирать оборудование по заданным параметрам; анализировать режимы работы насосного и компрессорного оборудования; планировать ремонтные работы; организовывать ввод в эксплуатацию построенных объектов насосных и компрессорных станций. Владеть: Методиками прочностных и гидравлических расчетов; Практическими навыками проектирования насосных и компрессорных станций в специализированном ПО.	

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
 - тестовые задания открытого и закрытого типов;
 - контрольная работа.

К оценочным средствам для промежуточной аттестации, проводимой в форме зачета с оценкой, относятся:

- задания по дисциплине, представленные в виде тестовых заданий открытого и закрытого типов.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (таблица 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5	
оценок	0-49%	50-69%	70-84 %	85-100 %	
	«неудовлетвори-	«удовлетвори-	«хорошо»	«онрицто»	
	тельно»	тельно»			
Критерий	«не зачтено»		«зачтено»		
1 Системность	Обладает частич-	Обладает мини-	Обладает набором	Обладает полнотой	
и полнота зна-	ными и разрознен-	мальным набором	знаний, достаточ-	знаний и систем-	
ний в отноше-	ными знаниями,	знаний, необходи-	ным для систем-	ным взглядом на	
нии изучаемых	которые не может	мым для систем-	ного взгляда на	изучаемый объект	
объектов	научно-корректно	ного взгляда на изу-	изучаемый объект		
	связывать между	чаемый объект			
	собой (только не-				
	которые из кото-				
	рых может связы-				
	вать между собой)				
2 Работа с ин-	Не в состоянии	Может найти необ-	Может найти, ин-	Может найти, си-	
формацией	находить необхо-	ходимую информа-	терпретировать и	стематизировать	
	димую информа-	цию в рамках по-	систематизиро-	необходимую ин-	
	цию, либо в состо-	ставленной задачи	вать необходимую	формацию, а также	
	янии находить от-		информацию в	выявить новые, до-	
	дельные фраг-		рамках поставлен-	полнительные ис-	
	менты информа-		ной задачи	точники информа-	
	ции в рамках по-			ции в рамках по-	
	ставленной задачи			ставленной задачи	
3 Научное	Не может делать	В состоянии осу-	В состоянии осу-	В состоянии осу-	
осмысление	научно коррект-	ществлять научно	ществлять систе-	ществлять систе-	
изучаемого яв-	ных выводов из	корректный анализ	матический и	матический и	
ления, про-	имеющихся у него	предоставленной	научно коррект-	научно-коррект-	
цесса, объекта	сведений, в состо-	информации	ный анализ предо-	ный анализ предо-	
	янии проанализи-		ставленной ин-	ставленной инфор-	
	ровать только не-		формации, вовле-	мации, вовлекает в	
	которые из имею-		кает в исследова-	исследование но-	
	щихся у него све-		ние новые реле-	вые релевантные	
	дений		вантные задаче	поставленной за-	
			данные	даче данные, пред-	
				лагает новые ра-	
				курсы поставлен-	
				ной задачи	

Система	2	3	4	5	
оценок	0-49%	50-69%	70-84 %	85-100 %	
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»	
	тельно»	тельно»			
Критерий	«не зачтено»	«зачтено»			
4 Освоение	В состоянии ре-	В состоянии решать	В состоянии ре-	Не только владеет	
стандартных	шать только фраг-	поставленные за-	шать поставлен-	алгоритмом и по-	
алгоритмов ре-	менты поставлен-	дачи в соответствии	ные задачи в соот-	нимает его основы,	
шения профес-	ной задачи в соот-	с заданным алго-	ветствии с задан-	но и предлагает	
сиональных за-	ветствии с задан-	ритмом	ным алгоритмом,	новые решения в	
дач	ным алгоритмом,		понимает основы	рамках поставлен-	
	не освоил предло-		предложенного	ной задачи	
	женный алгоритм,		алгоритма		
	допускает ошибки				

1.4 Оценивание тестовых заданий открытого и закрытого типа осуществляется по системе зачтено/ не зачтено («зачтено» – 49-100% правильных ответов; «не зачтено» – менее 49 % правильных ответов) или пятибалльной системе (оценка «неудовлетворительно» - менее 49 % правильных ответов; оценка «удовлетворительно» - от 50 до 69 % правильных ответов; оценка «хорошо» - от 70 до 84% правильных ответов; оценка «отлично» - от 85 до 100 % правильных ответов). Для заданий открытого типа оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Компетенция ПК-1 Способен организовывать проведение строительства, ремонта, реконструкции и эксплуатации газонефтепроводов и газонефтехранилищ.

Компетенция ПК-2 Способен выполнять работы по проектированию газонефтепроводов и газонефтехранилищ.

Тестовые задания открытого типа:

1. Как нужно размещать НПС вблизи реки?

Ответ: за рекой по ходу потока.

2. Как определить площадь строительной площадки для сооружения НПС?

Ответ: как сумму площадей объектов, отнесенную к коэффициенту застройки, с учетом площади благоустройства

3. До выверки разница между отметками на репере и раме составляла 30, после - 25 мм. Какие действия производили с рамой, если она находится выше репера?

Ответ: опустили раму

4. При каком условии считается, что центровка выполнена верно?

Ответ: суммы одноименных замеров на взаимно перпендикулярных направлениях отстают друг от друга не более, чем на 0,02 мм.

5. Какое время при пусконаладочных работах НПС занимает комплексное опробование?

Ответ: 72 часа

6. Укажите цель аварийного ремонта:

Ответ: скорейшее восстановление работоспособности трубопровода

7. Какое напряжение на 1 мм толщины изоляции устанавливает ГОСТР 51164 при контроле сплошности?

Ответ: 5 кВ

8. Дать понятие «горизонтали» на генплане нефтебазы? 108

Ответ: линия, соединяющая одинаковые высотные отметки

9. Гидравлическая характеристика трубопровода – это?

Ответ: зависимость полных потерь напора от расхода

10. Сбросное низкотемпературное тепло на НС и КС можно утилизировать, заменив тепловыми насосами (указать неверный ответ):

Ответ: утилизационные теплообменники

11. За счет вторичных энергоресурсов на КС можно вырабатывать (указать наиболее значимый фактор):

Ответ: тепловую энергию

12. Недогрузка ГПА по мощности вызывает (найти неправильный ответ):

Ответ: снижение удельных энергозатрат на транспорт газа

13. Самый эффективный способ регулирования работы центробежных насосов при недогрузке нефтепродуктопровода

Ответ: изменение числа оборотов вала насоса

14. Как сократить потери технологического газа при пусках и остановках ГПА?

Ответ: сократить число пусков и остановок ГПА

15. Как наиболее полно сократить потери пускового газа?

Ответ: использовать электродвигатель вместо турбогенератора

16. Применение двигателей нового поколения ГПА позволяют преимущественно:

Ответ: экономить топливный газ

17. ГПА с различной единичной мощностью работают эффективно

Ответ: когда более мощные агрегаты, работающие в период максимальной загрузки, будут иметь и больший КПД

18. По какой причине аварии на магистральных газопроводах происходят наиболее часто?

Ответ: наружная коррозия, в т.ч. стресс-коррозия

19. Как можно радикально сократить эксплуатационные потери газа на турбодетандерах ГПА?

Ответ: использовать вместо турбодетандеров электродвигатели

20. Какая очередность объектов по ходу движения газа на компрессорной станции, согласно технологической схеме, является верной?

Ответ: узел подключения; блок пылеуловителей; ГПА; АВО; узел подключения

21. Для чего на НПС устанавливаются подпорные насосы?

Ответ: для обеспечения бескавитационной работы магистральных насосов

22. Что означает первая цифра в марке насоса НМ-10000-210?

Ответ: подачу в м³/ч

23. Какой объем резервуарного парка необходим для промежуточной НПС на границе эксплуатационного участка?

Ответ: 0,3-0,5 или 1-1,5 объема суточной перекачки нефтепровода

24. Какую функцию выполняет аккумулирующий бак в насосном цехе?

Ответ: обеспечивает подачу масла при остановке насосов в случае отключения электроэнергии.

Тестовые задания закрытого типа:

- 25. Коэффициент предельного увеличения производительности нефтепровода при удвоении числа НПС:
 - 1. $2^{\frac{1}{2-m}}$
 - 2. 2
 - 3. $\frac{1}{2^{2-m}}$
 - 4. 2^{2-m}
- 26. Первая ступень очистки газа на компрессорных станциях включает:
 - 1. Фильтры-сепараторы
 - 2. Висциновые фильтры
 - 3. Сетчатые фильтры
 - 4. Циклонные пылеуловители
- 27. Вторая ступень очистки газа на компрессорных станциях включает:
 - 1. Фильтры-сепараторы
 - 2. Сетчатые фильтры
 - 3. Масляные пылеуловители
 - 4. Циклонные пылеуловители
- 28. Осушка газа применяется с целью:
 - 1. Защиты газопровода от коррозии
 - 2. Предупреждения образования гидратов
 - 3. Уменьшения вязкости газа
 - 4. Понижения псевдокритического давления
- 29. При увеличении числа циклов при последовательной перекачке емкость резервуарного парка на головной перекачивающей станции
 - 1. уменьшается
 - 2. остается постоянной
 - 3. увеличивается
 - 4. емкость не требуется

К какой категории относится участок газопровода, находящийся на территории КС?

- 1. I
- 2. B
- 3. II
- 4. III
- 31. На сколько классов подразделяют нефтепроводы согласно СП 36.13330.2012?
- 1. 3
- 2. 5

- 3. 2
- 4. 4
- 32. Какие химические элементы соответствуют буквам в марке стали 10Г2ФБ?
- 1. Марганец, ванадий, ниобий
- 2. Алюминий, фтор, бром
- 3. Марганец, ванадий, бор
- 4. Магний, вольфрам, бром

3 ТИПОВОЕ ЗАДАНИЕ НА КОНТРОЛЬНУЮ РАБОТУ

Задание № 1.

Определение ориентировочной площади НПС

Общая площадь территории НПС может быть определена по формуле (1):

$$S = \frac{\sum F_i}{k_3},\tag{1}$$

где, $\sum F_i$ - сумма всех застраиваемых площадей (под всеми сооружениями и зданиями); k_3 – коэффициент застройки; для перекачивающих станций k_3 =0,10÷0,3.

Каждому студенту предлагается заполнить таблицу размеров объектов НПС для последующего составления генерального плана в соответствии со своим вариантом. Список объектов является минимальным, при желании и должном обосновании студенты могут добавить объекты в свой будущий план НПС. Форма таблицы представлена в приложении А. Размеры зданий можно определить, используя Приложение Д РД-91.200.00-КТН-175-13 «Нормы проектирования нефтеперекачивающих станций», либо по Приложению Б Методических указаний.

Характеристики объектов, размещения зданий и сооружений в производственном блоке:

- 1. Здание магистральной насосной с размерами 54x12x6,8м. Степень огнестойкости III, класс конструктивной пожарной опасности CO, категории по взрывопожарной и пожарной опасности «А». Рекомендуемое расстояние до РП 15 м, до ПНС 9 м, до фильтровгрязеуловителей 9 м;
- 2. Подпорная насосная с размерами 30x15x6,8 м. Степень огнестойкости III, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «А». Рекомендуемое расстояние до РП 15 м, до ЩСУ 9 м, до МНС 9 м, до узлов предохранительных клапанов не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 3. Операторная, ЗРУ и КТП, расположенные в одном отапливаемом здании 69x12x5 м. Степень огнестойкости II, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «ВЗ». Рекомендуемое расстояние до РП 40 м, до МНС 9 м;
- 4. Маслосистема основных агрегатов блочного исполнения с размерами 12,6x6x5,2 м с резервуаром для хранения масла типа РГС-15. Степень огнестойкости III, класс конструктивной пожарной опасности СО, категории по взрывопожарной и пожарной опасности «В». Рекомендуемое расстояние до РП 40 м, до MHC 9 м, до насосного оборотного водоснабжения МНА 9 м;
 - 5. Здание насосной оборотного водоснабжения МНА с размерами 18х9х5 м. Сте-

пень огнестойкости III, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «Д». Рекомендуемое расстояние до РП - 40 м, до МНС – 9 м, до регуляторов давления на выходе МНС – не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);

- 6. Регуляторы давления на выходе МНС, устанавливаемые с аппаратурой КИПиА в утепленных шкафах надземного на открытой площадке размером 12,5х25,0 м. Рекомендуемое расстояние до РП -15 м, до МНС и насосной оборотного водоснабжения МНА не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 7. Фильтры-грязеуловители, устанавливаемые надземно на открытой площадке. $\Phi\Gamma Y$ устанавливаются на бетонной площадке размером для горизонтальных фильтров 16,5х18 м. Степень огнестойкости III, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «А». Рекомендуемое расстояние до РП 15 м, до ССВД 9 м, до МНС 9 м, до регуляторов давления на выходе МНС— не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 8. Блок системы сглаживания волн давления 12х4,5х4,5 м. Степень огнестойкости III, класс конструктивной пожарной опасности СО, категория по взрывопожарной и пожарной опасности «А». Рекомендуемое расстояние до РП 20 м, до СИКН 9 м, до ЩСУ 9 м;
- 9. СИКН для ведения оперативного учета с габаритными размерами 15,0x9,0x4,5м. Степень огнестойкости III, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «А». Рекомендуемое расстояние до РП -15 м, расстояние до ЩСУ -9 м;
- 10. Здание ЩСУ (щит системного управления), предназначенное для ввода и распределения электроэнергии 12,0х6,0х4,5м. Степень огнестойкости II, класс конструктивной пожарной опасности СО, категория по взрывопожарной и пожарной опасности «ВЗ». Рекомендуемое расстояние до РП -20 м, до ПНС 9 м, до СИКН 9 м;
- 11. Помещение с электроприводными задвижками для выпуска воды из резервуара с размерами 4,5х4,0х3,0 м. Степень огнестойкости II, класс конструктивной пожарной опасности СО, категория по взрывопожарной и пожарной опасности «Д». Помещение с электроприводными задвижками должно располагаться за пределами обвалования резервуара после дождеприемного колодца, рекомендуемое расстояние до РП 15 м;
- 12. Узлы предохранительных клапанов, устанавливаемые надземно на открытой площадке размером 12,4х5,4 м. Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 13. Система дренажа и сбора утечек от технологического оборудования три горизонтальных подземных резервуара типа $E\Pi$ -40 м³с насосами откачки. Рекомендуемое расстояние до $P\Pi$ 15 м;
- 14. Площадки агрегатных задвижек с размерами 6,0x5,0 м. Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 15. Котельная блочного исполнения $12 \times 9,6 \times 3,4$ и два резервуара для топлива типа РГС-25 на открытой площадке. Степень огнестойкости II, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «В2». Рекомендуемое расстояние до РП 40 м, дизельной электростанции -9м;
- 16. Дизельная электростанция 9x5x3,5 м с двумя резервуарами для топлива типа РГС-10, устанавливаемым на открытой площадке и подземным резервуаром для аварийного слива. Степень огнестойкости Π , класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «ВЗ». Рекомендуемое расстояние до РП -40 м, до операторной 9 м, до открытой стоянки ЛЭС не нормируется в СП 110.13330.2011 (Актуализированной редакции $CHu\Pi$ 2.11.03-93);
 - 17. Устройство распределительное открытое. Рекомендуемое расстояние до РП -

- 20 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 18. Устройство распределительное закрытое 14,5x6x3,5м. Степень огнестойкости III, класс конструктивной пожарной опасности CO, категории по взрывопожарной и пожарной опасности «А». Рекомендуемое расстояние до РП 20 м, до насосной хозяйственно-питьевого водоснабжения -9 м;
- 19. Площадка для аварийного запаса труб со съемным навесом, твердым покрытием и стеллажом 30х40 м. Рекомендуемое расстояние до РП 40 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
 - 20. Технологические трубопроводы с запорной арматурой;
- 21. Прожекторные мачты и мачты-молниеотводы. Характеристики объектов, размещения зданий и сооружении в административно0-хозяйственном блоке. Служебно-бытовой корпус двухэтажное здание 36,0x12,0x7,2. Степень огнестойкости ІІ, класс конструктивной пожарной опасности СО. Рекомендуемое расстояние до РП 40 м, до материального склада не нормируется;
- 22. Помещение караульное с проходной 8х6х3 м. Степень огнестойкости II, класс конструктивной пожарной опасности СО. Рекомендуемое расстояние до РП 40 м, до СБК и ремонтной мастерской не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 23. Ремонтная мастерская со складом средств ликвидации аварийных разливов нефти (ЛАР) 27,0х12,0х4,5 м. Степень огнестойкости III, класс конструктивной пожарной опасности СО, категория по взрывопожарной и пожарной опасности «В». Рекомендуемое расстояние до РП 40 м;
- 24. Материальный склад общей площадью 80 м^2 с размерами 10,0x8,0x5,0 м. Степень огнестойкости III, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «В». Рекомендуемое расстояние до РП 40 м, до СБК не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93), до котельной 9 м;
- 25. Насосная хозяйственно-питьевого водоснабжения с размерами 15,0x6,0x5,0м. Степень огнестойкости III, класс конструктивной пожарной опасности CO, категория по взрывопожарной и пожарной опасности «Д». Рекомендуемое расстояние до РП 40 м, до котельной 9 м, до закрытого распределительного устройства 9 м;
- 26. Насосная пожаротушения в здании 42x18x6,6 м с отдельно стоящими стальными
- 27. Открытая стоянка техники ЛЭС 21,5х15м; Прожекторные мачты и мачты-молниеотводы; Узелсвязи10х10м; Антенно-мачтовое сооружение (башня) с основанием 9,2х7,5 и высотой 45 м.

В состав сооружений входят:

- 1. Резервуар-накопитель производственно-дождевых сточных вод типа РГС-100 для сбора производственно-дождевых стоков: дождевых и талых вод с открытых технологических площадок подпорной насосной, ФГУ, регуляторов давления, предохранительных клапанов, каре резервуарного парка, топливных емкостей котельной и дизельной электростанции (ДЭС). Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 2. Два резервуара статического отстоя типа PBC-200, предназначенные для осветления и частичного обесцвечивания производственно-дождевой сточной воды за счет длительного отстоя воды, и в последствии выпадения и осаждения на дно частиц, имеющих большую плотность.
- 3. Резервуары расположены на одной площадке (или фундаменте), при этом расстояние между стенками резервуаров в такой группе не нормируется.

- 4. По периметру предусмотрено замкнутое земляное обвалование шириной поверху 0,5 м и высотой 1 м, рассчитанные на гидростатическое давление разлившейся жидкости. Расстояние от стенок резервуаров до подошвы внутренних откосов обвалования или принимается равным 3 м[4]. Рекомендуемое расстояние до РП15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93).
- 5. Флотационная установка (здание), куда производственно-дождевые сточные воды подаются из резервуара статического отстоя для разделения нерастворенных частиц. Габаритные размеры 11,4х8,2х3 м. Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 6. Площадка для подсушивания осадка площадью 200 м², куда производится отвод осадка из резервуара статистического отстоя и отстойной части флотатора. Рекомендуемое расстояние до РП 24м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 7. Сборник уловленной нефти с насосной установкой, куда уловленная нефть поступает из флотатора резервуар типа РГС-10. Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 8. Сборник отстоянных сточных вод, который служит в качестве промежуточной емкости, в которую вода поступает из флотатора резервуар типа РГС-50. Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 9. Канализационная насосная станция производственно-дождевых сточных вод, куда отстоянная вода поступает из резервуара статического отстоя и где вода проходит несколько степеней очистки до установленных нормативов; станция рассчитана на производительность 10 л/с, габаритные размеры 6,2х5,8х5,5 м. Степень огнестойкости III, класс конструктивной пожарной опасности СО, категория по взрывопожарной и пожарной опасности «Д». Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 10. Септик с насосной установкой два заглубленных горизонтальных полимерных резервуара объемом по 30 м 3 . Рекомендуемое расстояние до РП 15 м, для других зданий и сооружений НПС не нормируется в СП 110.13330.2011 (Актуализированной редакции СНиП 2.11.03-93);
- 11. Для поверхностных вод, не подверженных контакту с производственными загрязнениями, предусмотрен отвод по спланированному рельефу за пределы территории площадки НПС.

ПРИЛОЖЕНИЕ А Таблица1

Размеры объектов НПС

Блоки	№	Наименование объекта	Вид объекта	Размеры	Площадь
	1	Фильтры-грязеуловители			
	2	Подпорная насосная			
	3	Магистральная насосная			
	4	Узел учета нефти			
	5	Регуляторы давления сов- местно с узлом предохрани- тельных клапанов			
	6	Операторная совместно с ЗРУ и КТП			
	7	Маслосистема			
I Производственный	8	Резервуары для хранения масла (Зшт.по5м³)			
	9	Насосная пожаротушения			
	10	Резервуары противопожарного запаса воды (2шт.по2000м³)			
	11	Система сбора и откачки нефти (подземные емкости ЕП- 40 с насосами)			
TT A		<u>\sum_{\text{:}}:</u>			
II Административно- хозяйственный	12	Служебно-бытовой корпус вместе с караульным помещением и узлом связи			
	13	Антенно-мачтовое сооружение			
	14	Котельная			
	15	Резервуары для топлива котельной (2шт.по 20 м³)			
	16	Дизельная электростанция			
	17	Резервуары для дизтоплива (2 шт. по 10 м³)			
	18	Заглубленный материаль- ный склад (ГО)			
	19	Насосная водоснабжения			
	20	Склад кислородных и пропановых баллонов			
	21	Закрытая стоянка техники			

	22	Открытая стоянка техники		
	23	Площадка хранения аварийного запаса труб		
	24	Ремонтная мастерская		
		Σ:		
III Блокочистных сооружений	25			
IV Резервуарный парк	26	Резервуары с обвалованием		

1. Для головной НПС нефтепровода	диаметром	_мм площади блоков соста	вляют:
производственного	$_{-}$ M^2 ;		
административно-хозяйственного І	Fадмхоз =	M^2 ;	
2. Без учета площадей резервуарного	о парка и блока оч	чистных сооружений миним	мальная S _{мин.}
и максимальная Sмакс. Площади прое	ектируемой НПС с	составляют:	

1.
$$S_{\text{мин}} = \frac{F_{\text{пр}} + F_{\text{адм}}}{0.3} = \cdots \text{ m}^2.$$

2.
$$S_{\text{Makc}} = \frac{F_{\text{пр}} + F_{\text{адм}}}{0.1} = \cdots \text{ m}^2.$$

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Насосные и компрессорные станции» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 08.03.01 Строительство (профиль Проектирование, строительство и эксплуатация газонефтепроводов и газонефтехранилищ).

Преподаватель-разработчик – кандидат технических наук, доцент Р.А. Шестаков

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой строительства.

Ros

Заведующий кафедрой

Р.А. Шестаков

Фонд оценочных средств рассмотрен и одобрен методической комиссией института морских технологий, энергетики и строительства № 6 от 28.08.2025 г.

Председатель методической комиссии ИМТЭС

Белих О.А. Белых