

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе модуля) «ЭЛЕКТРОТЕХНИЧЕСКОЕ И КОНСТРУКЦИОННОЕ МАТЕРИАЛОВЕДЕНИЕ»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

13.03.02 ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХНИКА

ИНСТИТУТ морских технологий, энергетики и строительства

РАЗРАБОТЧИК кафедра энергетики

1РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными индикаторами достижения компетенций

Код и наименование	Дисциплина	Результаты обучения (владения, умения и
компетенции		знания), соотнесенные с компетенциями
ОПК-5: Способен	Электротехническое	<u>Знать:</u>
использовать свойства	и конструкционное	- классификацию электротехнических
конструкционных и	материаловедение	материалов, закономерности развития
электротехнических		процессов электропроводности в
материалов в расчетах		проводниках, полупроводниках и
параметров и режимов		диэлектриках, особенности явлений
объектов		поляризации в диэлектриках и
профессиональной		намагничивания в магнитных материалах;
деятельности		- основные свойства конструкционных и
		электротехнических материалов,
		применяемых при изготовлении, ремонте,
		эксплуатации и техническом обслуживании
		оборудования;
		- сущность явлений, происходящих в
		материалах в условиях эксплуатации
		электрооборудования;
		Уметь:
		- анализировать свойства и определять
		основные показатели электротехнических и
		конструкционных материалов,
		применяемых в электроэнергетике;
		- использовать свойства конструкционных
		и электротехнических материалов при
		расчетах параметров электрооборудования;
		- осуществлять подбор материалов для
		использования в электротехнических
		устройствах;
		Владеть:
		- методами анализа и моделирования
		электрооборудования с учетом свойств
		используемых в нем материалов;
		- навыками выбора необходимых
		материалов для проведения технического
		обслуживания электрооборудования
		объектов профессиональной деятельности.

- тестовые задания открытого и закрытого типов;
- задания к расчетно-графической работе.

Промежуточная аттестация проходит в форме экзамена.

К оценочным средствам для промежуточной аттестации по дисциплине относятся:

- экзаменационные задания по дисциплине, представленные в виде тестовых заданий.
- 1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
Критерий	тельно»	тельно»		
1 Системность	Обладает частич-	Обладает	Обладает	Обладает
и полнота	ными и разрознен-	минимальным	набором знаний,	полнотой знаний
знаний в	ными знаниями,	набором знаний,	достаточным для	и системным
отношении	которые не может	необходимым для	системного	взглядом на
изучаемых	корректно связывать	системного	взгляда на	изучаемый
объектов	между собой (только	взгляда на	изучаемый	объект
	некоторые из них	изучаемый объект	объект	
	может связывать			
	между собой)			
2 Работа с	Не в состоянии	Может найти	Может найти, ин-	Может найти,
информацией	находить необходи-	необходимую	терпретировать и	систематизиро-
	мую информацию,	информацию в	систематизироват	вать необходи-
	либо в состоянии	рамках	ь необходимую	мую информа-
	находить отдельные	поставленной	информацию в	цию, а также
	фрагменты инфор-	задачи	рамках	выявить новые,
	мации в рамках		поставленной	дополнительные
	поставленной задачи		задачи	источники
				информации в
				рамках постав-
				ленной задачи
3 Научное	Не может делать	В состоянии	В состоянии	В состоянии осу-
осмысление	научно корректных	осуществлять	осуществлять	ществлять систе-
изучаемого	выводов из	научно	систематический	матический и
явления,	имеющихся у него	корректный	и научно	научно-коррект-
процесса,	сведений, в	анализ	корректный	ный анализ пре-
объекта	состоянии	предоставленной	анализ	доставленной
	проанализировать	информации	предоставленной	информации,
	только некоторые из		информации,	вовлекает в ис-
	имеющихся у него		вовлекает в	следование новые
	сведений		исследование	релевантные

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
Критерий	тельно»	тельно»		
			новые	поставленной
			релевантные	задаче данные,
			задаче данные	предлагает новые
				ракурсы постав-
				ленной задачи
4 Освоение	В состоянии решать	В состоянии	В состоянии	Не только
стандартных	только фрагменты	решать поставлен-	решать постав-	владеет
алгоритмов	поставленной задачи	ные задачи в	ленные задачи в	алгоритмом и
решения	в соответствии с	соответствии с	соответствии с	понимает его
профессио-	заданным алгорит-	заданным	заданным	основы, но и
нальных задач	мом, не освоил	алгоритмом	алгоритмом,	предлагает новые
	предложенный		понимает основы	решения в рамках
	алгоритм, допускает		предложенного	поставленной
	ошибки		алгоритма	задачи

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Компетенция ОПК-5: Способен использовать свойства конструкционных и электротехнических материалов в расчетах параметров и режимов объектов профессиональной деятельности.

Тестовые задания открытого типа

тестовые задания открытого типа
1. Воображаемой пространственной сеткой, в узлах которой расположены атомы называется
Ответ: кристаллическая решетка
Вопрос 2. Способность металлов передавать тепло от более нагретых к менее нагретым участкам называется
Ответ: теплопроводность
3. Назначение трансформаторного масла Ответ: изоляция и охлаждение обмоток
4. Зависимость свойств от направления в кристалле называется
Ответ: анизотропия
5. С ростом температуры электрическое сопротивление проводников

6. Сплавы на основе меди, в которых основным легирующим элементом является цинк

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	6
называются	
Ответ: латунь	
7. При увеличении поперечного сечения проводника его сопротивление	
Ответ: уменьшится	
8. Химическое разрушение металлов под действием на их поверхность внешней агресс	сивной
среды называют:	
Ответ: коррозия	
9. При увеличении длины проводника его удельное сопротивление	
Ответ: не изменится	
10. Температура, при которой совершается переход материала в сверхпроводящее состназывается:	гояние
Ответ: критической температурой	
11. Удельное сопротивление проводника, если: R=2,0 Ом, l=0,8 км, S=16 мм ² Ответ: 40 Ом*мм ² /м	
12. Электрические щетки (в электрических машинах) изготовляют на основе:	
Ответ: графита	
13. Явление, заключающееся в том, что при изменении состояния намагниченности те объём и линейные размеры изменяются, называется:	ла его
Ответ: 4. магнитострикция	
14. Химическая формула элегаза:	
15. Материал, электрическое сопротивление которого при понижении температуры до некоторой величины температуры становится равным нулю, называется: Ответ: сверхпроводник	
16. Сплавы на основе меди, в которых основными легирующими элементами являются олово, алюминий, железо и другие элементы называются: Ответ: бронзами	1
17. Способность диэлектрика образовывать электрическую емкость определяет:	

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	7
18. Металлы, удельное сопротивление которых при охлаждении снижается плавно, без скачков, и достигает малых значений при криогенных температурах, называются:	
Ответ: криопроводники	
19. Вещества, предназначенные для удаления оксидов с паяемых или свариваемых	
поверхностей, снижения поверхностного натяжения и улучшения растекания жидкого	
припоя называются:	
Ответ: флюс	
Ответ, флюс	
20. П	
20. Полупроводники, основной состав которых образован атомами одного химического	
элемента (германий, кремний, селен, теллур), относятся кполупроводн	икам
Ответ: простым	
21. Величина напряженности внешнего магнитного поля, которая необходима, чтобы	
индукция внутри ферромагнетика стала равной нулю, называется	
Ответ: коэрцитивная сила	
22. Проводимость, вызванная действием света, называется:	
Ответ: фотопроводимость	
ответ. фотопроводимоств	
23. Полупроводниковый диод, излучающий свет при прохождении через него прямого	
тока:	
Ответ: светодиод	
24. Электроны находящиеся на внешнем, а иногда и на предпоследнем электронном сло	e)e
атома и способные принимать участие в образовании химических связей, называются:	
Ответ: валентными	
25. Молекула, у которой связующее электронное облако распределяется симметрично м	лежду
ядрами обоих атомов, называется:	
Ответ: неполярная	
26. Произведение заряда на плечо диполя, называется:	
Ответ: дипольный момент	
Ответ. дипольный момент	
27. Сориали вонной тоории очикострукот ополичению возму	
27. Согласно зонной теории существуют следующие зоны:	
Ответ: валентная, запретная, проводимости	
20. 17	U
28. Из-за поверхностного эффекта плотность переменного тока оказывается наибольше	Й
возле проводника	
Ответ: поверхности	

29. Процесс образования неразъёмного соединения различных материалов путём введения

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	8
между этими материалами расплавленного другого материала — припоя, который	имеет

более низкую температуру плавления, чем соединяемые материалы, называется

\sim	U	J
TDAT.	паико	TI
Ответ:	паико	ш

30. Процесс ограниченного смеще	ения зарядов вн	нутри диэлектрика	под действием
электрического поля, называется			

Ответ: поляризацией

Тестовые задания закрытого типа

- 31. Основные свойства магнитомягких материалов:
- 1. легко намагничиваются и перемагничиваются, имеют узкую петлю гистерезиса
- 2. легко намагничиваются и длительное время сохраняют состояние намагниченности
- 3. с трудом намагничиваются и длительное время сохраняют состояние намагниченности
- 4. с трудом намагничиваются и длительное время сохраняют состояние намагниченности, имеют узкую петлю гистерезиса
- 32. К магнитным материалам относятся:
- 1. железо, никель, кобальт, сплавы на основе технически чистого железа
- 2. медь, алюминий, бронза и их сплавы
- 3. тантал калий, германий и их сплавы
- 4. кальций, селен, кремний, и их сплавы
- 33. Группа электротехнических материалов, к которой относится кремний:
- 1. полупроводниковые материалы
- 2. проводниковые материалы
- 3. магнитные материалы
- 4. диэлектрические материалы
- 34. Материалы с наибольшим удельным сопротивлением:
- 1. полупроводники
- 2. диэлектрики
- 3. магнитные материалы
- 4. проводники
- 35. Недостаток дерева как диэлектрика:
- 1. высокая цена
- 2. низкие механические характеристики
- 3. гигроскопичность
- 4. плохая адгезия

- 36. Материал с более высокой удельной проводимостью:
- 1. константан
- 2. медь
- 3. фехраль
- 4. манганин
- 37. Вещества, которые относятся к проводникам второго рода:
- 1. металлические расплавы
- 2. твердые металлы
- 3. естественно жидкие металлы
- 4. электролиты
- 38. Проводниковые материалы. которые применяют в качестве токоведущих жил силовых кабелей:
- 1. вольфрам, серебро
- 2. свинец, марганец
- 3. никель, железо, сталь
- 4. медь, алюминий
- 39. Сегнетоэлектрики обладают:
- 1. большим значением диэлектрической проницаемости
- 2. высокой нагревостойкостью
- 3. высокой водостойкостью и газонепроницаемостью
- 4. хорошей адгезией
- 40. Для изготовления изоляторов используют:
- 1. стеклоэмали
- 2. фарфор
- 3. стекловолокно
- 4. олово

3 ТИПОВЫЕ ЗАДАНИЯ НА РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

- 3.1 Учебным планом предусмотрено выполнение расчетно-графической работы.
- В рамках расчетно-графической работы студентам требуется:
- 1) рассчитать емкость конденсатора;
- 2) определить число последовательно включенных секций;
- 3) рассчитать число и размеры параллельных секций;
- 4) вычислить диэлектрические потери и потери в обкладках конденсатора.
- 3.2 Расчет емкости конденсатора проводится в следующем порядке.
- 3.2.1 Определение емкости конденсатора

При соединении сборных секций конденсатора в треугольник на каждую из них будет действовать линейное напряжение. Тогда требуемая емкость одной сборки $C_{c\delta\Delta}$ может быть найдена из следующей формулы реактивной мощности:

$$Q_{\Delta} = 3U_{\rm H}^2 \omega C_{\rm c6\Delta},\tag{1}$$

При соединении сборок в звезду реактивная мощность конденсатора равна:

$$Q_* = 3 \cdot \left(\frac{U_H}{\sqrt{3}}\right)^2 \omega \cdot C_{c6*} = U_H^2 \cdot \omega \cdot C_{c6*}$$
 (2)

Из формул (1) и (2) следуют выражения для соответствующих емкостей $C_{cб\Delta}$ и $C_{cб*}$. Они равны:

$$C_{c\delta\Delta} = \frac{Q_*}{3 \cdot U_{\pi}^2 \cdot \omega},\tag{3}$$

И

$$C_{\mathsf{c}\mathsf{6}*} = \frac{Q_*}{U_{\mathsf{r}}^2 \cdot \omega},\tag{4}$$

Здесь $\omega = 2\pi f$ - угловая частота напряжения в сети f - частота напряжения, обычно равная 50 Гц).

При рассмотрении следующих этапов расчетов необходимо учитывать способ соединения сборных секций, мы далее для определенности будем полагать, что сборки секций конденсатора соединены в треугольник. Однако это не отразится ни на порядке расчета, ни на используемых при его проведении формулах.

3.2.2 Определение числа последовательно включенных секций

Для заданной толщины бумаги δ_1 и принятого числа ее слоев n_1 между обкладками конденсатора можно по расчетной рабочей напряженности поля $E_{\text{раб.р.}}$, характерной для заданного типа изоляционной конструкции, найти расчетное число последовательно включенных секций $n_{\text{посл.р.}}$. Оно равно:

$$n_{\text{посл.р.}} = \frac{U_{\text{раб}}}{E_{\text{раб.p.}} \cdot \mathbf{n_1} \cdot \mathbf{\delta_1}},$$
 (5)

Число $n_{\text{посл.р.}}$, найденное по формуле (5), следует затем принять равным ближайшему целому числу. Замена расчетного числа $n_{\text{посл.р.}}$ ближайшим целым числом $n_{\text{посл.}}$ требует соответствующего пересчета величины $E_{\text{раб}}$ по формуле

$$E_{\text{pa6}} = \frac{u_{\text{pa6}}}{n_{\text{mocr}} \cdot \mathbf{n}_1 \cdot \delta_1} \,. \tag{6}$$

Тогда с учетом $E_{\mathtt{pa6}}$ рабочее напряжение отдельной секции $U_{\mathtt{c.pa6}}$. будет равно:

$$U_{\text{c.pa6.}} = E_{\text{pa6}} \cdot \mathbf{n_1} \cdot \mathbf{\delta_1} \tag{7}$$

3.2.3 Расчет размеров и числа параллельных секций

Отдельная секция конденсатора с бумажно-жидкостной изоляцией обычно представляет собой рулон из двух фольговых электродов, между которыми укладывается несколько слоев бумаги (или пленки). Оптимальным считается размещение между электродами 6-10 слоев бумаги. Сначала фольга и бумага вместе сворачиваются в круглые рулоны, а затем они спрессовываются в овальные секции. Толщина спрессованной секции обозначается Δ_{C} ; длина секции, обозначаемая b, примерно равна ширине фольги, а ширина секции обозначается h. По заданным в задании величинам Δ_{C} , b и h определим длину закраин ΔL , т.е. линейный размер, на который изоляционный материал выступает за край одной из обкладок конденсатора для предотвращения ее контакта с другой обкладкой или перекрытия по поверхности диэлектрика. Она находится по формуле:

$$\Delta L = k_3 U_{\text{HCII.C.}} + L_1, \tag{8}$$

где k_3 - коэффициент закраины, при работе секции в жидком диэлектрике он принимается равным k_3 =1,5 - 2,5 м/МВ (при проведении расчетов принять κ_3 равным 1,5 м/МВ); $U_{\text{исп.с.}}$ - испытательное напряжение, приходящееся на одну секцию конденсатора; L_1 - технологическое увеличение размера закраин, обусловленное возможным смещением обкладок относительно изолирующей бумаги при изготовлении секций; величина L_1 выбирается в зависимости от технологии изготовления конденсаторов в пределах от 0,5 до 10 мм (в расчетах принять L_1 = 5 мм).

Величина испытательного напряжения секции $U_{\text{исп.с.}}$ определяется по испытательному напряжению всего конденсатора $U_{\text{исп.к.}}$, которое примем равным 2,2 $U_{\text{раб}}$, тогда

$$U_{\text{ucn.c}} = 2.2 \cdot \frac{U_{\text{pa6}}}{n_{\text{noc.n}}},\tag{9}$$

С учетом (9) по выражению (8) величина закраин ΔL равна:

$$\Delta L = 2.2 \cdot \frac{U_{\text{pa6}}}{n_{\text{посл}}} \cdot k_3 + L_1,\tag{10}$$

Относительную диэлектрическую проницаемость изоляционной бумаги, пропитанной трихлордифенилом, находим по формуле:

$$\varepsilon_r = \frac{\varepsilon_{r,\text{пр.}}}{1 + \frac{\gamma_{\delta}}{\gamma_{\text{K}}} k_{\text{3anp.}} (\frac{\varepsilon_{r,\text{пр.}}}{\varepsilon_{r,\text{K.}}} - 1)} , \qquad (11)$$

где $\mathcal{E}_{r.пр.}$ и $\mathcal{E}_{r.к.}$ - относительные диэлектрические проницаемости соответственно пропитывающего состава (трихлордифенила) и клетчатки (бумаги, поры которой пропитаны жидким диэлектриком); γ_{δ} и γ_{κ} - соответственно плотность бумаги и плотность клетчатки; $k_{\text{запр.}}$ - коэффициент запрессовки.

Коэффициент запрессовки $k_{\mathtt{запр}}$. учитывает изменение толщины изоляции в результате прессования цилиндрических заготовок отдельных секций и превращения их в овальные. В принятой для расчета диэлектрической конструкции конденсатора коэффициент $k_{\mathtt{запр}}$. равен:

$$k_{\text{samp.}} = \frac{n_1 \cdot \delta_1}{\Delta_{\text{MB}}},\tag{12}$$

где n_1 , δ_1 - толщина бумаги между обкладками; $\Delta_{\text{из}} = \Delta_1 + \Delta_2$ – полная толщина изоляции, которая включает в себя толщину клетчатки Δ_1 , и толщину пропитывающего слоя Δ_2 .

При этом толщина клетчатки равна:

$$\Delta_1 = n_1 \cdot \delta_1 \cdot \left(\frac{\gamma_{\delta}}{\gamma_{\kappa}}\right),\tag{13}$$

а толщина пропитывающего слоя может быть найдена из выражения:

$$\Delta_2 = n_1 \cdot \delta_1 \cdot \frac{\left(1 - \frac{\gamma_{\delta}}{\gamma_{K}} k_{\text{3anp.}}\right)}{k_{\text{3anp.}}},\tag{14}$$

Обычно коэффициент запрессовки $k_{\text{запр.}}$ составляет величину от 0,8 до 0,95. В рамках данной работы он принимается равным величине, определенной индивидуальным заданием без - проведения соответствующих вычислений.

Примем также, что в качестве конденсаторной бумаги используется бумага КОН-1, плотность которой составляет $\gamma_{\delta}=1000~\frac{\mathrm{Kr}}{\mathrm{M}^2}$. Плотность клетчатки следует принять равной

$$\gamma_{\rm K}=1550 \, {{\rm Kr}\over {\rm M}^2}$$
,а ее относительная диэлектрическая проницаемость равна $\varepsilon_{r.{\rm K.}}=6,6.$

Учитывая, что диэлектрическая проницаемость пропитывающего жидкого диэлектрика (трихлордифенила) составляет величину $\varepsilon_{r,\mathrm{np.}}=5.0$, можно провести расчет диэлектрической проницаемости всей изоляции отдельной секции конденсатора ε_r по формуле (11).

Далее следует определить расчетную электрическую емкость отдельной секции $C_{c.p.}$, а по ней - расчетное число параллельных секций, необходимых для создания в каждой фазной сборке требуемой емкости $C_{cб.p.}$.

Емкость отдельной секции равна:

$$C_{c.p.} = \varepsilon_r \cdot \varepsilon_0 (b - 2\Delta L) \left(h - \Delta_c + \frac{\pi}{4} \cdot \Delta_c \cdot k_{samp} \right) \cdot \frac{\Delta_c \cdot k_{samp}^2}{n_1 \cdot \delta_1 (n_1 \cdot \delta_1 + \Delta_b)}, \tag{15}$$

где Δ_{Φ} — толщина фольги , определяемая индивидуальным заданием по курсовой работе; ϵ_0 - электрическая постоянная (ϵ_0 = 8,85·10 ⁻¹² Φ /м).

Расчетное число параллельных секций сборки $n_{\text{пар.р.}}$, позволяющих получить требуемую емкость $\mathcal{C}_{\mathsf{c}\mathsf{6}}$, найдем по формуле:

$$n_{\text{пар.р.}} = \frac{c_{\text{cf}} \cdot n_{\text{посл}}}{c_{\text{c.p.}}}.$$
(16)

Результат, полученный по формуле (16), следует округлить до ближайшего целого числа, т.е. принять $n_{\text{пар.р.}} = n_{\text{пар}}$. Тогда требуемая емкость отдельной секции тоже должна быть изменена в соответствии с принятым округленным значением числа параллельных секций $n_{\text{пар.}}$. Новое значение $C_{\mathbf{c}}$ получим из выражения:

$$C_{\rm c} = \frac{c_{\rm c6} \cdot n_{\rm nocn}}{n_{\rm nap}}.$$
 (17)

Чтобы получить требуемую емкость C_c необходимо изменить один из параметров секции, определяющих ее величину. Изменим толщину секции Δ_c на новое значение Δ_c^* , которую можно вычислить по выражению (15), преобразовав его к квадратному уравнению относительно искомой величины Δ_c^* и взяв положительный корень в его решении.

3.2.4 Вычисление удельных потерь в секциях конденсатора

Все потери энергии в конденсаторе состоят из диэлектрических потерь и потерь от тока, протекающего в обкладках. Оба вида потерь зависят от температуры материалов конденсатора. Поэтому при расчете потерь необходимо задаться температурой в середине спрессованной секции. Выберем три уровня этой температуры: +70, +40 и +10 °C. Следует принять, что при этих температурах величина тангенса угла диэлектрических потерь составит соответственно: $tg\delta_{70}$,=0,0023; $tg\delta_{40}$ =0,0019; $tg\delta_{10}$ =0,0021. Расчет электрических потерь в отдельной секции следует провести по формуле:

$$P_{gt} = U_{c,pa\delta}^2 * \omega * C_c * tg\delta_t, \tag{18}$$

где P_{gt} - диэлектрические потери в изоляции при температуре t_0 ; $U_{c.paб.}$ - приложенное к изоляции наибольшее рабочее напряжение на секции; ω - угловая частота; C_c - емкость изоляции отдельной секции; $tg\delta_t$ - тангенс угла диэлектрических потерь при температуре t. Таким образом, в расчетах следует принять, что приложенное к секции напряжение равно наибольшему рабочему напряжению $U_{c.paб.}$ и не зависит от времени. Нагревом изоляции от воздействия случайных перенапряжений можно пренебречь из-за их малой продолжительности и сравнительно редкого появления.

Емкость электроизоляционной конструкции с некоторыми можно считать не зависящей от времени и температуры. Вместе с тем, температура изоляции, а также частота переменного тока оказывают существенное влияние на $tg\delta_t$.

Поэтому при подсчете диэлектрических потерь значение $tg\delta_t$ должно соответствовать определенной температуре и частоте переменного тока. При вычислениях будем предполагать, что напряжение в сети синусоидально и имеет частоту 50 Гц, а высшие гармоники в его составе отсутствуют. Тогда при расчетах по формуле (17) будет варьировать только величина $tg\delta_t$, для трех значений которой получим три значения мощности P_{g70} , P_{g40} , P_{g10} .

Потери в обкладках для каждой из температур найдем по формуле:

$$P_{\Phi t} = \frac{1}{6} \left(U_c \cdot \omega \cdot \frac{C_c}{n} \right)^2 \cdot \left(\frac{L_a}{(b - 2 \cdot \Delta L) \cdot \Delta_{\Phi}} \right) \cdot \rho_0 \cdot \left(1 + 2 \cdot \alpha_{\Phi} \cdot (t - t_0) \right), \tag{19}$$

где L_a - активная длина обкладки секции (см. ниже); n - число закладных отводов от одной обкладки секции, располагаемой на равном расстоянии друг от друга (в расчетах $P_{\phi t}$ принять n=1); ρ_0 - удельное сопротивление материала обкладок при температуре t_0 ; α_{ϕ} - температурный коэффициент сопротивления материала обкладок.

Активная длина обкладок L_а находится по величине емкости секции C_с из выражения:

$$L_{A} = \frac{C_{C} \cdot \Delta_{H3}}{2 \cdot \varepsilon_{O} \cdot \varepsilon_{\Gamma} \cdot (b - 2 \cdot \Delta_{L})},$$
(20)

Или по формуле (21), полученной из (20) с учетом геометрических и других характеристик секции, найденных в результате предыдущих расчетов:

$$L_a = \frac{k_{\text{3anp}} \cdot \Delta_c^*}{2(n_1 \delta_1 + \Delta_b)} \cdot \left(h - \Delta_c^* + \frac{\pi}{3} \cdot \Delta_c^* \cdot k_{\text{3anp}} \right), \tag{21}$$

Величины ρ_{00} и $\alpha_{\dot{\Phi}}$ необходимые для вычисления потерь в фольге $P_{\dot{\Phi}t}$, приведены в задании. Суммарные потери, имеющие место в отдельной секции конденсатора при температурах 70, 40 и 10 °C, определяются суммированием P_{gt} и $P_{\dot{\Phi}t}$:

$$P_{ct} = P_{gt} + P_{\phi t} \quad . \tag{22}$$

Совокупные потери во всех секциях конденсатора получим по формуле:

$$P_{\text{KT}} = n_{\text{посл.}} \cdot n_{\text{пар.}} \cdot P_{\text{c}t}. \tag{23}$$

Удельные тепловыделения в секции, т.е. тепловыделения в единице объема секции найдем из выражения:

$$q_{ct} = \frac{P_{ct}}{(b-2\Delta L) \cdot h \cdot \Delta_c^*}.$$
 (24)

Этим расчет потерь в секциях конденсатора заканчивается.

3.3 Расчетно-графическая работа оценивается по системе «зачтено / не зачтено». Качественные критерии оценивания контрольной работы приведены в таблице 2. Таблица 2 – Критерии оценивания контрольной работы

Оценка	Критерий
	Методика и порядок расчета верные. Ошибки отсутствуют, либо имеются несущественные вычислительные ошибки.
«Зачтено»	Методика и порядок расчета верные. Имеются вычислительные ошибки, обусловленные невнимательностью при расчетах, которые не привели к существенному искажению результата.
	Имеются незначительные ошибки в методологии, ошибки в промежуточных расчетах или выборе коэффициентов, обусловленные неполным пониманием принципа расчета, при этом конечный результат имеет приемлемые отклонения.
«Не зачтено»	Применена неверная методология, нарушен порядок расчета, имеется серьезная системная ошибка, обусловленные непониманием принципа расчета и приведшие к ошибочному результату.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Электротехническое и конструкционное материаловедение» представляет собой компонент профессиональной образовательной программы бакалавриата по направлению подготовки 13.03.02 Электроэнергетика и электротехника.

Преподаватель-разработчик – к.т.н И.Е. Кажекин

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой энергетики.

Заведующий кафедрой

В.Ф. Белей

Фонд оценочных средств рассмотрен и одобрен методической комиссией ИМТЭС (протокол № 8 от 26.08.2024 г).

Председатель методической комиссии ИМТЭС

Белих О.А. Белых