

Федеральное агентство по рыболовству БГАРФ ФГБОУ ВО «КГТУ» Калининградский морской рыбопромышленный колледж

Утверждаю Заместитель начальника колледжа по учебно-методической работе А.И.Колесниченко

ООД.11 ФИЗИКА

Методическое пособие для выполнения практических работ по специальности

09.02.07 Информационные системы и программирование

МО-09 02 07-ООД.11.ПЗ

РАЗРАБОТЧИК Усейнова Д.В. ЗАВЕДУЮЩИЙ ОТДЕЛЕНИЕМ Кругленя В.Ю.

 ГОД РАЗРАБОТКИ
 2023

 ГОД ОБНОВЛЕНИЯ
 2025

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 2/31

Содержание

Введение	3
ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ	5
Практическое занятие№1	6
Практическое занятие №2	9
Практическое занятие №3	13
Практическое занятие №4	17
Практическое занятие №5	20
Практическое занятие №6	24
Практическое занятие №7	27
Используемые источники питературы	31

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 3/31

Введение

Методические указания по организации практических занятий обучающихся разработаны в соответствии с рабочей программой учебной дисциплины Физика.

На практические занятия по дисциплине «Физика» отведено 14 академических часов.

Цель практического занятия:

- закрепить знания и умения обучающихся по темам и разделам дисциплины;
- расширить знания по отдельным темам;
- формировать умения самостоятельного изучения элементов дисциплины, пользоваться дополнительной и учебной литературой, интернетом;
- рассмотреть случаи практического применения изученных физических законов, формул при решении задач.

В результате освоения дисциплины обучающийся должен уметь:

- описывать и объяснять физические явления и свойства тел;
- приводить примеры практического использования физических знаний;
- отличать гипотезы от научных открытий;
- применять полученные знания для решения физических задач;
- определять характер физического процесса по графику, таблице, формуле;
- использовать лабораторное и демонстрационное оборудование;
- измерять ряд физических величин, представляя результаты измерения с учетом их погрешностей;
 - делать выводы на основе экспериментальных данных;
- использовать приобретенные знания и умения в практической деятельности и повседневной жизни:
 - а) для обеспечения безопасности жизнедеятельности,
- б) оценки влияния на организм человека и другие организмы загрязнения окружающей среды,
 - в) рационального природопользования и защиты окружающей среды
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях.

В результате освоения дисциплины обучающийся должен знать:

- смысл понятий: физическое явление, закон, гипотеза, теория, вещество, поле, волна.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 4/31

- смысл физических величин: скорость, ускорение, масса, сила, импульс, энергия, температура, заряд
- смысл физических законов: «Механики», «Термодинамики», «Электродинамики», «Квантовой физики»
- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики.

В результате выполнения практической работы у обучающихся формируются элементы следующих общих компетенций:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях;
 - ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- ОК 07. Содействовать сохранению окружающей среды, ресурсосбережению, применять знания об изменении климата, принципы бережливого производства, эффективно действовать в чрезвычайных ситуациях;

При подготовке предложенных заданий, обучающихся должен обратить внимание на:

- 1. Построение графиков
- 2. Вывод уравнения
- 3. Аккуратность оформления работы
- 4. Наличие всех необходимых формул и пояснений, где это требуется.

Итоговая оценка по предмету выставляется с учетом результатов выполнения практического занятия.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 5/31

ПЕРЕЧЕНЬ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

N п/п	Наименование практических работ	Кол-во часов
1	Абсолютные и относительные погрешности измерений физических величин. Оценка границ погрешностей.	2
2	Уравнение Бернулли для идеальной жидкости как следствие закона сохранения механической энергии.	2
3	Преобразование энергии в фазовых переходах. Уравнение теплового баланса.	2
4	Исследование смешанного соединения резисторов.	2
5	Амплитуда и фаза колебаний. Связь амплитуды колебаний исходной величины с амплитудами колебаний её скорости и ускорения. Период и частота колебаний. Период малых свободных колебаний математического маятника. Период свободных колебаний пружинного маятника. Понятие о затухающих колебаниях. Вынужденные колебания. Резонанс.	2
6	Идеальный трансформатор.	2
7	Прямолинейное распространение света в однородной среде. Луч света. Точечный источник света.	2
	ОТОГО	14

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 6/31

Практическое занятие№1

«Абсолютные и относительные погрешности измерений физических величин.

Оценка границ погрешностей. (Расчет и оценка погрешности измерений)»

Цель работы:

- 1. Рассчитать погрешность результатов измерений.
- 2. Оценить абсолютную погрешность, относительную погрешность предоставленных измерений.
- 3.Записать результат измерений в стандартной записи.

Оборудование:

Калькулятор

Краткие теоретические сведения.

Измерить величину — значит сравнить её с однородной величиной, условно принятой за единицу измерения.

Различают прямые и косвенные измерения.

Если измеряемая величина непосредственно сравнивается с мерой, то измерения называются прямыми

Если измеряется не сама искомая величина, а некоторые другие величины, связанные с ней функциональной зависимостью, то измерения называются косвенными. Например, измерения объема, ускорения и т.д.

Из-за несовершенства средств и методик измерения, органов чувств, при любом измерении неизбежны отклонения результатов измерений от истинных величин. Эти отклонения называются погрешностями измерений.

Погрешности измерений делятся на систематические, случайные и промахи.

В этой практической работе приведен один из методов определения абсолютной и относительной погрешностей, и исходя из полученного результата, представляется стандартная запись результата измерений.

1.Если N1, N2, N3, N4, N5, Nn - результаты отдельных измерений величины х, то средний результат равен их сумме, деленной на число измерений:

$$N = \frac{N_1 + N_2 + N_3 + \dots + N_n}{n}$$

2. Разность между результатом отдельного измерения и средним результатом, взятую по модулю, называют абсолютной погрешностью отдельного измерения:

$$\Delta N_i = |N_i - N|$$

3.Средняя абсолютная погрешность определяется аналогично среднему результату:

$$\Delta N = \frac{\Delta N_1 + \Delta N_2 + \Delta N_3 + \dots + \Delta N_n}{n}$$

4.Относительная погрешность равна отношению средней абсолютной погрешности к среднему результату

$$\varepsilon = \frac{\Delta N}{N}$$

5.Окончательтный результат записывается равенством

$$X = N \pm \Delta N$$

$$\varepsilon = \frac{\Delta N}{N} * 100\%$$

Ход работы:

- 1.Внимательно ознакомиться с описанием работы.
- 2. Начать оформлять отчет.

Отчет должен содержать:

- -титульный лист (оформление по требованиям)
- -название работы
- -цель работы
- -оборудование
- -краткие теоретические сведения
- -таблица результатов измерений (выдаётся преподавателем по вариантам)
- -расчеты, запись результата измерений и вычислений по стандарту (пункт 5)
- 3.Произвести расчёты по предложенному алгоритму и записать окончательный вариант результата измерений
- 4.Ответить на контрольные вопросы.

Контрольные вопросы:

- 1. Что значит измерить величину?
- 2. Какие бывают измерения?

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 8/31

- 3.Дать определение прямым измерениям.
- 4.Дать определение косвенным измерениям.
- 5. Какие бывают погрешности?
- 6.дать определение абсолютной погрешности.
- 7. Дать определение относительной погрешности.
- 8. Может ли быть погрешность отрицательной?
- 9. Что такое абсолютное значение/величина
- 10. Какие основные единицы измерений в системе СИ?

вар	изме	Изме	Изме	Изме	Изме	Изме	Изме	Изме	Изме	Изме
иан	рени	рение	рение	рение	рение	рение	рение	рение	рение	рение
Т	e 1	2	3	4	5	6	7	8	9	10
1	100,1	100	100,1	100,6	100,0	99,8	96,99	100,0	100,3	100
2	57,5	58,3	57,9	60	57,6	57,8	57,02	57,5	58,0	57,7
3	38, 01	38,01	38,01	38,0	37,9	37,99	39,0	38,01	38,01	39,0
4	1000, 1	1001	1000, 3	1000, 2	1000, 01	1000, 0	1000, 0	999,9	999,8	999.0 9
5	80,25	80,56	80,21.	80,78	80,88	80,43	80,7	80,33	80,45	80,9
6	10,1	9,99	10,1	10,2	10,5	10,01	10,01	9,98	9,85	10,0
7	0,99	1,0	0,98	0,98	0,99	0,96	1,02	1,05	1,1	0,97
8	20,01	20,2	20,2	21,0	20,0	19,99	19,08	19,79	19,78	19,08
9	450,0	451,0	451,0	455,0 1	449,6	448,9 9	450,0 1	448,9 9	450,0 98	450,0 2
10	10,03	10,02	10,1	10,01	9,9	9,98	9,89	10,01	10,00	10,01
11	225,0 1	225,2	224,9 9	225,0 2	225,0 2	224,9 8	224,8 9	225,0 3	225,0 1	225,0 1
12	0,983	0,987	0,999	0,999	0,899	0,999	0,998	0,899	0,967	0,999
13	500,0	500,2	500,0 0	500,0 5	499,9 8	498,9	500,0 1	500,0 1	500,0	500,0
14	125,0 1	125,0	125,5	125,0 3	125,0 1	125,0 9	125,0 8	125,0 1	125,0 1	125,0 2
15	100,0	100,3	100	100	100,1	100,6	100,1	100,6	100,0	99,8
16	57,5	58,0	57,7	58,3	57,9	60	57,5	60	57,6	57,8
17	38,01	38,01	39,0	38,01	38,01	38,0	38, 01	38,0	37,9	37,99
18	999,9	999,8	999.0	1001	1000,	1000,	1000,	1000,	1000, 01	1000,
19	80,33	80,45	9 80,9	80,56	3 80,21.	80,78	80,25	2 80,78	80,88	80,43
20	9,98	9,85	10,0	9,99	10,1	10,2	10,1	10,2	10,5	10,01
21	1,05	1,1	0,97	1,0	0,98	0,98	0,99	0,98	0,99	0,96
22	19,79	19,78	19,08	20,2	20,2	21,0	20,01	21,0	20,0	19,99
23	448,9	450,0 98	450,0 2	451,0	451,0	455,0 1	450,0	455,0 1	449,6	448,9 9

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 9/31

24	10,01	10,00	10,01	10,02	10,1	10,01	10,03	10,01	9,9	9,98
		2								
25	225,0	225,0	225,0	225,2	224,9	225,0	225,0	225,0	225,0	224,9
	3	1	1		9	2	1	2	2	8
26	0,899	0,967	0,999	0,987	0,999	0,999	0,983	0,999	0,899	0,999
27	500,0	500,0	500,0	500,2	500,0	500,0	500,0	500,0	499,9	498,9
	1	2	1		0	5	1	5	8	

В результате проведенной работы, обучающийся должен сделать вывод: можно ли считать результаты измерений достоверными. Ответ должен быть подтвержден на основании обработанных результатов.

Если относительная погрешность составляет всего <5%, то результаты измерений можно считать достоверными, и в этом случае вывод формулируется так: - в результате измерений и вычислений, получили измеряемую величину $X = N \pm \Delta N$, следовательно, результаты измерений можно считать достоверным, так как относительная погрешность составила всего 5%.

Если относительная погрешность составляет >5%, то результаты измерений можно считать недостоверными, и в этом случае вывод формулируется так:

- в результате измерений и вычислений, получили измеряемую величину $X = N \pm \Delta N$, следовательно, результаты измерений нельзя считать достоверным, так как относительная погрешность составила всего >5%.

И в идеале, обучающиеся должны заново делать измерения, чтобы получить достоверный результат.

Такие навыки, как оценка результатов измерений, обеспечит в дальнейшем при освоении специальности правильно оценить результаты измерений, оценить ошибку измерений и сформулировать обоснованный вывод и принять правильное решение о результатах полученных измерений

Практическое занятие №2 «Уравнение Бернулли для идеальной жидкости как следствие закона сохранения механической энергии»

Цель работы:

- 1. Изучить физический смысл уравнения Бернулли и его связь с законом сохранения механической энергии.
- 2. Выполнить измерения давления, скорости потока и высоты в двух сечениях

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 10/31

трубки с переменным сечением.

- 3. Рассчитать абсолютные и относительные погрешности измерений для каждой измеряемой величины.
- 4. Проверить сохранение полной энергии в потоке жидкости на основе уравнения Бернулли.
- 5. Сформулировать вывод о достоверности результатов измерений.

Оборудование:

- Экспериментальная установка с трубкой Вентури или трубкой переменного сечения
- Манометр для измерения давления
- Трубка Пито или анемометр для измерения скорости потока
- Линейка или измерительная лента для измерения высоты
- Калькулятор для выполнения расчетов
- Секундомер для измерения времени (при необходимости)
- Емкость с водой или другой жидкостью (плотность $\rho = 1000 \text{ кг/м}^3$)
- Лабораторный журнал для записи результатов

Краткие теоретические сведения:

Уравнение Бернулли описывает движение идеальной жидкости (несжимаемой и невязкой) в стационарном потоке. Оно является следствием закона сохранения механической энергии, который утверждает, что сумма кинетической, потенциальной и внутренней энергии жидкости остается постоянной вдоль линии тока. Уравнение Бернулли в текстовой форме:

P +
$$\rho$$
 * g * h + (1/2) * ρ * v^2 = const, где:

- Р давление в жидкости, измеряется в Па (паскалях),
- ρ плотность жидкости, в кг/м³ (для воды ρ = 1000 кг/м³),
- g ускорение свободного падения, 9.81 м/с²,
- h высота сечения трубки относительно уровня отсчета, в метрах,
- v скорость потока жидкости, в м/с.

Это уравнение показывает, что увеличение скорости потока (v) приводит к уменьшению давления (P), а изменение высоты (h) влияет на потенциальную энергию. Для двух сечений трубки полная энергия должна быть одинаковой:

$$P1 + \rho * g * h1 + (1/2) * \rho * v1^2 = P2 + \rho * g * h2 + (1/2) * \rho * v2^2.$$

Погрешности измерений:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 11/31

Измерения физических величин всегда сопровождаются погрешностями из-за ограничений оборудования, методик или человеческого фактора. Погрешности делятся на:

- Систематические: вызваны постоянными ошибками в приборах или методике.
- Случайные: возникают из-за случайных факторов, влияющих на измерения.
- Промахи: грубые ошибки, которые исключаются из расчетов.
 Для оценки погрешностей используются следующие формулы:
- 1. Среднее значение измеряемой величины х:

2. Абсолютная погрешность отдельного измерения:

$$\Delta x_i = |x_i - x_cp|.$$

3. Средняя абсолютная погрешность:

$$\Delta x$$
 cp = $(\Delta x \ 1 + \Delta x \ 2 + ... + \Delta x \ n) / n$.

4. Относительная погрешность (в процентах):

$$\delta x = (\Delta x_c p / x_c p) * 100\%.$$

5. Итоговый результат записывается как:

$$x = x cp \pm \Delta x cp$$
.

6. Для проверки уравнения Бернулли сравнивается полная энергия в двух сечениях. Разность между левой и правой частями уравнения должна быть минимальной. Если относительная погрешность полной энергии составляет менее 5%, результаты считаются достоверными.

Дополнительные замечания:

- Идеальная жидкость предполагается невязкой и несжимаемой, что упрощает расчеты.
- В реальных условиях вязкость и турбулентность могут влиять на результаты, но в данной работе они не учитываются.
- Точность измерений зависит от правильной калибровки приборов и соблюдения методики.

Ход работы:

- 1. Внимательно изучить теоретические сведения и инструкции к работе.
- 2. Подготовить отчет, включающий:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 12/31

- Титульный лист (оформленный по стандартам).
- Название практической работы.
- Цель работы.
- Список используемого оборудования.
- Краткие теоретические сведения.
- Таблицу результатов измерений (выдается преподавателем по вариантам).
- Расчеты абсолютных и относительных погрешностей для каждой величины.
- о Проверку уравнения Бернулли с использованием измеренных данных.
- о Ответы на контрольные вопросы.
- 3. Провести измерения давления (P), скорости потока (v) и высоты (h) в двух сечениях трубки для заданного варианта.
- Рассчитать полную энергию в каждом сечении по формуле:
 E = P + ρ * q * h + (1/2) * ρ * v^2.
- 5. Сравнить значения полной энергии в двух сечениях и определить разность.
- 6. Рассчитать абсолютные и относительные погрешности для каждого измерения (P, v, h).
- 7. Сделать вывод о соответствии результатов уравнению Бернулли на основе погрешностей.

Контрольные вопросы:

- 1. Какой физический смысл имеет уравнение Бернулли?
- 2. Как уравнение Бернулли связано с законом сохранения механической энергии?
- 3. Какие физические величины входят в уравнение Бернулли, и в каких единицах они измеряются?
- 4. Что такое идеальная жидкость, и чем она отличается от реальной жидкости?
- 5. Какие типы погрешностей существуют, и как они влияют на результаты измерений?

Литература:

- 1. Савельев И.В. Курс общей физики. Т. 1. Механика, молекулярная физика. М.: Наука, 1987.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Т. 1. Механика. М.: Высшая школа, 2002.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 13/31

- 3. Сивухин Д.В. Общий курс физики. Т. 1. Механика. М.: Физматлит, 2005.
- 4. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. 6. Гидродинамика. М.: Наука, 1986.
- 5. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. М.: Просвещение, 1995.
- 6. Трофимова Т.И. Курс физики. М.: Академия, 2006.

Практическое занятие №3 «Преобразование энергии в фазовых переходах. Уравнение теплового баланса»

Цель работы:

- 1. Изучить процессы преобразования энергии при фазовых переходах вещества.
- 2. Провести измерения температуры и массы вещества в процессе фазового перехода (плавления или кипения).
- 3. Рассчитать теплоту фазового перехода с использованием уравнения теплового баланса.
- 4. Оценить абсолютные и относительные погрешности измерений.
- 5. Сформулировать вывод о достоверности результатов измерений.

Оборудование:

- Калориметр с крышкой и мешалкой
- Термометр (градуировка 0.1 °C)
- Нагреватель (электрический или спиртовка)
- Секундомер
- Весы лабораторные (точность до 0.01 г)
- Емкость с водой
- Лед (для исследования плавления) или жидкость для кипения
- Калькулятор
- Лабораторный журнал для записи результатов

Краткие теоретические сведения:

Фазовые переходы (плавление, кипение, конденсация, кристаллизация) сопровождаются поглощением или выделением теплоты без изменения температуры вещества. Эта теплота называется скрытой теплотой фазового

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 14/31

перехода. Уравнение теплового баланса основано на законе сохранения энергии и позволяет рассчитать количество теплоты, участвующее в процессе.

Уравнение теплового баланса в текстовой форме:

Q поглощенное = Q_выделенное,

где Q — количество теплоты, определяемое как:

- Для нагрева: Q = c * m * (t2 t1),
 где с удельная теплоемкость (Дж/(кг·°С)), m масса (кг), t2, t1 конечная и начальная температуры (°С).
- Для фазового перехода: $Q = \lambda * m$ (для плавления/кристаллизации) или Q = r * m (для кипения/конденсации),

где λ — удельная теплота плавления (Дж/кг), r — удельная теплота парообразования (Дж/кг).

Пример уравнения теплового баланса для плавления льда в калориметре:

$$c_B * m_B * (t_K - t_B) = \lambda * m_Л + c_B * m_Л * (t_K - 0),$$
где:

- с_в удельная теплоемкость воды (4200 Дж/(кг·°С)),
- т_в масса воды в калориметре (кг),
- t_в начальная температура воды (°С),
- t к конечная температура смеси (°С),
- m л масса льда (кг),
- λ удельная теплота плавления льда (3.34 * 10^5 Дж/кг).

Погрешности измерений:

Измерения сопровождаются погрешностями из-за ограничений приборов, методик или человеческого фактора. Погрешности делятся на:

- **Систематические**: вызваны постоянными ошибками в приборах или методике.
- Случайные: возникают из-за случайных факторов.
- Промахи: грубые ошибки, исключаемые из расчетов.

Для оценки погрешностей используются следующие формулы:

1. Среднее значение измеряемой величины х:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 15/31

2. Абсолютная погрешность отдельного измерения:

$$\Delta x_i = |x_i - x_cp|$$
.

3. Средняя абсолютная погрешность:

$$\Delta x$$
 cp = $(\Delta x \ 1 + \Delta x \ 2 + ... + \Delta x \ n) / n$.

4. Относительная погрешность (в процентах):

$$\delta x = (\Delta x_{cp} / x_{cp}) * 100\%.$$

5. Итоговый результат записывается как:

$$x = x cp \pm \Delta x cp$$
.

Для проверки уравнения теплового баланса сравнивается теплота,
 поглощенная и выделенная в процессе. Относительная погрешность теплоты
 (δQ) не должна превышать 5%, чтобы результаты считались достоверными.

Дополнительные замечания:

- Фазовые переходы происходят при постоянной температуре, что отличает их от процессов нагрева или охлаждения.
- Точность измерений массы и температуры критически важна для правильного расчета теплоты.
- В реальных условиях часть теплоты может теряться в окружающую среду, что учитывается как систематическая погрешность.
- Уравнение теплового баланса применимо в калориметрии, теплотехнике и других областях физики и техники.

Ход работы:

- 1. Изучить теоретические сведения и инструкции к работе.
- 2. Подготовить отчет, включающий:
 - о Титульный лист (оформленный по стандартам).
 - Название работы.
 - Цель работы.
 - о Список используемого оборудования.
 - Краткие теоретические сведения.
 - Таблицу результатов измерений (выдается преподавателем по вариантам).
 - Расчеты теплоты фазового перехода и погрешностей.
 - Ответы на контрольные вопросы.
- 3. Провести измерения массы вещества (m), начальной и конечной температуры (t_в, t_к) для заданного варианта.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 16/31

- 4. Рассчитать теплоту фазового перехода (Q) с использованием уравнения теплового баланса.
- 5. Определить абсолютные и относительные погрешности для измеренных величин (m, t).
- 6. Проверить баланс теплоты и сделать вывод о достоверности результатов. **Контрольные вопросы:**
- 1. Что такое фазовый переход, и какие виды фазовых переходов существуют?
- 2. Как уравнение теплового баланса связано с законом сохранения энергии?
- 3. Какие физические величины входят в уравнение теплового баланса?
- 4. Что такое скрытая теплота фазового перехода?
- 5. Какие типы погрешностей существуют, и как они влияют на измерения?
- 6. Как определяется абсолютная погрешность измерения массы или температуры?
- 7. Как рассчитывается относительная погрешность, и что она показывает?
- 8. Может ли относительная погрешность быть отрицательной? Обоснуйте.
- 9. Почему теплота поглощения равна теплоте выделения в уравнении теплового баланса?
- 10. Какие единицы измерения в системе СИ используются для массы, температуры и теплоты?

Литература:

- 1. Савельев И.В. Курс общей физики. Т. 2. Термодинамика и молекулярная физика. М.: Наука, 1987.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Т. 2. Термодинамика. М.: Высшая школа, 2002.
- 3. Сивухин Д.В. Общий курс физики. Т. 2. Термодинамика и молекулярная физика. М.: Физматлит, 2005.
- 4. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. М.: Просвещение, 1995.
- 5. Трофимова Т.И. Курс физики. М.: Академия, 2006.
- 6. Иродов И.Е. Задачи по общей физике. М.: Физматлит, 2000.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 17/31

Практическое занятие №4 «Исследование смешанного соединения резисторов»

Цель работы:

- 1. Изучить законы смешанного соединения резисторов в электрической цепи.
- 2. Провести измерения силы тока и напряжения в цепи со смешанным соединением резисторов.
- 3. Рассчитать эквивалентное сопротивление цепи и сравнить с теоретическими значениями.
- 4. Оценить абсолютные и относительные погрешности измерений.
- 5. Сформулировать вывод о достоверности результатов измерений.

Оборудование:

- Источник постоянного тока (блок питания)
- Амперметр (точность до 0.01 A)
- Вольтметр (точность до 0.01 В)
- Набор резисторов с известными номинальными сопротивлениями
- Соединительные провода
- Переключатель для сборки схемы
- Мультиметр (при необходимости)
- Калькулятор
- Лабораторный журнал для записи результатов

Краткие теоретические сведения:

Смешанное соединение резисторов представляет собой комбинацию последовательного и параллельного соединений в одной электрической цепи. Основные законы, используемые для анализа:

1. Закон Ома для участка цепи:

$$I = U / R$$
.

где:

- I сила тока, измеряется в амперах (A),
- U напряжение, измеряется в вольтах (В),
- R сопротивление, измеряется в омах (Ом).
- 2. Эквивалентное сопротивление:
- Для последовательного соединения резисторов:

$$R_{9}$$
кв = $R1 + R2 + ... + Rn$.

• Для параллельного соединения резисторов:

$$1/R$$
 $9KB = 1/R1 + 1/R2 + ... + 1/Rn.$

• Для смешанного соединения эквивалентное сопротивление рассчитывается поэтапно, комбинируя правила для последовательного и параллельного соединений. Например, если два резистора R2 и R3 соединены параллельно, а затем последовательно с R1, то:

$$R_{napaлл} = 1 / (1/R2 + 1/R3),$$

 $R_{napaлл} = R1 + R_{napaлл}.$

3. Закон Ома для полной цепи:

$$I = E / (R_экв + r),$$

где:

- E электродвижущая сила источника (B),
- r внутреннее сопротивление источника (Ом).

Погрешности измерений:

Измерения сопровождаются погрешностями из-за ограничений приборов, методик или человеческого фактора. Погрешности делятся на:

- Систематические: вызваны постоянными ошибками в приборах или методике (например, некалиброванный амперметр).
- Случайные: возникают из-за случайных факторов (например, колебания напряжения источника).
- Промахи: грубые ошибки, которые исключаются из расчетов.
 Для оценки погрешностей используются следующие формулы:
- 1. Среднее значение измеряемой величины х (например, тока или напряжения):

$$x_cp = (x1 + x2 + ... + xn) / n,$$

где x1, x2, ..., xn — результаты отдельных измерений, n — количество измерений.

2. Абсолютная погрешность отдельного измерения:

$$\Delta x i = |x i - x cp|$$
.

3. Средняя абсолютная погрешность:

$$\Delta x_{cp} = (\Delta x_1 + \Delta x_2 + ... + \Delta x_n) / n.$$

4. Относительная погрешность (в процентах):

$$\delta x = (\Delta x \ cp / x \ cp) * 100%.$$

5. Итоговый результат записывается как:

$$x = x cp \pm \Delta x cp$$
.

6. Для проверки эквивалентного сопротивления сравнивается измеренное

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 19/31

значение R_экв (по формуле R_экв = U_cp / I_cp) с теоретически рассчитанным. Относительная погрешность сопротивления (δR) не должна превышать 5%, чтобы результаты считались достоверными.

Дополнительные замечания:

- Смешанное соединение резисторов широко используется в реальных электрических схемах, таких как бытовая электроника, системы освещения и промышленные устройства.
- Точность измерений зависит от правильного подключения приборов: амперметр подключается последовательно, вольтметр — параллельно.
- Внутреннее сопротивление источника тока (r) может влиять на результаты, особенно при низких значениях R_экв, и должно учитываться при расчетах.
- Для повышения точности рекомендуется проводить не менее 3–5 измерений для каждой величины и использовать резисторы с известными номинальными значениями.
- Возможные источники погрешностей: неточность номиналов резисторов, нагрев проводов, нестабильность источника питания.

Ход работы:

- 1. Внимательно изучить теоретические сведения и инструкции к работе.
- 2. Подготовить отчет, включающий:
 - о Титульный лист (оформленный по стандартам).
 - Название работы.
 - Цель работы.
 - Список используемого оборудования.
 - о Краткие теоретические сведения.
 - Таблицу результатов измерений (выдается преподавателем по вариантам).
 - о Расчеты эквивалентного сопротивления и погрешностей.
 - Ответы на контрольные вопросы.
- 3. Собрать электрическую цепь со смешанным соединением резисторов согласно заданному варианту.
- 4. Провести измерения силы тока (I) и напряжения (U) на различных участках цепи с помощью амперметра и вольтметра.
- 5. Рассчитать эквивалентное сопротивление цепи (R_экв) по измеренным данным, используя формулу:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 20/31

- R экв = U cp / I cp.
- 6. Рассчитать теоретическое значение R_экв, используя номинальные значения резисторов и правила для последовательного и параллельного соединений.
- 7. Определить абсолютные и относительные погрешности для измеренных величин (I, U, R).
- 8. Сравнить измеренное и теоретическое значения R_экв и сделать вывод о достоверности результатов.

Контрольные вопросы:

- 1. Что такое смешанное соединение резисторов, и чем оно отличается от последовательного и параллельного?
- 2. Как закон Ома применяется для участка цепи и полной цепи?
- 3. Как рассчитывается эквивалентное сопротивление для последовательного соединения резисторов?
- 4. Как рассчитывается эквивалентное сопротивление для параллельного соединения резисторов?
- 5. Какие типы погрешностей существуют, и как они влияют на результаты измерений?

Литература:

- 1. Савельев И.В. Курс общей физики. Т. 3. Электричество и магнетизм. М.: Наука, 1987.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Т. 3. Электричество. М.: Высшая школа, 2002.
- 3. Сивухин Д.В. Общий курс физики. Т. 3. Электричество. М.: Физматлит, 2005.

Практическое занятие №5 «Амплитуда и фаза колебаний»

Цель работы:

- 1. Изучить физический смысл амплитуды и фазы гармонических колебаний.
- 2. Провести измерения амплитуды и периода колебаний механической системы (например, маятника или груза на пружине).
- 3. Определить начальную фазу колебаний и циклическую частоту.
- 4. Оценить абсолютные и относительные погрешности измерений.
- 5. Сформулировать вывод о достоверности результатов измерений.

Оборудование:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 21/31

- Механический осциллятор (математический или пружинный маятник)
- Секундомер (точность до 0.01 с)
- Линейка или измерительная лента (точность до 0.001 м)
- Угломер или транспортир (для определения начальной фазы, при необходимости)
- Груз с известной массой
- Калькулятор
- Лабораторный журнал для записи результатов

Краткие теоретические сведения:

Гармонические колебания описываются уравнением:

$$x = A * cos(\omega * t + \varphi),$$

где:

- х смещение от положения равновесия (м),
- А амплитуда колебаний (максимальное смещение, м),
- ω циклическая частота (рад/с),
- t время (с),
- ф начальная фаза колебаний (рад).

Амплитуда (A) — максимальное отклонение системы от положения равновесия, определяет энергию колебаний.

Начальная фаза (\phi) — угол, определяющий положение системы в момент t=0.

Циклическая частота (ω) связана с периодом колебаний (Т) формулой:

$$\omega = 2 * \pi / T$$
.

Период Т измеряется как время одного полного колебания (с).

Для математического маятника:

$$T = 2 * \pi * sqrt(L / g),$$

где L — длина подвеса (м), g — ускорение свободного падения (9.81 м/с^2).

Для пружинного маятника:

$$T = 2 * \pi * sqrt(m / k),$$

где m — масса груза (кг), k — жесткость пружины (H/м).

Погрешности измерений:

Измерения сопровождаются погрешностями из-за ограничений приборов, методик или человеческого фактора. Погрешности делятся на:

• Систематические: вызваны постоянными ошибками в приборах или

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 22/31

методике.

- Случайные: возникают из-за случайных факторов.
- Промахи: грубые ошибки, исключаемые из расчетов.
 Для оценки погрешностей используются следующие формулы:
- 1. Среднее значение измеряемой величины x (например, амплитуды или периода):

измерений.

2. Абсолютная погрешность отдельного измерения:

$$\Delta x_i = |x_i - x_cp|$$
.

3. Средняя абсолютная погрешность:

$$\Delta x$$
 cp = $(\Delta x 1 + \Delta x 2 + ... + \Delta x n) / n$.

4. Относительная погрешность (в процентах):

$$\delta x = (\Delta x_c p / x_c p) * 100\%.$$

5. Итоговый результат записывается как:

$$x = x cp \pm \Delta x cp$$
.

 Для проверки точности измерений сравниваются экспериментальные значения периода Т или амплитуды А с теоретическими. Относительная погрешность (δТ или δА) не должна превышать 5%, чтобы результаты считались достоверными.

Дополнительные замечания:

- Амплитуда колебаний может уменьшаться из-за трения или сопротивления среды (затухание), что не учитывается в идеальной модели гармонических колебаний.
- Начальная фаза ф определяется начальными условиями (например, углом отклонения маятника).
- Точность измерений периода зависит от правильного использования секундомера и определения момента начала и конца колебания.
- Колебания широко применяются в физике, технике и инженерии, например, в часах, сейсмографах и радиотехнике.

Ход работы:

- 1. Внимательно изучить теоретические сведения и инструкции к работе.
- 2. Подготовить отчет, включающий:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 23/31

- Титульный лист (оформленный по стандартам).
- Название работы.
- Цель работы.
- о Список используемого оборудования.
- Краткие теоретические сведения.
- Таблицу результатов измерений (выдается преподавателем по вариантам).
- Расчеты амплитуды, периода, циклической частоты, начальной фазы и погрешностей.
- о Ответы на контрольные вопросы.
- 3. Собрать установку для исследования колебаний (например, математический или пружинный маятник) согласно заданному варианту.
- 4. Провести измерения амплитуды (А) и периода (Т) для нескольких колебаний.
- 5. Определить начальную фазу ф (например, по начальному углу отклонения).
- 6. Рассчитать циклическую частоту по формуле: $\omega = 2 * \pi / T_{cp}$.
- 7. Рассчитать теоретический период Т_теор для заданной системы (используя длину маятника L или жесткость пружины k).
- 8. Определить абсолютные и относительные погрешности для измеренных величин (A, T).
- 9. Сравнить экспериментальные и теоретические значения и сделать вывод о достоверности результатов.

Контрольные вопросы:

- 1. Что такое амплитуда колебаний, и как она связана с энергией системы?
- 2. Что такое начальная фаза колебаний, и как она определяется?
- 3. Как связаны циклическая частота и период колебаний?
- 4. Какие факторы влияют на период колебаний математического маятника?
- 5. Какие типы погрешностей существуют, и как они влияют на измерения?
- 6. Как определяется абсолютная погрешность измерения амплитуды или периода?

Литература:

- 1. Савельев И.В. Курс общей физики. Т. 1. Механика. М.: Наука, 1987.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Т. 1. Механика. М.: Высшая школа, 2002.
- 3. Сивухин Д.В. Общий курс физики. Т. 1. Механика. М.: Физматлит, 2005.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 24/31

4. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. — М.: Просвещение, 1995.

Практическое занятие №6 «Исследование идеального трансформатора»

Цель работы:

- 1. Изучить принцип действия идеального трансформатора и его основные характеристики.
- 2. Провести измерения напряжения и силы тока в первичной и вторичной обмотках трансформатора.
- 3. Проверить закон сохранения энергии в идеальном трансформаторе.
- 4. Оценить абсолютные и относительные погрешности измерений.
- 5. Сформулировать вывод о достоверности результатов измерений.

Оборудование:

- Лабораторный трансформатор с известным числом витков в обмотках
- Источник переменного тока (с регулируемым напряжением)
- Вольтметр переменного тока (точность до 0.01 В)
- Амперметр переменного тока (точность до 0.01 А)
- Соединительные провода
- Нагрузочный резистор (для вторичной цепи)
- Мультиметр (при необходимости)
- Калькулятор
- Лабораторный журнал для записи результатов

Краткие теоретические сведения:

Идеальный трансформатор — это устройство, преобразующее переменное напряжение и ток без потерь энергии. Он состоит из двух обмоток (первичной и вторичной), намотанных на ферромагнитный сердечник, и работает на основе закона электромагнитной индукции.

Основные соотношения для идеального трансформатора:

1. Закон трансформации напряжения:

U2 / U1 = N2 / N1,

где:

- U1, U2 напряжения на первичной и вторичной обмотках (В),
- N1, N2 число витков в первичной и вторичной обмотках.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 25/31

2. Закон трансформации тока:

$$I1 / I2 = N2 / N1,$$

где:

- I1, I2 сила тока в первичной и вторичной обмотках (A).
- 3. Закон сохранения энергии (для идеального трансформатора):

где Р1, Р2 — мощности в первичной и вторичной цепях (Вт).

Погрешности измерений:

Измерения сопровождаются погрешностями из-за ограничений приборов, методик или человеческого фактора. Погрешности делятся на:

- Систематические: вызваны постоянными ошибками в приборах или методике (например, некалиброванный вольтметр).
- Случайные: возникают из-за случайных факторов (например, колебания напряжения источника).
- Промахи: грубые ошибки, исключаемые из расчетов.

Для оценки погрешностей используются следующие формулы:

1. Среднее значение измеряемой величины х (например, напряжения или тока):

$$x_cp = (x1 + x2 + ... + xn) / n,$$
 где $x1, x2, ..., xn$ — результаты отдельных измерений, n — количество измерений.

2. Абсолютная погрешность отдельного измерения:

$$\Delta x i = |x i - x cp|$$
.

3. Средняя абсолютная погрешность:

$$\Delta x_{cp} = (\Delta x_1 + \Delta x_2 + ... + \Delta x_n) / n.$$

4. Относительная погрешность (в процентах):

$$\delta x = (\Delta x_c p / x_c p) * 100\%.$$

5. Итоговый результат записывается как:

$$x = x cp \pm \Delta x cp$$
.

Для проверки закона сохранения энергии сравниваются мощности Р1 и Р2.
 Относительная погрешность мощности (δР) не должна превышать 5%, чтобы результаты считались достоверными.

Дополнительные замечания:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 26/31

- Идеальный трансформатор предполагает отсутствие потерь на нагрев, вихревые токи и рассеяние магнитного поля. В реальных трансформаторах потери присутствуют, но в данной работе они не учитываются.
- Точность измерений зависит от правильного подключения вольтметра (параллельно) и амперметра (последовательно).
- Напряжение источника должно быть стабильным, чтобы избежать дополнительных погрешностей.
- Трансформаторы широко применяются в энергетике, электронике и бытовых устройствах для изменения напряжения.

Ход работы:

- 1. Внимательно изучить теоретические сведения и инструкции к работе.
- 2. Подготовить отчет, включающий:
 - о Титульный лист (оформленный по стандартам).
 - Название работы.
 - 。 Цель работы.
 - о Список используемого оборудования.
 - о Краткие теоретические сведения.
 - Таблицу результатов измерений (выдается преподавателем по вариантам).
 - о Расчеты напряжений, токов, мощностей и погрешностей.
 - Ответы на контрольные вопросы.
- 3. Собрать электрическую цепь с трансформатором, подключив источник тока к первичной обмотке и нагрузочный резистор ко вторичной.
- 4. Провести измерения напряжения (U1, U2) и силы тока (I1, I2) в первичной и вторичной обмотках для заданного варианта.
- 5. Рассчитать мощности P1 = U1_cp * I1_cp и P2 = U2_cp * I2_cp.
- 6. Проверить соотношения U2/U1 = N2/N1 и I1/I2 = N2/N1, а также равенство мощностей P1 = P2.
- 7. Определить абсолютные и относительные погрешности для измеренных величин (U, I, P).
- 8. Сравнить экспериментальные и теоретические значения и сделать вывод о достоверности результатов.

Контрольные вопросы:

1. Что такое идеальный трансформатор, и каков его принцип действия? Документ управляется программными средствами 1С Колледж

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 27/31

- 2. Как связаны напряжения и токи в первичной и вторичной обмотках трансформатора?
- 3. Как закон сохранения энергии проявляется в работе трансформатора?
- 4. Какие физические величины измеряются в данной работе, и в каких единицах?
- 5. Какие типы погрешностей существуют, и как они влияют на измерения?
- 6. Как определяется абсолютная погрешность измерения напряжения или тока?
- 7. Как рассчитывается относительная погрешность, и что она показывает?
- 8. Может ли относительная погрешность быть отрицательной? Обоснуйте.
- 9. Почему экспериментальные значения мощности могут отличаться от теоретических?
- 10. Какие единицы измерения в системе СИ используются для напряжения, силы тока и мощности?

Литература:

- 1. Савельев И.В. Курс общей физики. Т. 3. Электричество и магнетизм. М.: Наука, 1987.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Т. 3. Электричество. М.: Высшая школа, 2002.
- 3. Сивухин Д.В. Общий курс физики. Т. 3. Электричество. М.: Физматлит, 2005.
- 4. Кошкин Н.И., Ширкевич М.Г. Справочник по элементарной физике. М.: Просвещение, 1995.
- 5. Трофимова Т.И. Курс физики. М.: Академия, 2006.
- 6. Иродов И.Е. Задачи по общей физике. М.: Физматлит, 2000.

Практическое занятие №7

«Прямолинейное распространение света в однородной среде. Луч света.

Точечный источник света»

Цель работы:

- 1. Изучить прямолинейное распространение света в однородной среде.
- 2. Провести измерения параметров светового пучка от точечного источника света.
- 3. Определить угловую расходимость луча света и проверить законы геометрической оптики.
- 4. Оценить абсолютные и относительные погрешности измерений.

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 28/31

5. Сформулировать вывод о достоверности результатов измерений.

Оборудование:

- Точечный источник света (например, лазерная указка или лампа с узким отверстием)
- Экран с миллиметровой разметкой или координатной сеткой
- Линейка или измерительная лента (точность до 0.001 м)
- Транспортир (точность до 0.5°)
- Секундомер (при необходимости)
- Оптическая скамья или плоская поверхность для установки оборудования
- Калькулятор
- Лабораторный журнал для записи результатов

Краткие теоретические сведения:

Свет в однородной среде распространяется прямолинейно, что является основным принципом геометрической оптики. Луч света — это линия, вдоль которой распространяется световая энергия. Точечный источник света излучает свет равномерно во всех направлениях, создавая сферический волновой фронт. Основные законы и формулы:

- 1. **Прямолинейное распространение света**: В однородной среде (например, в воздухе) свет распространяется по прямым линиям, если не встречает препятствий или границ раздела сред.
- Интенсивность света: Интенсивность света (I) от точечного источника уменьшается обратно пропорционально квадрату расстояния (r) от источника: I = P / (4 * π * r^2),
 где P мощность источника света (Вт), I интенсивность (Вт/м^2), r расстояние от источника (м).
- Угловая расходимость луча: Для точечного источника света диаметр светового пятна (D) на экране зависит от расстояния (L) и угловой расходимости (θ):
 D = 2 * L * tan(θ/2),
 где D диаметр пятна (м), L расстояние от источника до экрана (м), θ угол расходимости (рад).

Погрешности измерений:

Измерения сопровождаются погрешностями из-за ограничений приборов, методик или человеческого фактора. Погрешности делятся на:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 29/31

- Систематические: вызваны постоянными ошибками в приборах или методике (например, неточная разметка экрана).
- Случайные: возникают из-за случайных факторов (например, дрожание лазерного луча).
- Промахи: грубые ошибки, исключаемые из расчетов.

Для оценки погрешностей используются следующие формулы:

1. Среднее значение измеряемой величины x (например, диаметра пятна или расстояния):

$$x_cp = (x1 + x2 + ... + xn) / n,$$
 где $x1, x2, ..., xn$ — результаты отдельных измерений, n — количество измерений.

2. Абсолютная погрешность отдельного измерения:

$$\Delta x_i = |x_i - x_cp|.$$

3. Средняя абсолютная погрешность:

$$\Delta x_{cp} = (\Delta x_1 + \Delta x_2 + ... + \Delta x_n) / n.$$

4. Относительная погрешность (в процентах):

$$\delta x = (\Delta x_c p / x_c p) * 100\%.$$

5. Итоговый результат записывается как:

$$x = x_cp \pm \Delta x_cp$$
.

6. Для проверки прямолинейного распространения света сравнивается измеренный диаметр светового пятна (D) с теоретическим значением, рассчитанным по формуле D = 2 * L * tan(θ/2). Относительная погрешность (δD) не должна превышать 5%, чтобы результаты считались достоверными.

Дополнительные замечания:

- Прямолинейное распространение света предполагает отсутствие рассеяния или дифракции, что справедливо для идеальных условий.
- Точечный источник света в реальных условиях может быть аппроксимирован узким отверстием или лазером.
- Точность измерений зависит от правильного выравнивания источника света, экрана и измерительных инструментов.
- Законы геометрической оптики, включая прямолинейное распространение света, применяются в оптических приборах, таких как телескопы, микроскопы и проекторы.

Ход работы:

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 30/31

- 1. Внимательно изучить теоретические сведения и инструкции к работе.
- 2. Подготовить отчет, включающий:
 - о Титульный лист (оформленный по стандартам).
 - Название работы.
 - Цель работы.
 - Список используемого оборудования.
 - Краткие теоретические сведения.
 - Таблицу результатов измерений (выдается преподавателем по вариантам).
 - Расчеты диаметра светового пятна, угловой расходимости и погрешностей.
 - о Ответы на контрольные вопросы.
- 3. Установить точечный источник света и экран на заданных расстояниях (L) согласно варианту.
- 4. Провести измерения диаметра светового пятна (D) на экране для нескольких расстояний (L).
- 5. Рассчитать угловую расходимость луча (θ) по формуле: $\theta = 2 * \arctan(D / (2 * L)).$
- 6. Рассчитать теоретический диаметр пятна D_теор, используя известное значение угловой расходимости (если задано) или номинальные параметры источника.
- 7. Определить абсолютные и относительные погрешности для измеренных величин (D, L).
- 8. Сравнить экспериментальные и теоретические значения диаметра пятна и сделать вывод о достоверности результатов.

Контрольные вопросы:

- 1. Что такое прямолинейное распространение света, и в каких условиях оно наблюдается?
- 2. Что такое луч света, и как он связан с точечным источником света?
- 3. Как интенсивность света зависит от расстояния до источника?
- 4. Что такое угловая расходимость луча, и как она измеряется?
- 5. Какие типы погрешностей существуют, и как они влияют на измерения?
- 6. Как определяется абсолютная погрешность измерения диаметра светового пятна?

МО-09 02 07-ООД.11.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ФИЗИКА	C. 31/31

- 7. Как рассчитывается относительная погрешность, и что она показывает?
- 8. Может ли относительная погрешность быть отрицательной? Обоснуйте.
- 9. Почему измеренный диаметр светового пятна может отличаться от теоретического?
- 10. Какие единицы измерения в системе СИ используются для длины, угла и интенсивности света?

Литература:

- 1. Савельев И.В. Курс общей физики. Т. 4. Оптика. М.: Наука, 1987.
- 2. Детлаф А.А., Яворский Б.М. Курс физики. Т. 4. Волновая оптика. М.: Высшая школа, 2002.
- 3. Сивухин Д.В. Общий курс физики. Т. 4. Оптика. М.: Физматлит, 2005.
- 4. Кошкин Н.И., Ширневич М.Г. Справочник по элементарной физике. М.: Просвещение, 1995.
- 5. Трофимова Т.И. Курс физики. М.: Академия, 2006.
- 6. Ландсберг Г.С. Элементарный учебник физики. Т. 3. Колебания и волны. Оптика. М.: Физматлит, 2001.

Используемые источники литературы

- 1. Изергин, Э. Т. Физика: 10 класс: учебник / Э. Т. Изергин. Москва: Русское слово, 2021.
 - 2.Изергин, Э. Т. Физика: 11 класс: учебник / Э. Т. Изергин. Москва: Русское слово, 2021. 221 с.
 - 3. Логвиненко, О. В. Физика + еПриложение: учебник / О. В. Логвиненко. Москва: КноРус, 2022. - 341 on-line. - (Среднее проф. образование).
 - 4. Трофимова, Т. И. Краткий курс физики с примерами решения задач: учебник / Т. И. Трофимова. Москва: КноРус, 2023.