

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе модуля) «ЭНЕРГЕТИЧЕСКАЯ ЭЛЕКТРОНИКА»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

13.03.02 ЭЛЕКТРОЭНЕРГЕТИКА И ЭЛЕКТРОТЕХНИКА

ИНСТИТУТ морских технологий, энергетики и строительства

РАЗРАБОТЧИК кафедра энергетики

РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 — Планируемые результаты обучения по дисциплине, соотнесенные с установленными индикаторами достижения компетенций

Код и наименование компетенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями
ОПК-4:	Промышленная	<u> Знать:</u>
Способен	электроника	- основные физические принципы работы силовых
использовать	(Раздел 2.	преобразовательных устройств, характеристики,
методы анализа	Энергетическая	особенности конструктивного исполнения, методы
и моделирова-	электроника)	обеспечения надежной работы при проектировании;
ния электри-	-	- принципы построения схем полупроводниковых
ческих цепей и		преобразователей электроэнергии, их разновидности,
электрических		характеристики и основные расчетные соотношения;
машин		- роль и функции преобразовательной техники в
		процессах генерации и преобразования электрической
		энергии, в повышении качества электроэнергии, в
		энергосбережении;
		<u>Уметь:</u>
		- проводить моделирование и анализ процессов в
		устройствах энергетической электроники;
		- рассчитывать параметры устройств энергетической
		электроники;
		<u>Владеть:</u>
		- методами расчета электромагнитных процессов,
		протекающих в полупроводниковых преобразователях
		электроэнергии;
		- методами решения конкретных задач путем выбора
		оборудования из каталогов или разработки электронных
		технических средств;
		- методами моделирования и анализа электрических
		цепей с элементами энергетической электроники.

- 1.2 К оценочным средствам текущего контроля успеваемости относятся тестовые задания открытого и закрытого типов;
 - 2.3 К оценочным средствам для промежуточной аттестации по дисциплине относятся:
 - задания по курсовой работе;
 - экзаменационные задания по дисциплине, представленные в виде тестовых заданий.
 - 1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) 100 — балльную/ процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
Критерий	тельно»	тельно»		
1 Системность	Обладает частич-	Обладает	Обладает	Обладает
и полнота	ными и разрознен-	минимальным	набором знаний,	полнотой знаний
знаний в	ными знаниями,	набором знаний,	достаточным для	и системным
отношении	которые не может	необходимым для	системного	взглядом на
изучаемых	корректно связывать	системного	взгляда на	изучаемый
объектов	между собой (только	взгляда на	изучаемый	объект
	некоторые из них	изучаемый объект	объект	
	может связывать			
	между собой)			
2 Работа с	Не в состоянии	Может найти	Может найти, ин-	Может найти,
информацией	находить необходи-	необходимую	терпретировать и	систематизиро-
	мую информацию,	информацию в	систематизироват	вать необходи-
	либо в состоянии	рамках	ь необходимую	мую информа-
	находить отдельные	поставленной	информацию в	цию, а также
	фрагменты инфор-	задачи	рамках	выявить новые,
	мации в рамках		поставленной	дополнительные
	поставленной задачи		задачи	источники
				информации в
				рамках постав-
				ленной задачи
3 Научное	Не может делать	В состоянии	В состоянии	В состоянии осу-
осмысление	научно корректных	осуществлять	осуществлять	ществлять систе-
изучаемого	выводов из	научно	систематический	матический и
явления,	имеющихся у него	корректный	и научно	научно-коррект-
процесса,	сведений, в	анализ	корректный	ный анализ пре-
объекта	состоянии	предоставленной	анализ	доставленной
	проанализировать	информации	предоставленной	информации,
	только некоторые из		информации,	вовлекает в ис-
	имеющихся у него		вовлекает в	следование новые
	сведений		исследование	релевантные
			новые	поставленной
			релевантные	задаче данные,
			задаче данные	предлагает новые
				ракурсы постав-
4.00	D. a a a ma =============================	D acome	D coors	ленной задачи
4 Освоение	В состоянии решать	В состоянии	В состоянии	Не только
стандартных	только фрагменты поставленной задачи	решать поставлен-	решать постав-	владеет
алгоритмов		ные задачи в	ленные задачи в	алгоритмом и
решения профессио-	в соответствии с заданным алгорит-	соответствии с	соответствии с	понимает его
нальных задач	мом, не освоил	заданным алгоритмом	заданным алгоритмом,	основы, но и предлагает новые
нальпых задач	предложенный	wii opii ivioivi	понимает основы	решения в рамках
	алгоритм, допускает		предложенного	поставленной
	ошибки		алгоритма	задачи
	ошиоки		шпоритма	задачи

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

Компетенция ОПК-4: Способен использовать методы анализа и моделирования электрических цепей и электрических машин.

Тестовые задания открытого типа

1. К силовым относятся полупроводниковые приборы
Ответ: с максимальным допустимым средним током свыше 10 А или импульсным током свыше 100 А
2. Для выравнивания токов параллельно включенных силовых полупроводниковых ключей включают
Ответ: последовательно с каждым ключом сопротивление малой величины
3. Полупроводниковая структура транзистора IGBT представляет собой
Ответ: сочетание полевого транзистора в канале управления и биполярного транзистора в силовом канале
4. Наиболее быстродействующими полупроводниковыми ключами являются
Ответ: полевые транзисторы
5. Наиболее мощными управляемыми полупроводниковыми ключами являются
Ответ: традиционные тиристоры
6. Отличительной особенностью симистора является
Ответ: возможность коммутации тока обеих полярностей
7. При неограниченном увеличении индуктивности нагрузки выпрямителя форма тока, потребляемого из сети
Ответ: стремится к прямоугольной
8. Основной причиной снижения выпрямленного напряжения при увеличении тока нагрузки является

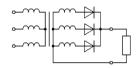
Ответ: падение напряжения на индуктивном сопротивлении рассеяния трансформатора

9. Внешняя характеристика выпрямителя – это
Ответ: зависимость выпрямленного напряжения от тока нагрузки
10. Угол коммутации ү – это угол, характеризующий
Ответ: длительность процесса перехода тока с вентиля на вентиль
11. При параллельном соединении выпрямительных мостов реакторы включают для
Ответ: ограничения уравнительных токов
12. Инвертор предназначен для
Ответ: для преобразования постоянного тока в переменный
13. Ведомый инвертор используется для
Ответ: передачи энергии от источника постоянного напряжения в уже имеющуюся сеты переменного тока
14. Ведомый инвертор используется для
Ответ: питания энергией сети переменного тока, в которой нет других источников энергии той же частоты
15. Для перевода выпрямителя в инверторный режим необходимо
Ответ: изменить полярность источника в цепи постоянного тока на противоположную и установить угол отпирания вентилей больше $\pi/2$
16. Опрокидыванием инвертора называется
Ответ: явление аварийного возрастания тока при уменьшении угла запаса ниже допустимого
17. Входная характеристика ведомого инвертора – это
Ответ: зависимость среднего значения входного напряжения инвертора от среднего значения входного тока
18. Реверсивный преобразователь обеспечивает

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

Ответ: изменение полярности как напряжения, так и тока в нагрузке

ФОИЛ	ОПЕНОЛНЯ	СВЕПСТВ
ΨОПД	OHEHOAHDIA	СГЕДСТВ


19. Отличие реверсивных преобразователей с раздельным и совместным управлением заключается в том. что
Ответ: в преобразователе с раздельным управлением в любой момент времени работает только один комплект вентилей, а в преобразователе с совместным управлением оба комплекта работают на нагрузку одновременно с согласованными углами управления
20. Форма тока нагрузки автономного инвертора тока является
21. Автономный инвертор напряжения предназначен для работы со следующими типами нагрузки:
Ответ: активная и активно-индуктивная
22. В автономных инверторах с широтно-импульсной модуляцией синусоидальная форма тока нагрузки обеспечивается путем
Ответ: изменения длительности импульсов в течение периода по синусоидальному закону
23. Непосредственный преобразователь частоты, питающийся от сети с частотой 50 Гц, обеспечивает регулирование выходной частоты в диапазоне
Ответ: от 0 до 25 Гц 24. Двухзвенный преобразователя частоты состоит из

Тестовые задания закрытого типа

Ответ: выпрямителя и автономного инвертора

- 25. Неуправляемый выпрямитель выполнен по трехфазной мостовой схеме и питается от сети с действующим значением линейного напряжения U_2 . Выпрямленное напряжение равно
- 1. $\frac{2\sqrt{2}}{\pi}U_2$.
- $2. \quad \frac{3\sqrt{6}}{2\pi}U_2.$
- $3. \ \frac{\sqrt{2}}{\pi} U_2.$
- 4. $\frac{3\sqrt{2}}{\pi}U_2$.
- 26. Неуправляемый выпрямитель по двухполупериодной нулевой схеме питается от трансформатора с действующим значением переменного напряжения на вторичной полуобмотке U_2 . Максимальное обратное напряжение диода равно
- 1. $2\sqrt{2}U_2$.
- 2. $\sqrt{3}U_2$.

- 3. $\sqrt{6}U_2$.
- 4. $\sqrt{2}U_2$.
- 27. Регулировочная характеристика однофазного выпрямителя имеет вид
- 1. $U_{d0}\left[1+\cos\left(\alpha+\frac{\pi}{6}\right)\right]$.
- 2. $U_{d0}\left[1+\cos\left(\alpha+\frac{\pi}{3}\right)\right]$.
- 3. $\frac{1+\cos\alpha}{2}U_{d0}.$
- 4. $U_{d0}\cos\alpha$.
- 28. Регулировочная характеристика трехфазного мостового выпрямителя имеет вид
- 1. $U_{d0} \sin \alpha$.
- 2. $U_{d0}\cos\alpha$.
- 3. $\frac{1+\cos\alpha}{2}U_{d0}$.
- 4. $U_{d0}(1 + \cos \alpha)$.
- 29. Диапазон регулирования угла управления α в трехфазном нулевом выпрямителе составляет
- 1. 150°
- 2. 180°
- 3. 90°
- 4. 120°
- 30. Выпрямитель, показанный на рисунке, питается от сети с частотой
- 50 Гц. Частота пульсаций выпрямленного напряжения равна

- 1. 300 Гц.
- 2. 100 Гц.
- 3. 150 Гп.
- 4. 50 Гп.
- 31. В ведомом инверторе угол управления и угол опережения связаны между собой соотношением
- 1. $\beta = \pi/2 \alpha$.
- 2. $\beta = \pi + \alpha$.
- 3. $\beta = 2\pi \alpha$.
- 4. $\beta = \pi \alpha$.
- 32. Недостатком двухзвенного преобразователя частоты является
- 1. малый диапазон регулирования выходной частоты.
- 2. низкий коэффициент полезного действия
- 3. большая величина потребляемого из сети реактивного тока.
- 4. высокое содержание гармоник в выходном напряжении.

3 ТИПОВЫЕ ЗАДАНИЯ НА КУРСОВУЮ РАБОТУ

Тема курсовой работы – расчет управляемого выпрямителя, работающего на активноиндуктивную нагрузку. В задании на курсовой проект указываются следующие данные.

- 1 Схема выпрямления.
- 2 Напряжение сети переменного тока.
- 3 Номинальное выпрямленное напряжение.
- 4 Параметры нагрузки: активное сопротивление R_d и индуктивность L_d .
- 5 Заданное значение угла управления α_3 для построения внешней характеристики, временных диаграмм и для расчета пульсаций.
 - 6 Допустимые пульсации тока нагрузки, %.

Курсовая работа предусматривает выполнение следующих заданий:

- 1) расчет параметров и выбор силового трансформатора;
- 2) расчет и построение регулировочной характеристики;
- 3) расчет и построение внешних характеристик выпрямителя для $\alpha = 0$ и $\alpha = \alpha_3$;
- 4) построение временных диаграмм работы выпрямителя для $\alpha = 0$ и $\alpha = \alpha_3$;
- 5) определение гармонического состава напряжения нагрузки, расчет и выбор сглаживающего дросселя, обеспечивающего заданный коэффициент пульсаций при $\alpha = \alpha_3$;
- 6) расчет гармонического состава и коэффициентов искажения синусоидальности тока, потребляемого из сети;
 - 7) выбор тиристоров.

Тезисы ответа:

1) По исходным данным определяется номинальная мощность нагрузки $P_{\rm H}$, определяемая при угле отпирания тиристоров $\alpha=0$. По значению $P_{\rm H}$ с некоторым запасом, обусловленным потерями в тиристорах, соединительных проводах и контактных соединениях, выбирается номинальная мощность трансформатора из стандартного ряда, предусмотренного ГОСТ 9680-77. Далее по мощности выбирается конкретная модель трансформатора, и определяются его параметры.

По номинальному выпрямленному напряжению определяется требуемое вторичное напряжение трансформатора. Рассчитанное значение увеличивается с учетом возможного снижения напряжения сети на 10% и потерь (5%).

Используя значения напряжения короткого замыкания трансформатора u_{κ} , и мощности потерь короткого замыкания P_{κ} , определяются активное и индуктивное сопротивления фазы трансформатора, приведенные к первичной обмотке.

- 2) Для построения регулировочной характеристики задаются несколькими значениями угла управления α , для каждого из которых рассчитывается выпрямленное напряжение U_d . Диапазон углов α должен обеспечивать регулирование выходного напряжения до нуля. Потери и явление коммутации не учитываются. Далее строится зависимость $U_d = f(\alpha)$.
- 3) Внешние характеристики строятся по аналитическим выражениям. Необходимое значение L_s определяется из индуктивного сопротивления фазы, приведенного к вторичной обмотке трансформатора. Внешняя характеристика выпрямителя при $\alpha=0$ ограничивается значением тока I_d , при котором угол коммутации $\gamma=\pi/3$. Внешние характеристики при других α строятся в этом же диапазоне токов.
- 4) Временные диаграммы напряжения на нагрузке строятся для номинального напряжения сети при двух значениях угла управления: $\alpha = 0$ и указанного в задании. Диаграммы строятся с учетом явления коммутации.
- 5) Вначале определяется амплитуда первой гармоники выпрямленного напряжения для двух значений угла управления: $\alpha = 0$ и заданного для данного варианта. При этом явление коммутации не учитывается. Далее рассчитывается амплитуда пульсаций тока I_{1m} и определяется коэффициент пульсации как отношение I_{1m}/I_d . Если полученное значение коэффициента пульсаций тока больше заданного, рассчитывается индуктивность дополнительного дросселя, включаемого между выпрямителем и нагрузкой.
- 6) Расчет спектрального состава тока, потребляемого из сети ведется при допущении, что ток нагрузки выпрямителя идеально сглажен, а интервал коммутации достаточно мал. При этих допущениях кривая фазного тока имеет прямоугольную форму. Определяется действующее значение первичного тока трансформатора и действующее значение первой гармоники первичного тока, а также рассчитывается коэффициент искажения синусоидальности кривой тока в соответствии с ГОСТ Р 54130-2010.
- 7) Выбор тиристоров производится исходя из режима максимального тока нагрузки $I_{d.\text{макс}}$, то есть при максимально возможном входном напряжении $1,1U_1$ и $\alpha=0$. По известному току $I_{d.\text{макс}}$ определяются среднее $I_{\text{ср}}$ значение тока тиристора. По среднему значению тока предварительно выбирается тиристор. из технических справочников, промышленных каталогов или иной документации. По максимальному обратному напряжению, которое может быть приложено к тиристору в рассчитываемом выпрямителе, выбирается класс тиристора по напряжению. Для повышения надежности работы тиристоров их обычно выбирают с некоторым запасом по напряжению и току.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Энергетическая электроника» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 13.03.02 Электроэнергетика и электротехника.

Преподаватель-разработчик – с.н.с., к.т.н Б.Л. Геллер

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой энергетики.

Заведующий кафедрой

В.Ф. Белей

Фонд оценочных средств рассмотрен и одобрен методической комиссией ИМТЭС (протокол № 8 от 26.08.2024 г).

Председатель методической комиссии ИМТЭС

Белих О.А. Белых