

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

Начальник УРОПСП В.А.Мельникова

Рабочая программа дисциплины

<u>КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В ПРОФЕССИОНАЛЬНОЙ</u> ДЕЯТЕЛЬНОСТИ

основной профессиональной образовательной программы магистратуры по направлению подготовки

20.04.02 ПРИРОДООБУСТРОЙСТВО И ВОДОПОЛЬЗОВАНИЕ

Профиль программы

«ИНЖЕНЕРНЫЕ СИСТЕМЫ ВОДОСНАБЖЕНИЯ И ВОДООТВЕДЕНИЯ»

ИНСТИТУТ рыболовства и аквакультуры

ВЫПУСКАЮЩАЯ КАФЕДРА техносферной безопасности и природообустройства

РАЗРАБОТЧИК УРОПСП

1 ЦЕЛЬ И ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

- 1.1 Целью освоения дисциплины «Компьютерное моделирование в профессиональной деятельности» является формирование системных знаний, умений и практических навыков создания и использования компьютерных моделей в профессиональной деятельности.
- 1.2 Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОПОП ВО по данному направлению подготовки.

Таблица 1 – Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование компетенции	Наименование дисциплины	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями
ОПК-2: Способен анализировать, оптимизировать и применять современные информационные технологии при решении научных и практических задач в области природообустройства и водопользования.	Компьютерное моделирование в профессиональной деятельности	Знать: - основные методы компьютерного моделирования; - принципы построения математических моделей и алгоритмов для анализа состояния систем водного хозяйства; - возможности современных программных комплексов для моделирования в профессиональной деятельности. Уметь: - создавать и рассчитывать модели объектов водного хозяйства с учетом реальных условий; - анализировать результаты моделирования и использовать их для принятия решений в области природообустройства и водопользования. Владеть: - навыками работы с программными средствами компьютерного моделирования; - навыками анализа результатов моделирования и использования их при решении научных и практических задач в области природообустройства и водопользования.

2 ТРУДОЁМКОСТЬ ОСВОЕНИЯ, СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ, ФОРМЫ АТТЕСТАЦИИ ПО НЕЙ

Дисциплина "Компьютерное моделирование в профессиональной деятельности" относится к блоку 1 обязательной части.

Общая трудоемкость дисциплины составляет 6 зачетных единиц (з.е.), т.е. 216 академических часов (162 астр. часа) контактной и самостоятельной учебной работы студента; работой, связанной с текущей и промежуточной (заключительной) аттестацией по дисциплине.

Распределение трудоемкости освоения дисциплины по семестрам, видам учебной работы студента, а также формы контроля приведены ниже.

Таблица 2 - Объем (трудоёмкость освоения) в <u>очной форме</u> обучения и структура дисциплины

	Семестр	Форма контроля	3.e.	Акад. часов	Контактная работа					аттестация сессии	
Наименование					Лек	Лаб	Пр	РЭ	КА	СРС	Подготовка и аттест в период сессии
Компьютерное моделирование в профессиональной деятельности	1	Э	6	216	32	64	-	10	1,25	74	34,75
Итого по дисциплине:			6	216	32	64	-	10	1,25	74	34,75

Обозначения: Э – экзамен; З – зачет; ДЗ – дифференцированный зачет (зачет с оценкой); КР (КП) – курсовая работа (курсовой проект); контр. – контрольная работа, РГР – расчетно-графическая работа; Лек – лекционные занятия; Лаб. - лабораторные занятия; Пр. – практические занятия; РЭ – контактная работа с преподавателем в ЭИОС; КА – контактная работа, включающая индивидуальные консультации, консультации перед экзаменом, аттестацию, консультации и аттестацию по КР(КП), практику; СРС – самостоятельная работа студентов

Таблица 3 - Объем (трудоёмкость освоения) в за<u>очной форме</u> обучения и структура лисциплины

дисциплины											
	Курс		ы			Контактная работа					тация Іи
Наименование		Форма контроля	3.e.	Акад. часов	Лек	Лаб	Пр	РЭ	CPC	Подготовка и аттестация в период сессии	
Компьютерное моделирование в профессиональной деятельности	1	Зимняя	Контр., Э	6	216	8	16	1	12	171	9
Итого по дисциплине:			6	216	8	16	-	12	171	9	

При разработке образовательной технологии организации учебного процесса основной упор сделан на соединение активной и интерактивной форм обучения. Интерактивная форма позволяет студентам проявить самостоятельность в освоении теоретического материала и овладении практическими навыками, формирует интерес и позитивную мотивацию к учебе.

3 УЧЕБНАЯ ЛИТЕРАТУРА И УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТА

Учебно-методическое обеспечение дисциплины приведено в таблицах 4 и 5.

Таблица 4 – Перечень основной и дополнительной литературы

Наименование дисциплины	Основная литература	Дополнительная литература						
Компьютерное	1. Дегтярев, В. Г. Математическое моделирование: учеб-	- 1. Математическое моделирование: учебное пособие / составитель Е						
моделирование в	ное пособие / В. Г. Дегтярев. — Санкт-Петербург:	Смирнова. — Санкт-Петербург: СПбГУВМ, 2019. — 76 с.						
профессиональной	ПГУПС, 2021. — 86 с.	2. Наумов В.А. Математическое моделирование в компонентах природы.						
деятельности	2. Горлач, Б. А. Математическое моделирование. Постро-	Калининград: КГТУ, 2019.						
	ение моделей и численная реализация / Б. А. Горлач, В.	3. Наумов В.А. Информационные технологии профессиональной деятель-						
	Г. Шахов. — 5-е изд., стер. — Санкт-Петербург: Лань,	ности: УМП. Калининград: КГТУ, 2016.						
	2023. — 292 c.	4. Поличка, А. Е. Методология моделирования в условиях цифровизации						
	3. Курганович, К. А. Компьютерные технологии и мате-	профессиональной деятельности: монография / А. Е. Поличка. — Хаба-						
	матическое моделирование в природообустройстве и во-	ровск: ДВГУПС, 2022. — 102 с.						
	допользовании: учебное пособие / К. А. Курганович. —	5. Тюрин, И. В. Вычислительная техника и информационные технологии /						
	Чита: ЗабГУ, 2023. — 106 с.	И. В. Тюрин. — 3-е изд., стер. — Санкт-Петербург: Лань, 2024. — 336 с.						
	4. Пен, Р. 3. Статистические методы математического	6. Храмешин, А. В. Моделирование в агроинженерии: учебное пособие / А.						
	моделирования, анализа и оптимизации технологических	В. Храмешин. — Ижевск: УдГАУ, 2019. — 46 с.						
	процессов / Р. З. Пен, В. Р. Пен. — 3-е изд., стер. —							
	Санкт-Петербург: Лань, 2022. — 308 с.							
	5. Поздеев, А. Г. Математическое моделирование про-							
	цессов в компонентах природы: учебное пособие / А. Г.							
	Поздеев, Ю. А. Кузнецова. — Йошкар-Ола: ПГТУ, 2023.							
	— 112 с.							

Таблица 5 – Перечень периодических изданий, учебно-методических пособий и нормативной литературы

Наименование дисциплины	Периодические издания	Учебно-методические пособия, нормативная литература
Компьютерное	-	1. Наумов, В. А. Информационные технологии профессиональной деятельности: учебметод. пособие
моделирование в		по лаб. работам для студентов вузов, обучающихся в магистратуре по направлению подгот. "Природо-
профессиональной		обустройство и водопользование" / В. А. Наумов; Калинингр. гос. техн. ун-т Калининград: КГТУ,
деятельности		2016 46 c.
		2. Топоркова, О. М. Информационные технологии: учебметод. пособие по лаб. работам по использо-
		ванию табл. процессора MS Excel 2010 для студентов, обучающихся в бакалавриате по направлениям
		подгот.: "Информатика и вычисл. техника", "Прикладная информатика" / О. М. Топоркова ; Калинингр.
		гос. техн. ун-т Калининград : КГТУ, 2017 32, [1] с.

4 ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ, ИНТЕРНЕТ-РЕСУРСЫ ДИСЦИПЛИНЫ

Информационные технологии

В ходе освоения дисциплины, обучающиеся используют возможности интерактивной коммуникации со всеми участниками и заинтересованными сторонами образовательного процесса, ресурсы и информационные технологии посредством электронной информационной образовательной среды университета.

Перечень современных профессиональных баз данных и информационных справочных систем, к которым обучающимся по образовательной программе обеспечивается доступ (удаленный доступ), а также перечень лицензионного программного обеспечения определяется в рабочей программе и подлежит обновлению при необходимости.

Электронные образовательные ресурсы:

Российская образовательная платформа и конструктор бесплатных открытых онлайнкурсов и уроков - https://stepik.org

Образовательная платформа - https://openedu.ru/

Состав современных профессиональных баз данных (СПБД) и информационных справочных систем (ИСС).

База знаний для инженеров ВК: https://vivbim.ru/

Бюро наилучших доступных технологий: https://burondt.ru/

Российская ассоциация водоснабжения и водоотведения: https://raww.ru/

Официальный сайт Министерства строительства и жилищно-коммунального хозяйства Российской Федерации: https://minstroyrf.gov.ru/

«Техэксперт» - профессиональные справочные системы: http://техэксперт.рус/

ЭБС «Университетская библиотека онлайн»: https://biblioclub.ru/

ЭБС «Лань»: http://e.lanbook.com

5 МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Аудиторные занятия проводятся в специализированных аудиториях с мультимедийным оборудованием, в компьютерных классах, а также в других аудиториях университета согласно расписанию занятий.

Консультации проводятся в соответствии с расписанием консультаций.

Предэкзаменационные консультации проводится в аудиториях в соответствии с графиком консультаций.

Помещения для самостоятельной работы обучающихся оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и обеспечением доступа в электронную информационно-образовательную среду университета.

При освоении дисциплины используется программное обеспечение общего назначения и специализированное программное обеспечение.

Перечень соответствующих помещений и их оснащения размещен на официальном сайте университета в информационно-телекоммуникационной сети Интернет.

6 ФОНД ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПРОВЕДЕНИЯ АТТЕСТАЦИИ, СИСТЕМА ОЦЕНИВАНИЯ И КРИТЕРИИ ОЦЕНКИ

Типовые контрольные задания и иные материалы, необходимые для оценки результатов освоения дисциплины (в т.ч. в процессе освоения), а также методические материалы, определяющие процедуры этой оценки приводятся в приложении к рабочей программе дисциплины (утверждается отдельно).

Оценивание результатов обучения может проводиться с применением электронного обучения, дистанционных образовательных технологий.

7 СВЕДЕНИЯ О РАБОЧЕЙ ПРОГРАММЕ И ЕЕ СОГЛАСОВАНИИ

Рабочая программа дисциплины «Компьютерное моделирование в профессиональной деятельности» представляет собой компонент основной профессиональной образовательной программы магистратуры по направлению подготовки 20.04.02 Природообустройство и водопользование, профиль «Инженерные системы водоснабжения и водоотведения».

Рабочая программа рассмотрена и одобрена на заседании кафедры техносферной безопасности и природообустройства (протокол №7 от 25.03. 2025 г.).

Заведующая кафедрой

Н.Р. Ахмедова

Директор института

О.А. Новожилов