

Федеральное агентство по рыболовству БГАРФ ФГБОУ ВО «КГТУ» Калининградский морской рыбопромышленный колледж

Утверждаю
Заместитель начальника колледжа
по учебно-методической работе
А.И.Колесниченко

ООД.07 МАТЕМАТИКА

Методическое пособие к выполнению самостоятельных работ по специальности

43.02.15 Технология продукции общественного питания

МО - 43 02 15-ООД.07.СР

РАЗРАБОТЧИК Майорова Н.А.

ЗАВЕДУЮЩИЙ ОТДЕЛЕНИЕМ Судьбина Н.А.

ГОД РАЗРАБОТКИ 2023

ГОД ОБНОВЛЕНИЯ 2025

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 2/18

Содержание

Введение	3
Перечень самостоятельных работ	5
Самостоятельная работа	6
Рекомендуемая литература	14

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 3/18

Введение

Методическое пособие по выполнению самостоятельной внеаудиторной работы составлено в соответствии с рабочей программой дисциплины «Математика» по специальности 43.02.15 «Технология продукции общественного питания»

Самостоятельная работа – это деятельность обучающихся в процессе обучения и во внеаудиторное время, выполняемая по заданию преподавателя, но без его непосредственного участия.

На самостоятельную внеаудиторную работу по дисциплине «Математика» отведено 6 академических часов.

Цель внеаудиторной самостоятельной работы;

- закрепить знания и умения по темам и разделам дисциплины;
- расширить знания по отдельным темам;
- формировать умения самостоятельного изучения элементов дисциплины, пользоваться дополнительной и учебной литературой, интернетом;
 - развитие самостоятельности, организованности, ответственности;
- работать над формированием общих и профессиональных компетенций, необходимых для работы в данной специальности.

Освоение программы дисциплины предусматривает формирование элементов общих компетенций:

- ОК 01. Выбирать способы решения задач профессиональной деятельности применительно к различным контекстам;
- ОК 02. Использовать современные средства поиска, анализа и интерпретации информации, и информационные технологии для выполнения задач профессиональной деятельности;
- ОК 03. Планировать и реализовывать собственное профессиональное и личностное развитие, предпринимательскую деятельность в профессиональной сфере, использовать знания по финансовой грамотности в различных жизненных ситуациях;
 - ОК 04. Эффективно взаимодействовать и работать в коллективе и команде;
- ОК 05. Осуществлять устную и письменную коммуникацию на государственном языке Российской Федерации с учетом особенностей социального и культурного контекста;
- OK 09. Использовать информационные технологии в профессиональной деятельности.

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»		
	МАТЕМАТИКА	C. 4/18	

Внеаудиторная самостоятельная работа выполняется в отдельных тетрадях в виде конспекта (реферата, презентации).

Критериями оценки результатов самостоятельной работы являются:

- уровень усвоения учебного материала;
- умение использовать теоретические знания при выполнении практических задач в повседневной жизни;
 - обоснованность и чёткость изложения ответа;
 - оформление материала в соответствии с требованиями.

Итоговая оценка по дисциплине выставляется с учётом результатов выполнения самостоятельной внеаудиторной работы.

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»		
	МАТЕМАТИКА	C. 5/18	

Перечень самостоятельных работ

№ п/п	Тема самостоятельной работы		
1.	ТЕОРИЯ ПРЕДЕЛОВ	2	
	Прикладные задачи в сфере профессиональной деятельности		
	Вычисление пределов		
	Вычисление 1,2 замечательных пределов		
	Классификация точек разрыва функции		
2.	ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ	2	
	Исследование функции по 1, 2 производной		
	Применение производной при решении задач		
	Приближенные вычисления с помощью дифференциала		
	Вычисления неопределенного интеграла		
	Площадь криволинейной трапеции		
	Вычисление определенного интеграла		
	Применение определенного интеграла для решения прикладных		
	Решение дифференциальных уравнений с разделяющимися переменными		
	Решение дифференциальных уравнений с постоянными коэффициентами		
	Применение дифференциальных уравнений для решения прикладных задач		
3.	ЭЛЕМЕНТЫ МАТ.СТАТ. И ТЕОРИИ ВЕРОЯТНОСТЕЙ	2	
	ИТОГО:	6	

МО –43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 6/18

Самостоятельная работа №1

Тема: ТЕОРИЯ ПРЕДЕЛОВ

- 1. Прикладные задачи в сфере профессиональной деятельности
- 2. Вычисление пределов
- 3. Вычисление 1,2 замечательных пределов
- 4. Классификация точек разрыва функции

Итого: 2 ч.

Цель: изучить методы вычисления пределов и их применение к исследованию функции на непрерывность.

Определите свой вариант по таблице:

Ваш п/№	вариант	Ваш	вариант	Ваш п/№	вариант	Ваш	вариант
ПО		п/№ по		ПО		п/№ по	
журналу		журналу		журналу		журналу	
1	1	11	1	21	1	31	1
2	2	12	2	22	2	32	2
3	3	13	3	23	3	33	3
4	4	14	4	24	4	34	4
5	5	15	5	25	5	35	5
6	1	16	1	26	1	36	1
7	2	17	2	27	2	37	2
8	3	18	3	28	3	38	3
9	4	19	4	29	4	39	4
10	5	20	5	30	5	40	5

Вариант 1

1. Вычислить предел, методом разложения на множители.

$$\lim_{x \to 1} \frac{x^4 + 3x - 4}{x^3 + 2x - 3}$$

2. Вычислить предел выражения, имеющего неопределенность 0/0.

$$\lim_{x \to \infty} \frac{2n^2 + n - 1}{\sqrt{3n^4 - 5n}}$$

- 3.Вычислить предел $\lim_{x \to \infty} \frac{2-10^{n+1}}{2+10^{n+2}}$
- 4. Вычислить предел $\lim_{x\to\infty} (2x-5)(\ln(2x-1)-\ln(2x+3))$
- 5. Вычислить предел $\lim_{x\to 0} \frac{\sin 5x}{x}$
- 6. Исследовать функцию на точки разрыва и построить ее график:

$$y = \frac{x}{x - 4}$$

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 7/18

Вычислить предел, методом разложения на множители.

$$\lim_{x \to 1} \frac{3x^3 - 2x - 3}{x^2 - x}$$

2. Вычислить предел выражения, имеющего неопределенность 0/0.

$$\lim_{x \to \infty} \frac{n + \sqrt{2n^2 + 1}}{\sqrt{n^3 - 2n}}$$

3.Вычислить предел $\lim_{x \to \infty} \frac{2+10^{n-1}}{3+10^n}$

4.Вычислить предел
$$\lim_{x\to\infty} (2x-4)(\ln(3x-1)-\ln(3x+4))$$

- 5. Вычислить предел $\lim_{x\to 0} \frac{x}{\sin 6x}$
- 6. Исследовать функцию на точки разрыва и построить ее график:

$$y = \frac{x^2}{x^2 - 4}$$

Вариант 3

Вычислить предел, методом разложения на множители.

$$\lim_{x \to 1} \frac{2x^3 + x - 3}{x^2 + 2x - 3}$$

 $\lim_{x\to 1} \frac{2x^3+x-3}{x^2+2x-3}$ 2. Вычислить предел выражения, имеющего неопределенность 0/0 .

$$\lim_{x \to \infty} \frac{2n^2 - 3n + 1}{\sqrt{n^4 - 5n} + n^2}$$

3.Вычислить предел $\lim_{x\to\infty} \frac{3-2^{n+5}}{11+2^{n-8}}$

4.Вычислить предел $\lim_{x \to \infty} (x+1)(\ln(3x-2) - \ln(3x+1))$

5. Вычислить предел $\lim_{x\to 0} \frac{x}{\sin 2x}$

6. Исследовать функцию на точки разрыва и построить ее график:

$$y = \frac{x}{x - 2}$$

Вариант 4

1. Вычислить предел, методом разложения на множители.

$$\lim_{x \to 1} \frac{5x^2 + 2x - 7}{x^3 - 1}$$

2. Вычислить предел выражения, имеющего неопределенность 0/0.

$$\lim_{x \to \infty} \frac{\sqrt{n^2 - 2}}{n + 3}$$

3.Вычислить предел $\lim_{x \to \infty} \frac{3-4^{n+2}}{5+4^n}$

4.Вычислить предел $\lim_{x\to\infty} (2x-8)(\ln(x+1)-\ln(2x+5))$

Документ управляется программными средствами 1С Колледж Проверь актуальность версии по оригиналу, хранящемуся в 1С Колледж

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»		
	МАТЕМАТИКА	C. 8/18	

- 5. Вычислить предел $\lim_{x\to 0} \frac{x}{\sin 3x}$
- 6. Исследовать функцию на точки разрыва и построить ее график:

$$y = \frac{2}{x^2 - 4}$$

1. Вычислить предел, методом разложения на множители.

$$\lim_{x \to 1} \frac{5x^3 - 2x - 3}{2x - 2}$$

2. Вычислить предел выражения, имеющего неопределенность 0/0.

$$\lim_{x \to \infty} \frac{\sqrt{3n^3 - 2n + 1} + n}{\sqrt{2n - 1} + 3}$$

- 3.Вычислить предел $\lim_{x\to\infty} \frac{3^{n-1}+4}{3+3^{n+2}}$ 4.Вычислить предел $\lim_{x\to\infty} (3x-1)(\ln(x+4)-\ln(x+3))$
- 5. Вычислить предел $\lim_{x\to 0} \frac{\sin 2x}{x}$
- 6. Исследовать функцию на точки разрыва и построить ее график:

$$y = \frac{x^2}{x^2 - 1}$$

Самостоятельная работа №2

Тема: ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ ИСЧИСЛЕНИЕ

- 1. Вычисление производных
- 2. Исследование функции по 1, 2 производной
- 3. Применение производной при решении задач
- 4. Приближенные вычисления с помощью дифференциала
- 5. Вычисления неопределенного интеграла
- 6. Площадь криволинейной трапеции
- 7. Вычисление определенного интеграла
- 8. Применение определенного интеграла для решения прикладных задач

Итого: 2 ч.

Цель: изучить правила дифференцирования, освоить методы вычисления производных и их применение к исследованию функции.

Определите свой вариант по таблице:

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 9/18

Ваш п/№	вариант	Ваш	вариант	Ваш п/№	вариант	Ваш	вариант
ПО		п/№ по		ПО		п/№ по	
журналу		журналу		журналу		журналу	
1	1	11	1	21	1	31	1
2	2	12	2	22	2	32	2
3	3	13	3	23	3	33	3
4	4	14	4	24	4	34	4
5	5	15	5	25	5	35	5
6	1	16	1	26	1	36	1
7	2	17	2	27	2	37	2
8	3	18	3	28	3	38	3
9	4	19	4	29	4	39	4
10	5	20	5	30	5	40	5

- 1. Вычислить производную функции: $y = \ln(3x 4) \arctan 3x 4$
- 2. Найти производную, от параметрически заданной функции:

$$y = \begin{cases} x = \cos 2t \\ y = \sin 2t \end{cases}$$

- 3. Найти производную, от неявно заданной функции: $x^3 + y^3 = 0$
- 4. Исследовать функцию и построить ее график:

$$y = \frac{x}{x-4}$$

Вариант 2

- 1. Вычислить производную функции: $y = (5 2sin3x)^5$
- 2. Найти производную, от параметрически заданной функции:

$$y = \begin{cases} x = \cos 2^t \\ y = \sin t^3 \end{cases}$$

- 3. Найти производную, от неявно заданной функции: $e^y x + sin2y = 0$
- 4. Исследовать функцию и построить ее график:

$$y = \frac{x^2}{x^2 - 4}$$

- 1. Вычислить производную функции: $y = 2x^2 \ln(3x 4)$
- 2. Найти производную, от параметрически заданной функции:

$$y = \begin{cases} x = ctgt^4 \\ y = 3^{cost} \end{cases}$$

- 3. Найти производную, от неявно заданной функции: $x^2y + y\cos 3x = 0$
- 4. Исследовать функцию и построить ее график:

$$y = \frac{x}{x - 2}$$

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 10/18

- 1. Вычислить производную функции: $y = \frac{tg3x}{arccos\sqrt{x}}$

$$y = \begin{cases} x = arctgt \\ y = \ln(1 + t^2) \end{cases}$$

- 3. Найти производную, от неявно заданной функции: $ln(3xy)+2x^2+y^4=0$ 2vdv-4xdx=0
- 4. Исследовать функцию и построить ее график:

$$y = \frac{2}{x^2 - 4}$$

Вариант 5

- 1. Вычислить производную функции: $y = \frac{\cos(2x+1)}{\sqrt{x}}$
- 2. Найти производную, от параметрически заданной функции:

$$y = \begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$$

- 3. Найти производную, от неявно заданной функции: $x^2 + y^2x = 0$
- 4. Исследовать функцию и построить ее график:

$$y = \frac{x^2}{x^2 - 1}$$

ВЫЧИСЛИТЕ НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ (работа по вариантам)

Вариант 1	Вариант 2	Вариант 3
1. $\int 4 \cos x dx$	1. $\int 6 \sin x dx$	1. $\int 9 \cos x dx$
2. $\int (7x-8)^4 dx$	2. $\int (3x+9)^6 dx$	2. $\int (4x-3)^5 dx$
3. $\int (7x^2 - 3x^3 +$	3. $\int (5x^3 - 4x^2 +$	3. $\int (4x^4 + 6x^2 -$
$4x^5$) dx	$7x^4$) dx	$8x^7)dx$
$4. \int \sin(7x - \frac{\pi}{4}) dx$	$4. \int \cos(5x-\frac{\pi}{2})dx$	$4. \int \sin(6x - \frac{\pi}{3}) dx$
5. $\int (8\cos 4x - 2\sqrt{x} + $	5. $\int (6 \sin 2x -$	5. $\int (3\cos 5x - 7\sqrt{x} +$
e^{5x+2}) dx	$6\sqrt{x} + e^{7x-9})dx$	e^{8x+1}) dx
,	•	,
Вариант 4	Вариант 5	Вариант 6
	Dapriairi	Варианто
1. $\int 4 \cos x dx$	1. $\int 6 \sin x dx$	1. $\int 9 \cos x dx$
· ·	_ •	•
1. $\int 4\cos x dx$	1. $\int 6 \sin x dx$	1. $\int 9 \cos x dx$
1. $\int 4 \cos x dx$ 2. $\int (6x - 10)^8 dx$	1. $\int 6 \sin x dx$ 2. $\int (5x + 11)^7 dx$ 3. $\int (12x^7 + 6x^5 +$	1. $\int 9 \cos x dx$ 2. $\int (7x - 2)^3 dx$
1. $\int 4 \cos x dx$ 2. $\int (6x - 10)^8 dx$ 3. $\int (6x^3 + 8x^7 - 4x^7)^8 dx$	1. $\int 6 \sin x dx$ 2. $\int (5x + 11)^7 dx$	1. $\int 9 \cos x dx$ 2. $\int (7x - 2)^3 dx$ 3. $\int (4x^3 + 3x^9 - 4x^2)^3 dx$
1. $\int 4 \cos x dx$ 2. $\int (6x - 10)^8 dx$ 3. $\int (6x^3 + 8x^7 - 3x^8) dx$ 4. $\int \sin(9x - \frac{\pi}{5}) dx$	1. $\int 6 \sin x dx$ 2. $\int (5x + 11)^7 dx$ 3. $\int (12x^7 + 6x^5 + 4x^6) dx$	1. $\int 9 \cos x dx$ 2. $\int (7x - 2)^3 dx$ 3. $\int (4x^3 + 3x^9 - 5x^2) dx$ 4. $\int \sin(3x - \frac{\pi}{4}) dx$
1. $\int 4 \cos x dx$ 2. $\int (6x - 10)^8 dx$ 3. $\int (6x^3 + 8x^7 - 3x^8) dx$	1. $\int 6 \sin x dx$ 2. $\int (5x + 11)^7 dx$ 3. $\int (12x^7 + 6x^5 + 4x^6) dx$ 4. $\int \cos(8x - \frac{\pi}{3}) dx$	1. $\int 9 \cos x dx$ 2. $\int (7x - 2)^3 dx$ 3. $\int (4x^3 + 3x^9 - 5x^2) dx$
1. $\int 4 \cos x dx$ 2. $\int (6x - 10)^8 dx$ 3. $\int (6x^3 + 8x^7 - 3x^8) dx$ 4. $\int \sin(9x - \frac{\pi}{5}) dx$ 5. $\int (8 \cos 4x - 2\sqrt{x} + 3x^8) dx$	1. $\int 6 \sin x dx$ 2. $\int (5x + 11)^7 dx$ 3. $\int (12x^7 + 6x^5 + 4x^6) dx$ 4. $\int \cos(8x - \frac{\pi}{3}) dx$ 5. $\int (6 \sin 2x - \frac{\pi}{3}) dx$	1. $\int 9 \cos x dx$ 2. $\int (7x - 2)^3 dx$ 3. $\int (4x^3 + 3x^9 - 5x^2) dx$ 4. $\int \sin(3x - \frac{\pi}{4}) dx$ 5. $\int (3 \cos 5x - 7\sqrt{x} + 3x^2) dx$

MO −43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»		
	МАТЕМАТИКА	C. 11/18	

D 7	D	D
Вариант 7	Вариант 8	Вариант 9
1. $\int 4 \cos x dx$	1. $\int_{0}^{\pi} 6 \sin x dx$	1. $\int_{0}^{\infty} 9 \cos x dx$
2. $\int (7x-8)^4 dx$	2. $\int (3x+9)^6 dx$	2. $\int (4x-3)^5 dx$
3. $\int (7x^2 - 3x^3 +$	3. $\int (5x^3 - 4x^2 +$	3. $\int (4x^4 + 6x^2 -$
$4x^5)dx$	$7x^4$) dx	$8x^7)dx$
·	· —	
$4. \int \sin(7x - \frac{n}{4}) dx$	$4. \int \cos(5x-\frac{n}{2})dx$	$4. \int \sin(6x - \frac{n}{3}) dx$
5. $\int (8\cos 4x - 2\sqrt{x} + $	5. $\int (6 \sin 2x -$	5. $\int (3\cos 5x - 7\sqrt{x} +$
$e^{5x+2}dx$	$6\sqrt{x} + e^{7x-9})dx$	e^{8x+1}) dx
) in		,
Вариант 10	Вариант 11	Вариант 12
1		I
1. $\int 4\cos x dx$	1. $\int 6 \sin x dx$	1. $\int 9 \cos x dx$
2. $\int (6x-10)^8 dx$	2. $\int (5x + 11)^7 dx$	2. $\int_{0}^{\pi} (7x-2)^3 dx$
3. $\int (7x^2 - 3x^3 +$	3. $\int (5x^3 - 4x^2 +$	3. $\int (4x^4 + 6x^2 -$
$4x^5)dx$	$7x^4)dx$	$8x^7)dx$
4. $\int \sin(7x - \frac{\pi}{4}) dx$	4. $\int \cos(5x - \frac{\pi}{2}) dx$	4. $\int \sin(6x - \frac{\pi}{3}) dx$
T	2	J
5. $\int (8\cos 4x - 2\sqrt{x} + $	5. $\int (6 \sin 2x - \cos x)$	5. $\int (3\cos 5x - 7\sqrt{x} +$
$e^{5x+2})dx$	$6\sqrt{x} + e^{7x-9})dx$	$e^{8x+1})dx$
_		
Вариант 13	Вариант 14	Вариант 15
1. $\int 4 \cos x dx$	1. $\int 6 \sin x dx$	1. $\int 9 \cos x dx$
2. $\int (7x - 8)^4 dx$	2. $\int (3x+9)^6 dx$	2. $\int (4x-3)^5 dx$
I	1	
3. $\int (7x^2 - 3x^3 +$	3. $\int (5x^3 - 4x^2 +$	3. $\int (4x^4 + 6x^2 - 6x^2)^{-3}$
$4x^5)dx$	$7x^4)dx$	$8x^7)dx$
4. $\int \sin(7x - \frac{\pi}{4}) dx$	4. $\int \cos(5x-\frac{\pi}{2}) dx$	4. $\int \sin(6x - \frac{\pi}{3}) dx$
5. $\int (8\cos 4x - 2\sqrt{x} + $	5. $\int (6 \sin 2x - \frac{x^2}{2})$	5. $\int (3\cos 5x - 7\sqrt{x} + $
e^{5x+2}) dx	$6\sqrt{x} + e^{7x-9})dx$	$e^{8x+1})dx$
D 40	5 47	D 40
Вариант 16	Вариант 17	Вариант 18
1. $\int 4\cos x dx$	1. $\int 6 \sin x dx$	1. $\int 9 \cos x dx$
2. $\int (7x-8)^4 dx$	2. $\int (3x+9)^6 dx$	2. $\int (4x-3)^5 dx$
3. $\int (7x^2 - 3x^3 +$	3. $\int (5x^3 - 4x^2 +$	3. $\int (4x^4 + 6x^2 -$
$4x^5)dx$	$7x^4$) dx	$8x^7)dx$
· ~	· -	l
$4. \int \sin(7x - \frac{n}{4}) dx$	$4. \int \cos(5x - \frac{n}{2}) dx$	$4. \int \sin(6x - \frac{\pi}{3}) dx$
5. $\int (8\cos 4x - 2\sqrt{x} +$	5. $\int (6 \sin 2x -$	5. $\int (3\cos 5x - 7\sqrt{x} +$
e^{5x+2}) dx	$6\sqrt{x} + e^{7x-9})dx$	e^{8x+1}) dx
Вариант 19	Вариант 20	Вариант 21
1. $\int 4 \cos x dx$	1. $\int 6 \sin x dx$	1. $\int 9 \cos x dx$
3_	<u> </u>	l "- "
2. $\int (7x-8)^4 dx$	2. $\int (3x+9)^6 dx$	2. $\int (4x-3)^5 dx$
3. $\int (7x^2 - 3x^3 +$	3. $\int_{-4x^2} (5x^3 - 4x^2 +$	3. $\int (4x^4 + 6x^2 - 6x^2)$
$4x^5)dx$	$7x^4)dx$	$8x^7)dx$
4. $\int \sin(7x - \frac{\pi}{4}) dx$	4. $\int \cos(5x-\frac{\pi}{2}) dx$	4. $\int \sin(6x - \frac{\pi}{3}) dx$
T	5. $\int (6 \sin 2x - \frac{2}{3})^{-1}$	3 _
5. $\int (8\cos 4x - 2\sqrt{x} + \frac{1}{2})^{x+2} dx$		5. $\int (3\cos 5x - 7\sqrt{x} + \frac{8x+1}{x}) dx$
$e^{5x+2})dx$	$6\sqrt{x} + e^{7x-9})dx$	e^{8x+1}) dx
_	_	_
Вариант 22	Вариант 23	Вариант 24

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 12/18

1. $\int 4 \cos x dx$ 2. $\int (7x - 8)^4 dx$ 3. $\int (7x^2 - 3x^3 + 4x^5) dx$ 4. $\int \sin(7x - \frac{\pi}{4}) dx$ 5. $\int (8 \cos 4x - 2\sqrt{x} + e^{5x+2}) dx$	1. $\int 6 \sin x dx$ 2. $\int (3x + 9)^6 dx$ 3. $\int (5x^3 - 4x^2 + 7x^4) dx$ 4. $\int \cos(5x - \frac{\pi}{2}) dx$ 5. $\int (6 \sin 2x - 6\sqrt{x} + e^{7x-9}) dx$	1. $\int 9 \cos x dx$ 2. $\int (4x - 3)^5 dx$ 3. $\int (4x^4 + 6x^2 - 8x^7) dx$ 4. $\int \sin(6x - \frac{\pi}{3}) dx$ 5. $\int (3 \cos 5x - 7\sqrt{x} + e^{8x+1}) dx$
Вариант 25 1. $\int 4 \cos x dx$ 2. $\int (7x - 8)^4 dx$ 3. $\int (7x^2 - 3x^3 + 4x^5) dx$ 4. $\int \sin(7x - \frac{\pi}{4}) dx$ 5. $\int (8 \cos 4x - 2\sqrt{x} + e^{5x+2}) dx$	Вариант 26 1. $\int 6 \sin x dx$ 2. $\int (3x+9)^6 dx$ 3. $\int (5x^3-4x^2+7x^4)dx$ 4. $\int \cos(5x-\frac{\pi}{2}) dx$ 5. $\int (6 \sin 2x -6\sqrt{x}+e^{7x-9})dx$	Вариант 27 1. $\int 9 \cos x dx$ 2. $\int (4x - 3)^5 dx$ 3. $\int (4x^4 + 6x^2 - 8x^7) dx$ 4. $\int \sin(6x - \frac{\pi}{3}) dx$ 5. $\int (3 \cos 5x - 7\sqrt{x} + e^{8x+1}) dx$
Вариант 28 1. $\int 4 \cos x dx$ 2. $\int (6x - 10)^8 dx$ 3. $\int (6x^3 + 8x^7 - 3x^8) dx$ 4. $\int \sin(9x - \frac{\pi}{5}) dx$ 5. $\int (8 \cos 4x - 2\sqrt{x} + e^{5x+2}) dx$	Вариант 29 1. $\int 6 \sin x dx$ 2. $\int (5x + 11)^7 dx$ 3. $\int (12x^7 + 6x^5 + 4x^6) dx$ 4. $\int \cos(8x - \frac{\pi}{3}) dx$ 5. $\int (6 \sin 2x - 6\sqrt{x} + e^{7x-9}) dx$	Вариант 30 1. $\int 9 \cos x dx$ 2. $\int (7x - 2)^3 dx$ 3. $\int (4x^3 + 3x^9 - 5x^2) dx$ 4. $\int \sin(3x - \frac{\pi}{4}) dx$ 5. $\int (3 \cos 5x - 7\sqrt{x} + e^{8x+1}) dx$

ВЫЧИСЛИТЕ ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ, НАЙДИТЕ ПЛОЩАДЬ КРИВОЛ. ТРАПЕЦИИ:

Определите свой вариант по таблице:

Ваш п/№	вариант	Ваш	вариант	Ваш п/№	вариант	Ваш	вариант
ПО		п/№ по		ПО		п/№ по	
журналу		журналу		журналу		журналу	
1	1	11	1	21	1	31	1
2	2	12	2	22	2	32	2
3	3	13	3	23	3	33	3
4	4	14	4	24	4	34	4
5	5	15	5	25	5	35	5
6	1	16	1	26	1	36	1
7	2	17	2	27	2	37	2
8	3	18	3	28	3	38	3
9	4	19	4	29	4	39	4
10	5	20	5	30	5	40	5

Вариант 1

1. Вычислите определенный интеграл $\int_3^9 \frac{\ln x}{x} dx$

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 13/18

Вычислите определенный интеграл

$$\int_{2}^{-29} \frac{1}{\sqrt[5]{(3-x)^4}} dx$$

- 3. Для функции f(x)=2cos x найдите первообразную, график которой проходит через точку А (π;1)
- 4. Вычислите (предварительно сделав рисунок) площадь фигуры, ограниченной линиями:

a)
$$y=2x^2$$
, $y=0$, $x=1$, $x=3$;

a)
$$y=2x^2$$
, $y=0$, $x=1$, $x=3$; 6) $y=2\sin x$, $y=0$, $x=0$, $x=\frac{\pi}{2}$.

Вариант 2

- 1. Вычислите определенный интеграл $\int_0^1 \frac{x}{1-x^4} dx$
- 2. Вычислите определенный интеграл

$$\int_0^1 \frac{1}{\sqrt{(4-3x)}} dx$$

- 3.Для функции f(x)=3sin x найдите первообразную, график которой проходит через точку А $(\frac{\pi}{2};2)$
- 4.Вычислите (предварительно сделав рисунок) площадь фигуры, ограниченной линиями:

a)
$$y=x^2$$
, $y=0$, $x=1$, $x=2$; 6) $y=2\cos x$, $y=0$, $x=0$, $x=\frac{\pi}{2}$.

Вариант 3

- 1. Вычислите определенный интеграл $\int_1^{\sqrt{2}} \frac{x}{\sqrt{4-x^4}} dx$
- 2. Вычислите определенный интеграл $\int_{1}^{4} \frac{(1+\sqrt{x})}{x^2} dx$
- 3. Для функции f(x)=2cos x найдите первообразную, график которой проходит через точку А (π;1)4.
- 4. Вычислите (предварительно сделав рисунок) площадь фигуры, ограниченной линиями:

a)
$$y=2x^2$$
, $y=0$, $x=1$, $x=3$; 6) $y=2\sin x$, $y=0$, $x=0$, $x=\frac{\pi}{2}$.

- 1. Вычислите определенный интеграл $\int_1^e rac{\sin(lnx)}{x} dx$
- 2. Вычислите определенный интеграл $\int_0^1 \sqrt{1-2x} \ dx$
- 3. Для функции $f(x)=3\sin x$ найдите первообразную, график которой проходит точку А $(\frac{\pi}{2};2)$ через

MO –43 02 15-ООД.07.CP	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 14/18

4. Вычислите (предварительно сделав рисунок) площадь фигуры, ограниченной

a)
$$y=x^2$$
, $y=0$, $x=1$, $x=2$;

Вариант 5

- 1. Вычислите определенный интеграл $\int_{\frac{1}{2}}^{\frac{2}{\pi}} \frac{\cos \frac{1}{x}}{x^2} dx$
- 2. Вычислите определенный интеграл $\int_1^e \frac{(1+lnx)}{x} dx$
- 3.Для функции f(x)=2cos x найдите первообразную, график которой проходит точку А (π;1)
- 4. Вычислите (предварительно сделав рисунок) площадь фигуры, ограниченной линиями:

б) y=2sin x, y=0, x=0, x=
$$\frac{\pi}{2}$$
.

Самостоятельная работа №3

Тема: ЭЛЕМЕНТЫ МАТ.СТАТ. И ТЕОРИИ ВЕРОЯТНОСТЕЙ

- 1. Решение задач по комбинаторике
- 2. Основные задачи и понятия мат. статистики

Итого: 2 ч.

Цель: изучить основные задачи комбинаторики и математической статистики.

Определите свой вариант по таблице:

Ваш п/№	вариант	Ваш	вариант	Ваш п/№	вариант	Ваш	вариант
ПО		п/№ по		ПО		п/№ по	
журналу		журналу		журналу		журналу	
1	1	11	1	21	1	31	1
2	2	12	2	22	2	32	2
3	3	13	3	23	3	33	3
4	4	14	4	24	4	34	4
5	5	15	5	25	5	35	5
6	1	16	1	26	1	36	1
7	2	17	2	27	2	37	2
8	3	18	3	28	3	38	3
9	4	19	4	29	4	39	4
10	5	20	5	30	5	40	5

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 15/18

- 1. Сколькими способами можно выбрать двух дежурных из 10 человек?
- 2. Сколько различных перестановок можно составить из букв слова жемчуг?
- 3. Подбрасывается два игральных кубика, подсчитывается сумма очков на верхних гранях. Что вероятнее получить в сумме 7 или 8?
- 4. Из букв слова *интеграл* наугад выбирается одна буква. Какова вероятность того, что эта буква будет гласной?
- 5. Найти числовые характеристики дискретных случайных величин:

 1. Найти математическое ожилание случайной величины х. зная за
 - 1. Найти математическое ожидание случайной величины х, зная закон ее распределения:

Xi	3	5	2
рi	0,1	0,6	0,3

- 2. Вероятность попадания в цель при стрельбе из орудия 0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов.
- 3. Найти дисперсию случайной величины х, которая задана следующим законом распределения:

Xi	1	2	5
рi	0,3	0,5	0,2

- 1. Сколькими способами можно выбрать три цветка из 7 имеющихся?
- 2. Сколько различных перестановок можно составить из букв слова звезда?
- 3. В партии из 10 деталей 7 стандартных. Найти вероятность того, что взятая наудачу деталь окажется стандартной.
- 4. Из букв слова *дифференциал* наугад выбирается одна буква. Какова вероятность того, что эта буква будет гласной?
- 5. 1.Найти дисперсию случайной величины х, которая задана следующим законом распределения:

Xi	2	3	5
pi	0,1	0,6	0,3

- 2. Производится 10 независимых испытаний, в каждом из которых вероятность появления события равна 0,6. Найти дисперсию случайной величины х числа появления события в этих испытаниях.
- 3. Найти: а) математическое ожидание, б) дисперсию, в) среднее квадратическое отклонение дискретной случайной величины х по известному закону ее распределения, заданному таблично:

Χ	8	4	6	5
Р	0,2	0,5	0,2	0,1

MO –43 02 15-ООД.07.CP	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 16/18

- 1. Сколькими способами можно выбрать трех рыбок из 15 имеющихся?
- 2. Сколько различных перестановок можно составить из букв слова антерекот?
- 3. Среди 25 студентов группы, в которой 10 девушек, отбирают одного человека. Найти вероятность того, что этим человеком окажется парень.
- 4. Из букв слова *интеграл* наугад выбирается одна буква. Какова вероятность того, что эта буква будет согласной?
- 5. Найти числовые характеристики дискретных случайных величин:
 - 1. Найти математическое ожидание случайной величины х, зная закон ее распределения:

Xi	3	5	2
рi	0,1	0,6	0,3

- 2. Вероятность попадания в цель при стрельбе из орудия 0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов.
- 3. Найти дисперсию случайной величины х, которая задана следующим законом распределения:

Xi	1	2	5
pi	0,3	0,5	0,2

- 1. Сколькими способами можно выбрать одного претендента на должность директора из 5 имеющихся?
- 2. Сколько различных перестановок можно составить из букв слова аквариум?
- 3. В ящике 15 красных, 9 голубых и 6 зеленых шаров. Наудачу вынимают один шар. Какова вероятность того, что им окажется шар голубого цвета?
- 4. Из букв слова *дифференциал* наугад выбирается одна буква. Какова вероятность того, что эта буква будет согласной?
- 5. 1.Найти дисперсию случайной величины х, которая задана следующим законом распределения:

Xi	2	3	5
pi	0,1	0,6	0,3

- 2. Производится 10 независимых испытаний, в каждом из которых вероятность появления события равна 0,6. Найти дисперсию случайной величины х числа появления события в этих испытаниях.
- 3. Найти: а) математическое ожидание, б) дисперсию, в) среднее квадратическое отклонение дискретной случайной величины х по известному закону ее распределения, заданному таблично:

МО -43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 17/18

Χ	8	4	6	5
Р	0,2	0,5	0,2	0,1

6.

- 1. Сколькими способами можно пересадить 5 человек, если имеется 10 стульев?
- 2. Сколько различных перестановок можно составить из букв слова мурзилка?
- 3. В денежно вещевой лотерее на каждые 10000 билетов разыгрывается 150 вещевых и 50 денежных выигрышей. Чему равна вероятность выигрыша, безразлично денежного или вещевого, для владельца одного лотерейного билета?
- 4. Из букв слова *фантазия* наугад выбирается одна буква. Какова вероятность того, что эта буква будет согласной?
- 5. Найти числовые характеристики дискретных случайных величин:
 - 1. Найти математическое ожидание случайной величины х, зная закон ее распределения:

Xi	3	5	2
pi	0,1	0,6	0,3

- 2. Вероятность попадания в цель при стрельбе из орудия 0,6. Найти математическое ожидание общего числа попаданий, если будет произведено 10 выстрелов.
- 3. Найти дисперсию случайной величины х, которая задана следующим законом распределения:

Xi	1	2	5
pi	0,3	0,5	0,2

МО –43 02 15-ООД.07.СР	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	МАТЕМАТИКА	C. 18/18

Рекомендуемая литература

- 1. Н.В. Богомолов, П.И. Самойленко «Математика: Учебник для ссузов» М.: Дрофа, 2020.-395 с.
- 2. Н.В. Богомолов, Л.Ю. Сергиенко «Математика. Сборник дидактических заданий: учебное пособие для ссузов»- М.: Дрофа, 2014.-236 с.
 - 3. Григорьев В.П., Сабурова Т.Н. Математика 2014 ОИЦ «Академия»
 - 4. Башмаков М.И. Математика 2014 ОИЦ «Академия»
- 5. Шипачёв В.С. Начала высшей математики: Учебное пособие для вузов. М.: Дрофа, 2004. 384 с.: ил.
- 6. Тюрин Ю.Н. и др. Теория вероятности и статистика. М.: МЦИМО: АО «Московские учебники», 2004. 256 с.: ил.
- 7. Богомолов Н.В. Сборник задач по математике [Текст]: учебное пособие для сред. проф. образования /Н.В. Богомолов. -10-е изд.-М.: Дрофа, 2014.-204с.-(сред. проф. образование