

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

Балтийская государственная академия рыбопромыслового флота

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе дисциплины) **«ФИЗИКА»**

основной профессиональной образовательной программы специалитета по специальности

25.05.03 ТЕХНИЧЕСКАЯ ЭКСПЛУАТАЦИЯ ТРАНСПОРТНОГО РАДИООБОРУДОВАНИЯ

Специализации программы

«Техническая эксплуатация и ремонт радиооборудования промыслового флота» «Информационно-телекоммуникационные системы на транспорте и их информационная защита»

ИНСТИТУТ Морской

РАЗРАБОТЧИК кафедра физики

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Результаты освоения дисциплины представлены в таблице 1.

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование	Результаты обучения (владения, умения и знания), соотнесенные		
компетенции	с компетенциями		
ОПК-1: Способен	<u>Знать:</u> основные понятия, законы и модели механики,		
использовать основные	молекулярной физики и термодинамики, электричества и		
законы математики,	магнетизма, колебаний и волн, квантовой и статической физики;		
единицы измерения,	методы теоретического и экспериментального исследования в		
фундаментальные	физике; физические законы для анализа процессов и явлений,		
принципы и	практического решения инженерных задач; фундаментальные		
теоретические основы	константы физики.		
физики, теоретической	<u>Уметь:</u> проводить теоретические и экспериментальные		
механики.	исследования в области физики; использовать основные приемы		
	обработки экспериментальных данных; строить графики		
	различных функций, описывающих физические процессы.		
	<u>Владеть:</u> физической терминологией для выражения		
	количественных величин и качественных описаний физических		
	объектов; методами использования физических законов для		
	анализа процессов и явлений, практического решения задач;		
	навыками проведения эксперимента по определению различных		
	физических величин из всех разделов курса общей физики и		
	постановки и проведения простейших исследований.		

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов с ключами правильных ответов
- задания для контрольных работ.

К оценочным средствам для промежуточной аттестации относятся экзаменационные задания по дисциплине, представленные в виде тестовых заданий закрытого и открытого типов с ключами правильных ответов.

Промежуточная аттестация по окончанию первого семестра изучения дисциплины проводится в форме зачета с оценкой, который выставляется по результатам прохождения всех видов текущего контроля успеваемости. При необходимости для проведения промежуточной аттестации могут быть использованы тестовые задания закрытого и открытого типов.

Промежуточная аттестация по окончанию второго и третьего семестров изучения дисциплины проводится в форме экзамена.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (таблица 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок 0-40%		41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
	тельно»	тельно»		
Критерий	«не зачтено»		«зачтено»	
1 Системность	Обладает частич-	Обладает мини-	Обладает набо-	Обладает полно-
и полнота зна-	ными и разрознен-	мальным набором	ром знаний, до-	той знаний и си-
ний в отноше-	ными знаниями, ко-	знаний, необходи-	статочным для	стемным взглядом
нии изучаемых	торые не может	мым для систем-	системного	на изучаемый объ-
объектов	научно-корректно	ного взгляда на	взгляда на изуча-	ект
	связывать между со-	изучаемый объект	емый объект	
	бой (только некото-			
	рые из которых мо-			
	жет связывать			
	между собой)			
2 Работа с ин-	Не в состоянии	Может найти не-	Может найти,	Может найти, си-
формацией	находить необходи-	обходимую ин-	интерпретиро-	стематизировать
	мую информацию,	формацию в рам-	вать и система-	необходимую ин-
	либо в состоянии	ках поставленной	тизировать необ-	формацию, а
	находить отдельные	задачи	ходимую инфор-	также выявить но-
	фрагменты инфор-		мацию в рамках	вые, дополнитель-
	мации в рамках по-		поставленной за-	ные источники ин-
	ставленной задачи		дачи	формации в рам-
				ках поставленной
				задачи
3 Научное	Не может делать	В состоянии осу-	В состоянии осу-	В состоянии осу-
осмысление	научно корректных	ществлять научно	ществлять систе-	ществлять систе-
изучаемого яв-	выводов из имею-	корректный ана-	матический и	матический и
ления, про-	щихся у него сведе-	лиз предоставлен-	научно коррект-	научно-коррект-
цесса, объекта	ний, в состоянии	ной информации	ный анализ	ный анализ предо-
	проанализировать		предоставленной	
	только некоторые		информации, во-	формации, вовле-
	из имеющихся у		влекает в иссле-	кает в исследова-
	него сведений		дование новые	ние новые реле-
			релевантные за-	вантные постав-
			даче данные	

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
	тельно»	тельно»		
Критерий	«не зачтено»	«зачтено»		
				ленной задаче дан-
				ные, предлагает
				новые ракурсы по-
				ставленной задачи
4 Освоение	В состоянии решать	В состоянии ре-	В состоянии ре-	Не только владеет
стандартных	только фрагменты	шать поставлен-	шать поставлен-	алгоритмом и по-
алгоритмов ре-	поставленной за-	ные задачи в соот-	ные задачи в со-	нимает его ос-
шения профес-	дачи в соответствии	ветствии с задан-	ответствии с за-	новы, но и предла-
сиональных за-	с заданным алгорит-	ным алгоритмом	данным алгорит-	гает новые реше-
дач	мом, не освоил		мом, понимает	ния в рамках по-
	предложенный ал-		основы предло-	ставленной задачи
	горитм, допускает		женного алго-	
	ошибки		ритма	

1.4 Оценивание тестовых заданий закрытого типа осуществляется по системе зачтено/ не зачтено («зачтено» – 41-100% правильных ответов; «не зачтено» – менее 40 % правильных ответов) или пятибалльной системе (оценка «неудовлетворительно» - менее 40 % правильных ответов; оценка «удовлетворительно» - от 41 до 60 % правильных ответов; оценка «хорошо» - от 61 до 80% правильных ответов; оценка «отлично» - от 81 до 100 % правильных ответов).

Тестовые задания открытого типа оцениваются по системе «зачтено/не зачтено». Оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ОПК-1: Способен использовать основные законы математики, единицы измерения, фундаментальные принципы и теоретические основы физики, теоретической механики.

Тестовые задания открытого типа

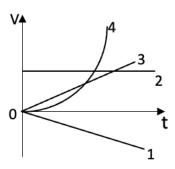
1. Координаты материальной точки, движущейся в плоскости, изменяются в зависимости от времени по законам: x(t) = 2t + 1, y(t) = 2t. Траектория точки тогда выражается уравнением

Ответ: y = x - 1

2. Угол поворота вращающегося тела изменяется по закону: $\varphi = 4 + 2 t + 3 t^2 + 5 t^3$.

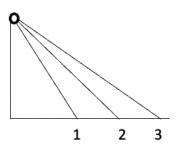
Угловое ускорение определяется выражением _____

Ответ: 6+30 t


3. Если радиус вращения тела при неизменном числе оборотов увеличить в два раза, то нормальное ускорение

Ответ: увеличится в два раза

4. На рисунке представлены силы $\vec{F}_{\text{тр}}$, и $\vec{F}_{\text{тяги}}$, действующие на движущееся тело.


$$\mathbf{F}_{\mathsf{Tp}} \stackrel{\bullet}{\longleftarrow} \mathbf{F}_{\mathsf{TR}\mathsf{\Gamma}\mathsf{H}}$$

Тогда график проекции скорости, соответствующий этому виду движения будет представлен на следующем рисунке под номером _____

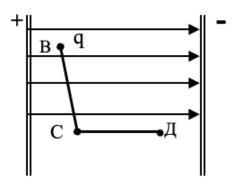
Ответ: 1

5. Три одинаковых тела скатываются с одной высоты по трем наклонным плоскостям, изображенным на рисунке. Если трение отсутствует, то соотношение между работами, совершенными силой тяжести

Ответ: $A_1 = A_2 = A_3$

6. Число Авогадро показывает, сколько молекул содержится в _____

Ответ: одном моле вещества.

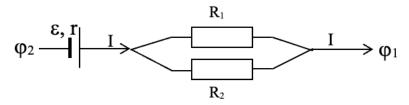

7. _____ для адиабатного процесса имеет вид $0 = \delta A + dU$

Ответ: Первый закон термодинамики

8. _____ одного моля двухатомного идеального газа равна 5 RT / 2

Ответ: Внутренняя энергия

9. На рисунке изображены силовые линии однородного электростатического поля. При этом работа по перемещению пробного заряда q на участке BC будет ______ работы по перемещению пробного заряда q на участке СД



Ответ: меньше

10. Формула _____ для _____ участка цепи
$$\, {
m I} = \frac{\phi_2 - \phi_1 + \epsilon}{R} \,$$

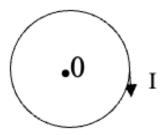
Ответ: закона Ома; неоднородного

11. Формула закона Ома для участка цепи, изображенного на рисунке

Otbet: $I = \frac{\varepsilon + \phi_2 - \phi_1}{r + R_1 + R_2}$

12. Взаимодействие токов осуществляется через поле, называемое

Ответ: магнитным


13. Заряженные конденсаторы с емкостями $C_2 > C_1$ соединены параллельно. Тогда первого заряд конденсатора будет _____ заряда (у) второго конденсатора

OTD OT	меньше
CTRET:	меньше

14. ____ имеет вид $d\vec{F} = I[d\vec{\ell}\vec{B}]$.

Ответ: закон Ампера

15. Линии индукции магнитного поля в центре кругового тока, текущего по часовой стрелке, направлены _____

Ответ: вдоль оси от нас

16. Индуктивность катушки равна 0,5 Гн. Если по катушке идет ток 6 А, то магнитный поток в катушке равен _____ Вб

Ответ: 3

17. Условие _____ имеет вид
$$\Delta = \pm 2m\lambda_0/2 \ (m=0, 1, 2, 3, ...)$$

Ответ: интерференционного максимума

18. _____ будет наблюдаться в том случае, если в выражении для интенсивности света разность фаз δ будет равна $\delta \phi = \pi$

Ответ: Минимум интерференционной картины

19. Явление зависимости показателя преломления от длины волны (частоты) называется ______

Ответ: дисперсией

20. Формула $I = I_0 \cos^2 \alpha$ отражает закон _____

Ответ: Малюса

21. Атомное ядро обнаружил _____

Ответ: Э. Резерфорд

22. В формуле Бальмера: $\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{n^2} \right)$ число п может принимать значения, определяемые рядом натуральных чисел, начиная с _____

Ответ: 3

23. В ______ наличие большого числа альфа-частиц, не отклоняющихся при прохождении через фольгу, показывает, что положительно заряженные частицы в фольге сконцентрированы в очень _____ объемах с _____ плотностью вещества

Ответ: опыте Резерфорда; малых; большой

Тестовые задания закрытого типа:

- 24. Период гармонического колебания $X = 0.5 \cos (3\pi t + \alpha/2)$ равен...
- a) $3 \pi c$
- б) 1/2 с
- в) 3 c
- z) 2/3 c
- 25. Формула Майера выглядит следующим образом...
- a) $C_p = C_v + R$
- б) PV^γ=const
- B) $c_p/c_v=\gamma$
- Γ) S=k ln W
- 26. Элементарным зарядом называют ...
- а) заряд, способный перемещаться в проводнике под действием электрического поля
- б) заряженное тело, размерами которого в данной задаче можно пренебречь
- в) точечный заряд, практически не изменяющий свойств электрического поля
- г) наименьший заряд, известный в данное время в природе
- 27. Математическая запись теоремы Остроградского-Гаусса для поля в диэлектрике представляется ...
 - а) формулой $\vec{D} = \epsilon \epsilon_0 \vec{E}$

- б) формулой $\Phi = DS \cos \alpha$
- в) формулой $\Phi = \sum_{i=1}^n q_i$
- г) формулой $\Phi = \int_{S} D_n dS$
- 28. Единицей измерения напряженности магнитного поля в системе СИ является ...
- а) тесла Тл
- δ) ампер на метр A/M
- в) вольт на метр B/M
- г) ньютон на кулон Н/Кл
- 29. Выражение $h \nu = A_{gblx} + \frac{m \upsilon_{max}^{2}}{2}$ называется формулой
- а) Бальмера
- б) Ридберга
- в) Томсона
- г) Эйнштейна для фотоэффекта
- 30. Модель атома Резерфорда называется
- а) оболочечной
- б) капельной
- в) планетарной
- г) обобщенной.

3 ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

3.1 Задания на контрольные работы

Для курсантов очной формы обучения учебным планом предусмотрено выполнение трех контрольных работ (по одной в каждом семестре), для студентов заочной формы обучения – четырёх контрольных работ (в первом семестре изучения дисциплины – две контрольные работы, в остальных семестрах – по одной контрольной работе)

Формулировки для контрольной работы представлены в учебно-методическом пособии по изучению дисциплины. Типовые варианты контрольной работы представлены ниже.

Контрольная работа № 1 для курсантов очной формы обучения Контрольные работы № 1, 2 (по разделам) для студентов заочной формы обучения

Раздел «Механика и молекулярная физика»

- 1. Карандаш длиной l=15 см, поставленный вертикально, падает на стол. Какую угловую ω и линейную v скорости будет иметь в конце падения: 1) середина карандаша? 2) верхний его конец? Считать, что трение настолько велико, что нижний конец карандаша не проскальзывает.
- 2. Центры масс двух одинаковых однородных шаров находятся на расстоянии $r=1\,\mathrm{m}$ друг от друга. Масса m каждого шара равна $1\,\mathrm{kr}$. Определить силу F гравитационного взаимодействия шаров.
- 3. Как велика сила F взаимного притяжения двух космических кораблей массой m=10т каждый, если они сблизятся до расстояния r=100 м?
- 4. Ракета, пущенная вертикально вверх, поднялась на высоту h = 3200 км и начала падать. Какой путь s пройдет ракета за первую секунду своего падения?
- 5. Шар скатывается с наклонной плоскости высотой h = 90 см. Какую линейную скорость будет иметь центр шара в тот момент, когда шар скатился с наклонной плоскости?
- 6. Точка совершает гармонические колебания. В некоторый момент времени смещение точки x=5 см, скорость v=20 см/с и ускорение a=-80 см/с 2 . Найти циклическуючастоту и период колебаний, фазу колебаний в рассматриваемый момент времени и амплитуду колебаний.
- 7. Определить давления p_1 и p_2 газа, содержащего $N=10^9$ молекул и имеющего объем $V=1~{\rm cm}^3$, при температурах $T_1=3~{\rm K}$ и $T_2=1000~{\rm K}$.
- 8. В баллоне вместимостью V = 15 л находится смесь, содержащая $m_1 = 10$ г водорода, $m_2 = 54$ г водяного пара и $m_3 = 60$ г оксида углерода. Температура смеси $t = 27^{0}$ С. Определить давление.

Контрольная работа № 2 для курсантов очной формы обучения Контрольная работа № 3 для студентов заочной формы обучения

Раздел «Электричество и магнетизм»

- 1. Три батареи с ЭДС ε_1 = 12 B, ε_2 = 5 B и ε_3 = 10 B и одинаковыми внутренними сопротивлениями r, равными 1 Ом, соединены между собой одноименными полюсами. Сопротивление соединительных проводов ничтожно мало. Определить силы токов I, идущих через каждую батарею.
- 2. К батарее аккумуляторов, ЭДС ε которой равна 2 В и внутреннее сопротивление r = 0,5 Ом, присоединен проводник. Определить: 1) сопротивление R проводника, при котором

мощность, выделяемая в нем, максимальна; 2) мощность Р, которая при этом выделяется в проводнике.

- 3. Электрическое поле создано двумя точечными зарядами $Q_1 = 10$ нКл и $Q_2 = -20$ нКл, находящимися на расстоянии d = 20 см друг от друга. Определить напряженность E поля в точке, удаленной от первого заряда на $r_1 = 30$ см и от второго на $r_2 = 50$ см.
- 4. Катушка и амперметр соединены последовательно и присоединены к источнику тока. К зажимам катушки присоединен вольтметр сопротивлением RB=1 кОм. Показания амперметра I=0,5 A, вольтметра U=100 B. Определить сопротивление R катушки. Сколько процентов от точного значения сопротивления катушки составит погрешность, если не учитывать сопротивления вольтметра.
- 5. Резистор сопротивление $R_1 = 5$ Ом, вольтметр и источник тока соединены параллельно. Вольтметр показывает напряжение $U_1 = 10$ В. Если заменить резистор другим сопротивлением $R_2 = 12$ Ом, то вольтметр покажет напряжение $U_2 = 12$ В. Определить ЭДС и внутреннее сопротивление источника тока. Током через вольтметр пренебречь.
- 6. Электрон движется в однородном магнитном поле с индукцией B=0,1 Тл перпендикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля, если радиус R кривизны траектории равен 0,5 см.

Контрольная работа № 3 для курсантов очной формы обучения Контрольная работа № 4 для студентов заочной формы обучения

Раздел «Оптика. Атомная физика»

- 1. На тонкую мыльную пленку (n=1,3) толщиной 1,25 мкм падает нормально монохроматический свет. В отраженном свете пленка кажется светлой. Какой минимальной толщины надо взять тонкую пленку скипидара (n=1,48), чтобы она в этих же условиях казалась темной?
- 2. На пути частично поляризованного света поместили поляризатор. При повороте поляризатора на угол 60° из положения, соответствующего максимуму пропускания, интенсивность прошедшего света уменьшилась в 3 раза. Найти степень поляризации падающего света.
- 3. На пластину падает монохроматический свет с длиной волны 0,42 мкм. Фототок прекращается при задерживающей разности потенциалов U = 0,95 В. Определить работу A выхода электронов с поверхности пластины.
- 4. Определить длину волны де Бройля λ , электрона, находящегося на второй орбите атома водорода.
- 5. Определить энергию W, излучаемую за время t=1 мин из смотрового окошка площадью S=8 см 2 плавильной печи, если ее температура T=1,2 кК.

6. Определить температуру T черного тела, при которой максимум спектральной плотности энергетической светимости ($M_{\lambda,T}$)_{max} приходится на красную границу видимого спектра ($\lambda_1 = 750$ нм); на фиолетовую ($\lambda_2 = 380$ нм).

Шкала оценивания результатов выполнения контрольной работы основана на двухбалльной системе.

Оценка *«зачтено»* ставится, если полностью решены все задачи, четко и правильно даны названия физических законов и раскрыто содержание физических явлений, допущены небольшие неточности в решении задачи.

Оценка *«незачтено»* ставится, если решены не все задачи, не даны названия законов и явлений, которым посвящена данная задача, допущены грубые ошибки в решении.

3.2 Типовые темы и задания на курсовую работу / курсовой проект

Данный вид контроля по дисциплине не предусмотрен учебным планом.

3.3 Типовые темы и задания на расчётно-графические работы

Данный вид контроля по дисциплине не предусмотрен учебным планом.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Физика» представляет собой компонент основной профессиональной образовательной программы специалитета по специальности 25.05.03 «Техническая эксплуатация транспортного радиооборудования» (специализации программы «Техническая эксплуатация и ремонт радиооборудования промыслового флота», «Информационно-телекоммуникационные системы на транспорте и их информационная защита»).

Председатель методической комиссии