

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Начальник УРОПСП

Фонд оценочных средств (приложение к рабочей программе модуля)

«ФИЗИКА»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

15.03.04 АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ

ИНСТИТУТ цифровых технологий РАЗРАБОТЧИК кафедра физики

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными индикаторами достижения компетенций

Код и наименование компетенции	Индикаторы достижения компетенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями/индикаторами достижения компетенции
ОПК-1: Применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности.	ОПК-1.7: Использует основные законы физики в профессиональной деятельности.	Физика	Знать: современные физико-математические методы, применяемые в инженерной и исследовательской практике. Уметь: применять физико-математические методы при моделировании задач в области автоматизации технологических процессов и производств, управления жизненным циклом продукции и её качеством. Владеть: навыками построения моделей и решения конкретных задач в области автоматизации технологических процессов и производств, управления жизненным циклом продукции и её качеством.

2 ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПОЭТАПНОГО ФОРМИРОВАНИЯ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ (ТЕКУЩИЙ КОНТРОЛЬ) И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 2.1 Для оценки результатов освоения дисциплины используются:
- оценочные средства текущего контроля успеваемости;
- оценочные средства для промежуточной аттестации по дисциплине.
- 2.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания;
- задания по контрольной работе (по заочной форме обучения);
- задания по темам практических занятий;
- задания и контрольные вопросы по лабораторным работам.
- 2.3 К оценочным средствам для промежуточной аттестации по дисциплине, проводимой в форме зачета и экзамена, соответственно относятся:

- промежуточная аттестация в форме зачета проходит по результатам прохождения всех видов текущего контроля успеваемости;
 - экзаменационные вопросы и задания.

3. ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

3.1 Задания для оценки освоения тем дисциплины на практических занятиях в виде самостоятельной работы согласованы с темами практических занятий, изложенными в рабочей программе по дисциплине "Физика".

Контроль регулярности выполнения заданий по практическим занятиям осуществляется ведущим эти занятия преподавателем в начале пары путем проверки наличия в рабочих тетрадях студентов выполненных задач и отметкой о выполнении в учетной ведомости. Либо путем проверки домашних заданий, выполнены в отдельных тетрадях и сданных на проверку преподавателю.

Для проверки усвоения практических навыков решения домашних задач по наиболее важным или сложным темам (одна или две задачи), преподаватель выборочно вызывает студентов к доске для показа и объяснения решений

Типовые задания темам практических занятий:

Тема 1. Кинематика.

- 1. Три четверти своего пути автомобиль прошел со скоростью $v_1 = 60$ км/ч, остальную часть пути со скоростью $v_2 = 80$ км/ч. Какова средняя путевая скорость $\langle v \rangle$ автомобиля?
- 2. Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое движение через 2 с после первой. Первая точка двигалась с начальной скоростью $v_1 = 1$ м/с и ускорением $a_1 = 2$ м/с², вторая с начальной скоростью $v_2 = 10$ м/с и ускорением $a_2 = 1$ м/с². Через сколько времени и на каком расстоянии от исходного положения вторая точка догонит первую?
- 3. Движение материальной точки задано уравнением $\mathbf{r}(t) = \mathbf{i}(A + Bt^2) + \mathbf{j}Ct$, где A = 10 м, B = -5 м/с², C = 10 м/с. Начертить траекторию точки. Найти векторные выражения v(t) и a(t). Для момента времени t = 1 с вычислить: 1) модуль скорости |v|; 2) модуль ускорения |a|; 3) модуль тангенциального ускорения $|a_{\tau}|$; 4) модуль нормального ускорения $|a_{n}|$.
- 4. Линейная скорость v_1 точек на окружности вращающегося диска равна 3 м/с. Точки, расположенные на $\Delta R = 10$ см ближе к оси, имеют линейную скорость $v_2 = 2$ м/с. Определить частоту вращения n диска.

5. Маховик начал вращаться равноускоренно и за промежуток времени $\Delta t = 10$ с достиг частоты вращения n = 300 мин⁻¹. Определить угловое ускорение ε маховика и число N оборотов, которое он сделал за это время.

Тема 2. Динамика.

- 1. К пружинным весам подвешен блок. Через блок перекинут шнур, к концам которого привязали грузы массами $m_1 = 1,5$ кг и $m_2 = 3$ кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.
- 2. Наклонная плоскость, образующая угол $\alpha = 25^{\circ}$ с плоскостью горизонта, имеет длину l = 2 м. Тело, двигаясь равноускоренно, соскользнуло с этой плоскости за время t = 2 с. Определить коэффициент трения f тела о плоскость.
- 3. На железнодорожной платформе установлено орудие. Масса платформы с орудием M=15 т. Орудие стреляет вверх под углом $\varphi=60^\circ$ к горизонту в направлении пути. С какой скоростью v_1 покатится платформа вследствие отдачи, если масса снаряда m=20 кг и он вылетает со скоростью $v_2=600$ м/с?
- 4. Снаряд массой 20 кг летит с начальной скоростью 200 м/с под углом 60° к горизонту. В наивысшей точке подъема он встретил цель и полностью погасил скорость в течение 0,02 с. Определить среднюю силу удара. Сопротивление воздуха не учитывать.
- 5. Диск радиусом R=40 см вращается вокруг вертикальной оси. На краю диска лежит кубик. Принимая коэффициент трения f=0,4, найти частоту n вращения, при которой кубик соскользнет с диска.

Тема 3. Энергия.

- 1. Найти работу A подъема груза по наклонной плоскости длиной l=2 м, если масса m груза равна 100 кг, угол наклона $\varphi=30^\circ$, коэффициент трения f=0,1 и груз движется с ускорением a=1 м/с 2 .
- 2. С какой наименьшей высоты h должен начать скатываться акробат на велосипеде (не работая ногами), чтобы проехать по дорожке, имеющей форму "мертвой петли" радиусом R = 4 м, и не оторваться от дорожки в верхней точке петли? Трением пренебречь.
- 3. Со скалы высотой 19,6 м в горизонтальном направлении бросили камень со скоростью 36 км/ч. Определить кинетическую и потенциальную энергии камня через 1,25 с полета после начала движения. Масса камня 100 г, сопротивлением воздуха пренебречь.
- 4. Тело двигалось со скоростью 3 м/с. Затем в течение 5 с на него действовала сила 4 Н. За это время кинетическая энергия увеличилась на 100 Дж. Найти скорость тела в конце действия силы и его массу.

5. Ракета массой 250 г содержит в себе 50 г взрывчатого вещества. На какую высоту она может подняться, если предположить, что взрывчатое вещество взрывается все сразу, а образовавшиеся пороховые газы имеют скорость 300 м/с. Определить потенциальную энергию ракеты в высшей точке подъема. Сопротивлением воздуха пренебречь.

Тема 4. Момент импульса и динамика вращательного движения.

- 1. Определить момент инерции J тонкого однородного стержня длиной l=60 см и массой m=100 г относительно оси, перпендикулярной ему и проходящей через точку стержня, удаленную на a=20 см от одного из его концов.
- 2. Через блок, имеющий форму диска, перекинут шнур. К концам шнура привязали грузики массой $m_1 = 100$ г и $m_2 = 110$ г. С каким ускорением a будут двигаться грузики, если масса m блока равна 400 г? Трение при вращении блока ничтожно мало.
- 3. Человек стоит на скамье Жуковского и ловит рукой мяч массой m=0,4 кг, летящий в горизонтальном направлении со скоростью v=20 м/с. Траектория мяча проходит на расстоянии r=0,8 м от вертикальной оси вращения скамьи. С какой угловой скоростью ω начнет вращаться скамья Жуковского с человеком, поймавшим мяч, если суммарный момент инерции J человека и скамьи равен 6 кг·м²?
- 4. Маховик вращается по закону, выражаемому уравнением $\varphi = A + Bt + Ct^2$, где A = 2 рад, B = 32 рад/с, C = -4 рад/с². Найти среднюю мощность < N >, развиваемую силами, действующими на маховик при его вращении, до остановки, если его момент инерции J = 100 кг \cdot м².
- 5. Пуля массой m=10 г летит со скоростью v=800 м/с, вращаясь около продольной оси с частотой n=3000 с⁻¹. Принимая пулю за цилиндрик диаметром d=8 мм, определить полную кинетическую энергию T пули.

Тема 6. Механические колебания и волны.

- 1. Точка совершает гармонические колебания. Наибольшее смещение $x_{\max}=10$ см, наибольшая скорость $v_{\max}=20$ см/с. Найти угловую частоту ω колебаний и максимальное ускорение a_{\max} .
- 2. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями $x = A_1 \cos(\omega t)$ и $y = A_2 \sin(0.5\omega t)$, где $A_1 = 2$ см, $A_2 = 3$ см. Найти уравнение траектории точки и построить ее, указав направление движения.
- 3. На стержне длиной l=30 см укреплены два одинаковых грузика: один в середине стержня, другой на одном из его концов. Стержень с грузиком колеблется около горизонтальной оси, проходящей через свободный конец стержня. Определить приведенную длину L и период T колебаний такой системы. Массой стержня пренебречь.

- 4. Логарифмический декремент колебаний Θ маятника равен 0,003. Определить число N полных колебаний, которые должен сделать маятник, чтобы амплитуда уменьшилась в два раза.
- 5. Определить разность фаз $\Delta \varphi$ колебаний источника волн, находящегося в упругой среде, и точки этой среды, отстоящей на x=2 м от источника. Частота v колебаний равна 5 Γ ц; волны распространяются со скоростью v=40 м/с.
- 6. Мощность N изотропного точечного источника звуковых волн равна 10 Вт. Какова средняя объемная плотность $< \varpi >$ энергии на расстоянии r=10 м от источника волн? Температуру T воздуха принять равной 250 К.

Тема 7. Феноменологическая термодинамика.

- 1. Каковы удельные теплоемкости $c_{\rm v}$ и c_p смеси газов, содержащей кислород массой m_1 = 10 г и азот массой m_2 = 20 г?
- 2. Определить работу A адиабатного расширения водорода массой m=4 г, если температура газа понизилась на $\Delta T=10$ К.
- 3. Водород занимает объем $V_1 = 10 \text{ м}^3$ при давлении $p_1 = 100 \text{ к}$ Па. Газ нагрели при постоянном объеме до давления $p_2 = 300 \text{ к}$ Па. Определить: 1) изменение ΔU внутренней энергии газа; 2) работу A, совершенную газом; 3) количество теплоты Q, сообщенное газу.
- 4. В цилиндре под поршнем находится водород массой m = 0.02 кг при температуре $T_1 = 300$ К. Водород сначала расширился адиабатно, увеличив свой объем в пять раз, а затем был сжат изотермически, причем объем газа уменьшился в пять раз. Найти температуру T_2 в конце адиабатного расширения и полную работу A, совершенную газом. Изобразить процесс графически.
- 5. Идеальный газ совершает цикл Карно. Температура T_1 нагревателя равна 470 К, температура T_2 охладителя равна 280 К. При изотермическом расширении газ совершает работу A = 100 Дж. Определить термический КПД η цикла, а также количество теплоты Q_2 , которое газ отдает охладителю при изотермическом сжатии.
- 6. Лед массой $m_1 = 2$ кг при температуре $t_1 = 0$ °C был превращен в воду той же температуры с помощью пара, имеющего температуру $t_2 = 100$ °C. Определить массу m_2 израсходованного пара. Каково изменение ΔS энтропии системы лед–пар?

Тема 8. Молекулярно-кинетическая теория.

1. В колбе вместимостью $V=100~{\rm cm}^3$ содержится некоторый газ при температуре $T=300~{\rm K}$. На сколько понизится давление p газа в колбе, если вследствие утечки из колбы выйдет $N=10^{20}~{\rm молекул}$?

- 2. Определить среднюю кинетическую энергию $<\varepsilon_{\Pi}>$ поступательного движения и среднее значение $<\varepsilon>$ полной кинетической энергии молекулы водяного пара при температуре T=600 К. Найти также кинетическую энергию W поступательного движения всех молекул пара, содержащего количество вещества v=1 кмоль.
- 3. Кислород при нормальных условиях заполняет сосуд вместимостью V = 11,2 л. Определить количество вещества v газа и его массу m.
- 4. Полый шар вместимостью $V = 10 \text{ см}^3$, заполненный воздухом при температуре $T_1 = 573 \text{ K}$, соединили трубкой с чашкой, заполненной ртутью. Определить массу m ртути, вошедшей в шар при остывании воздуха в нем до температуры $T_2 = 293 \text{ K}$. Изменением вместимости шара пренебречь.
- 5. Баллон вместимостью V = 30 л содержит смесь водорода и гелия при температуре T = 300 К и давлении p = 828 кПа. Масса m смеси равна 24 г. Определить массу m_1 водорода и массу m_2 гелия.

Тема 10. Электростатика.

- 1. Два одинаковых проводящих заряженных шара находятся на расстоянии r=30 см. Сила притяжения F_1 шаров равна 90 мкН. После того как шары были приведены в соприкосновение и удалены друг от друга на прежнее расстояние, они стали отталкиваться с силой F_2 = 160 мкН. Определить заряды Q_1 и Q_2 , которые были на шарах до их соприкосновения. Диаметр шаров считать много меньшим расстояния между ними.
- 2. Электрическое поле создано двумя точечными зарядами $Q_1 = 10$ нКл и $Q_2 = -20$ нКл, находящимися на расстоянии d = 20 см друг от друга. Определить напряженность E поля в точке, удаленной от первого заряда на $r_1 = 30$ см и от второго на $r_2 = 50$ см.
- 3. Найти потенциальную энергию Π системы трех точечных зарядов $Q_1=10$ нКл, $Q_2=20$ нКл и $Q_3=-30$ нКл, расположенных в вершинах равностороннего треугольника со стороной длиной a=10 см.
- 4. Точечные заряды $Q_1 = 1$ мкКл и $Q_2 = 0,1$ мкКл находятся на расстоянии $r_1 = 10$ см друг от друга. Какую работу A совершат силы поля, если второй заряд, отталкиваясь от первого, удалится от него на расстояние: $1)r_2 = 10$ м; 2) $r_3 = \infty$?
- 5. Разность потенциалов U между катодом и анодом электронной лампы равна 90 В, расстояние r=1 мм. С каким ускорением a движется электрон от катода к аноду? Какова скорость v электрона в момент удара об анод? За какое время t электрон пролетает расстояние от катода до анода? Поле считать однородным.

Тема 11. Проводники в электрическом поле.

- 1. Шар радиусом $R_1 = 6$ см заряжен до потенциала $\phi_1 = 300$ B, а шар радиусом $R_2 = 4$ см до потенциала $\phi_2 = 500$ B. Определить потенциал ϕ шаров после того, как их соединили металлическим проводником. Емкостью соединительного проводника пренебречь.
- 2. Расстояние d между пластинами плоского конденсатора равно 1,33 мм площадь S пластин равна 20 см². В пространстве между пластинами конденсатора находятся два слоя диэлектриков: слюды толщиной $d_1 = 0,7$ мм и эбонита толщиной $d_2 = 0,3$ мм. Определить электроемкость с конденсатора.
- 3. Два конденсатора электроемкостями $C_1 = 3$ мкФ и $C_2 = 6$ мкФ соединены между собой и присоединены к батарее с ЭДС 120 В. Определить заряды Q_1 и Q_2 конденсаторов и разности потенциалов U_1 и U_2 между их обкладками, если конденсаторы соединены: 1) параллельно; 2) последовательно.
- 4. Разность потенциалов между пластинами плоского конденсатора 6 кВ, заряд каждой из них 10^{-8} Кл. Определить силу взаимодействия между пластинами, энергию и плотность энергии конденсатора, если расстояние между пластинами 0.02 м, а площадь каждой из них 100 см^2 .

Тема 12. Диэлектрики в электрическом поле.

- 1. Расстояние d между пластинами плоского конденсатора равно 2 мм, разность потенциалов U=1,8 кВ. Диэлектрик стекло. Определить диэлектрическую восприимчивость χ стекла и поверхностную плотность σ' поляризационных (связанных) зарядов на поверхности стекла.
- 2. Определить поляризованность p стекла, помещенного во внешнее электрическое поле напряженностью E_0 =5 MB/м.
- 3. Диэлектрик поместили в электрическое поле напряженностью E_0 =20 кВ/м. Чему равна поляризованность p диэлектрика, если напряженность E среднего макроскопического поля в диэлектрике оказалась равной 4 кВ/м?
- 4. Эбонитовая плоскопараллельная пластина помещена в однородное электрическое поле напряженностью E_0 =2 МВ/м. Грани пластины перпендикулярны линиям напряженности. Определить поверхностную плотность σ' связанных зарядов на гранях пластины.

Тема 13. Постоянный электрический ток.

1. Катушка и амперметр соединены последовательно и присоединены к источнику тока. К зажимам катушки присоединен вольтметр сопротивлением $R_{\rm B}=1$ кОм. Показания амперметра I=0,5 A, вольтметра U=100 B. Определить сопротивление R катушки. Сколько процентов от точного значения сопротивления катушки составит погрешность, если не учитывать сопротивления вольтметра?

- 2. Внутреннее сопротивление r батареи аккумуляторов равно 3 Ом. Сколько процентов от точного значения ЭДС составляет погрешность, если, измеряя разность потенциалов на зажимах батареи вольтметром с сопротивлением $R_B = 200$ Ом, принять ее равной ЭДС?
- 3. Две группы из трех последовательно соединенных элементов соединены параллельно. ЭДС каждого элемента равна 1,2 В, внутреннее сопротивление r = 0,2 Ом. Полученная батарея замкнута на внешнее сопротивление R = 1,5 Ом. Найти силу тока I во внешней цепи.
- 4. Три батареи с ЭДС $\varepsilon_1 = 12$ В, $\varepsilon_2 = 5$ В и $\varepsilon_3 = 10$ В и одинаковыми внутренними сопротивлениями r, равными 1 Ом, соединены между собой одноименными полюсами. Сопротивление соединительных проводов ничтожно мало. Определить силы токов I, идущих через каждую батарею.
- 5. К батарее аккумуляторов, ЭДС ε которой равна 2 В и внутреннее сопротивление r=0,5 Ом, присоединен проводник. Определить: 1) сопротивление R проводника, при котором мощность, выделяемая в нем, максимальна; 2) мощность P, которая при этом выделяется в проводнике.

Тема 14. Магнитостатика.

- 1. По обмотке очень короткой катушки радиусом r=16 см течет ток I=5 А. Сколько витков N проволоки намотано на катушку, если напряженность H магнитного поля в ее центре равна 800 А/м?
- 2. Два длинных параллельных провода находятся на расстоянии r = 5 см один от другого. По проводам текут в противоположных направлениях одинаковые токи I = 10 А каждый. Найти напряженность H магнитного поля в точке, находящейся на расстоянии $r_1 = 2$ см от одного и $r_2 = 3$ см от другого провода.
- 3. Определить максимальную магнитную индукцию B_{max} поля, создаваемого электроном, движущимся прямолинейно со скоростью v=10 Mm/c, в точке, отстоящей от траектории на расстоянии d=1 нм.
- 4. Шины генератора представляют собой две параллельные медные полосы длиной l=2 м каждая, отстоящие друг от друга на расстоянии d=20 см. Определить силу F взаимного отталкивания шин в случае короткого замыкания, когда по ним течет ток I=10 кА.
- 5. Короткая катушка площадью S поперечного сечения, равной 150 см², содержит N=200 витков провода, по которому течет ток I=4 А. Катушка помещена в однородное магнитное поле напряженностью H=8 кА/м. Определить магнитный момент p_m катушки, а также вращающий момент M, действующий на нее со стороны поля, если ось катушки составляет угол $\alpha=60^{\circ}$ с линиями индукции.

6. Электрон движется в однородном магнитном поле с индукцией B = 0,1 Тл перпендикулярно линиям индукции. Определить силу F, действующую на электрон со стороны поля, если радиус R кривизны траектории равен 0,5 см.

Тема 16. Электромагнитная индукция.

- 1. Плоский контур, площадь S которого равна 300 см^2 , находится в однородном магнитном поле с индукцией B = 0.01 Тл. Плоскость контура перпендикулярна линиям индукции. В контуре поддерживается неизменный ток I = 10 A. Определить работу A внешних сил по перемещению контура с током в область пространства, магнитное поле в которой отсутствует.
- 2. В однородном магнитном поле с индукцией B=1 Тл находится прямой провод длиной l=20 см, концы которого замкнуты вне поля. Сопротивление R всей цепи равно 0,1 Ом. Найти силу F, которую нужно приложить к проводу, чтобы перемещать его перпендикулярно линиям индукции со скоростью v=2,5 м/с.
- 3. Рамка площадью S = 200 см² равномерно вращается с частотой n = 10 с⁻¹ относительно оси, лежащей в плоскости рамки и перпендикулярно линиям индукции однородного магнитного поля (B = 0,2 Тл). Каково среднее значение ЭДС индукции $\langle \varepsilon_i \rangle$ за время, в течение которого магнитный поток, пронизывающий рамку, изменится от нуля до максимального значения?
- 4. С помощью реостата равномерно увеличивают силу тока в катушке на $\Delta I = 0,1$ А в 1 с. Индуктивность L катушки равна 0,01 Гн. Найти среднее значение ЭДС самоиндукции $<\varepsilon_s>$.
- 5. Источник тока замкнули на катушку с сопротивлением R = 10 Ом и индуктивностью L = 1 Гн. Через сколько времени сила тока замыкания достигнет 0,9 предельного значения?

Тема 18. Электромагнитные колебания и волны.

- 1. В колебательный контур входит катушка индуктивностью 5 мГн и плоский конденсатор с диэлектриком из стекла. Расстояние между обкладками конденсатора 6 мм, площадь обкладки 90 см². На сколько изменится частота и период колебаний контура, если стеклянную прослойку конденсатора заменить воздушной?
- 2. Максимальная энергия магнитного поля колебательного контура 1 мДж при силе тока 0,8 А. Чему равна частота колебаний контура, если максимальная разность потенциалов на обкладках конденсатора 1200 В?
- 3. Конденсатор электроемкостью C = 500 пФ соединен параллельно с катушкой длиной l = 40 см и площадью S сечения, равной 5 см 2 . Катушка содержит N = 1000 витков. Сердечник немагнитный. Найти период T колебаний.

- 4. Катушка (без сердечника) длиной l = 50 см и площадью S_1 сечения, равной 3 см², имеет N = 1000 витков и соединена параллельно с конденсатором. Конденсатор состоит из двух пластин площадью $S_2 = 75$ см² каждая. Расстояние d между пластинами равно 5 мм. Диэлектрик воздух. Определить период T колебаний контура.
- 5. Два параллельных провода, погруженных в глицерин, индуктивно соединены с генератором электромагнитных колебаний частотой $v = 420 \ \mathrm{M}\Gamma$ ц. Расстояние l между пучностями стоячих волн на проводах равно 7 см. Найти диэлектрическую проницаемость ε глицерина. Магнитную проницаемость μ принять равной единице.

Тема 19. Интерференция волн.

- 1. Расстояние d между двумя когерентными источниками света ($\lambda = 0.5$ мкм) равно 0.1 мм. Расстояние b между интерференционными полосами на экране в средней части интерференционной картины равно 1 см. Определить расстояние l от источников до экрана.
- 2. Пучок монохроматических ($\lambda = 0.6$ мкм) световых волн падает под углом $\varepsilon_1 = 30^\circ$ на находящуюся в воздухе мыльную пленку (n = 1.3). При какой наименьшей толщине d пленки отраженные световые волны будут максимально ослаблены интерференцией? максимально усилены?
- 3. Найти все длины волн видимого света (от 0,76 до 0,38 мкм), которые будут: 1) максимально усилены; 2) максимально ослаблены при оптической разности хода Δ интерферирующих волн, равной 1,8 мкм.
- 4. Плосковыпуклая линза с оптической силой $\Phi = 2$ дптр выпуклой стороной лежит на стеклянной пластинке. Радиус r, четвертого темного кольца Ньютона в проходящем свете равен 0.7 мм. Определить длину световой волны.
- 5. Поверхности стеклянного клина образуют между собой угол $\theta = 0,2$ '. На клин нормально к его поверхности падает пучок лучей монохроматического света с длиной волны $\lambda = 0,55$ мкм. Определить ширину b интерференционной полосы.

Тема 20. Дифракция волн.

- 1. Радиус r_4 четвертой зоны Френеля для плоского волнового фронта равен 3 мм. Определить радиус r_6 шестой зоны Френеля.
- 2. На круглое отверстие радиусом 2 мм падает плоская монохроматическая волна. Найти длину волны света, освещающего отверстие, если в нем укладывается пять зон Френеля и из точки наблюдения оно видно под углом 5'.
- 3. На щель шириной a=0.05 мм падает нормально монохроматический свет ($\lambda=0.6$ мкм). Определить угол φ между первоначальным направлением пучка света и направлением на четвертую темную дифракционную полосу.

- 4. С помощью дифракционной решетки с периодом d=20 мкм требуется разрешить дублет натрия ($\lambda_1=589,0$ нм и $\lambda_2=589,6$ нм) в спектре второго порядка. При какой наименьшей длине l решетки это возможно?
- 5. Какова длина волны λ монохроматического рентгеновского излучения, падающего на кристалл кальцита, если дифракционный максимум первого порядка наблюдается, когда угол θ между направлением падающего излучения и гранью кристалла равен 3°? Расстояние d между атомными плоскостями кристалла принять равным 0,3 нм.

Тема 21. Поляризация волн.

- 1. Анализатор в k=2 раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол α между плоскостями пропускания поляризатора и анализатора. Потерями интенсивности света в анализаторе пренебречь.
- 2. Угол Брюстера $\varepsilon_{\rm B}$ при падении света из воздуха на кристалл каменной соли равен 57°. Определить скорость света в этом кристалле.
- 3. Угол α между плоскостями пропускания поляризатора и анализатора равен 45°. Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличить до 60° ?
- 4. Степень поляризации Р частично-поляризованного света равна 0,5. Во сколько раз отличается максимальная интенсивность света, пропускаемого через анализатор, от минимальной?
- 5. Пластинку кварца толщиной $d_1 = 2$ мм, вырезанную перпендикулярно оптической оси, поместили между параллельными николями, в результате чего плоскость поляризации света повернулась на угол $\varphi = 53^{\circ}$. Определить толщину d_2 пластинки, при которой данный монохроматический свет не проходит через анализатор.

Тема 22. Квантовые свойства электромагнитного излучения.

- 1. Поток энергии $\Phi_{\rm e}$, излучаемый из смотрового окошка плавильной печи, равен 34 Вт. Определить температуру T печи, если площадь отверстия $S=6~{\rm cm}^2$.
- 2. Определить энергию W, излучаемую за время t=1 мин из смотрового окошка площадью S=8 см 2 плавильной печи, если ее температура T=1,2 кК.
- 3. Определить температуру T черного тела, при которой максимум спектральной плотности энергетической светимости ($M_{\lambda,T}$)_{тем} приходится на красную границу видимого спектра ($\lambda_1 = 750$ нм); на фиолетовую ($\lambda_2 = 380$ нм).
- 4. На поверхность лития падает монохроматический свет ($\lambda = 310$ нм) Чтобы прекратить эмиссию электронов, нужно приложить задерживающую разность потенциалов U не менее 1,7 В. Определить работу выхода A.

5. Определить импульс p электрона отдали при эффекте Комптона, если фотон с энергией, равной энергии покоя электрона, был рассеян на угол $\theta = 180^{\circ}$.

Тема 23. Планетарная модель атома.

- 1. Найти наибольшую и наименьшую длины волн спектра атома водорода в серии Бальмера.
- 2. Вычислить по теории Бора скорость вращения электрона, находящегося на третьем энергетическом уровне в атоме дейтерия.
- 3. Фотон, соответствующий длине волны 0,015 мкм, выбил электрон из невозбужденного атома водорода. Вычислить скорость электрона за пределами атома.
- 4. В возбужденном атоме водорода электрон вращается на одной из возможных боровских орбит со скоростью $1,1\cdot10^6$ м/с. Определить чему равна энергия кванта, излучаемого при переходе электрона в основное состояние.
- 5. Атом водорода находится в возбужденном состоянии с главным квантовым числом 3. Падающий фотон выбивает из атома электрон, сообщая ему кинетическую энергию 2,5 эВ. Вычислить энергию падающего фотона.

Тема 24. Квантовая механика.

- 1. Электрон движется по окружности радиусом r = 0.5 см в однородном магнитном поле с индукцией B = 8 мТл. Определить длину волны де Бройля λ электрона.
- 2. На грань некоторого кристалла под углом $\alpha = 60^{\circ}$ к ее поверхности падает параллельный пучок электронов, движущихся с одинаковой скоростью. Определить скорость v электронов, если они испытывают интерференционное отражение первого порядка. Расстояние d между атомными плоскостями кристаллов равно 0,2 нм.
- 3. Найти погрешность в определении скорости электрона, протона и пылинки массой 0,1 нг, если их координаты установлены с неопределённостью 1 мкм.
- 4. В потенциальном ящике шириной l находится электрон на третьем энергетическом уровне. Определить в каких точках интервала 0 < x < l плотность вероятности нахождения электрона равна нулю. Определить плотность вероятности нахождения, электрона на участке интервала l/3 < x < 2l/3.
- 5. Элементарная частица в потенциальном ящике находится в первом возбужденном состоянии. Какова вероятность нахождения частицы в средней части потенциального ящика в интервале (1/4 ÷ 31/4)? Ответ поясните рисунком.

Тема 25. Квантово-механическое описание атомов и молекул.

1. Атом водорода находится в основном состоянии. Собственная волновая функция,

описывающая состояние электрона в атоме, имеет вид $\psi(r) = Ce^{-\frac{r}{a}}$, где C - некоторая постоянная. Найти из условия нормировки постоянную C.

- 2. Вычислить момент импульса J_l орбитального движения электрона, находящегося в атоме: 1) в s-состоянии; 2) в p-состоянии.
- 3. Атом водорода, находившийся первоначально в основном состоянии, поглотил квант света с энергией ε =10,2 эВ. Определить изменение момента импульса ΔJ_l орбитального движения электрона. В возбужденном атоме электрон находится в p-состоянии.
- 4. Определить возможные значения магнитного момента μ , обусловленного орбитальным движением электрона в возбужденном атоме водорода, если энергия ε возбуждения равна 12,09 эВ.
- 5. Используя принцип Паули, указать, какое максимальное число N_{max} электронов в атоме могут иметь одинаковыми следующие квантовые числа: 1) n, l, m, m_s ', 2) n, l, m; 3) n, l; 4) n.
 - 3.2 Задания по контрольной работе (по заочной форме обучения)

Оценка контрольной работы производится следующим образом:

- "отлично" приведено полное решение, включающее следующие элементы:
- 1) записаны физические законы, явления или закономерности, применение которых необходимо для решения задачи выбранным способом;
- 2) приведены пояснения для всех введенных в решении буквенных обозначений физических величин (за исключением обозначений констант);
- 3) выполнен рисунок (если таковой нужен) с указанием всех необходимых физических величин;
- 4) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);
 - 5) представлен правильный ответ с указанием единиц измерения искомой величины.
- "хорошо" Правильно записаны все необходимые физические законы, явления или закономерности и проведены в целом все необходимые преобразования. Но имеются один или несколько из следующих недостатков. Рисунок выполнен с недостаточной степенью подробности, из которого не очевидны приводимые далее выражения или преобразования. Записи, соответствующие пункту 2), представлены не в полном объёме или отсутствуют.

И (ИЛИ)

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения

И (ИЛИ)

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

И (ИЛИ)

Отсутствует пункт 5), или в нём допущена ошибка.

- "удовлетворительно" - представлены записи, соответствующие одному из следующих случаев. Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

ИЛИ

В решении отсутствует одна из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

ИЛИ

В одной из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

ИЛИ

Отсутствует рисунок при его необходимости для решения задачи.

- "неудовлетворительно" - Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок.

Типовые задания по контрольной работе, выполняемой студентами заочной формы обучения во втором и третьем семестрах приведены ниже.

Типовые задания по контрольной работе:

Второй семестр

№1. Радиус-вектор материальной точки изменяется со временем по закону $\vec{r} = 4t\vec{i} - (10t^2 - 4)\vec{j}$. Найдите уравнение траектории движения точки. Определите перемещение и модуль перемещения материальной точки за промежуток времени от $t_1 = 2$ с до $t_2 = 5$ с.

- №2. Шарик, движущийся поступательно, налетает на второй неподвижный шарик. Происходит абсолютно неупругий удар. На сколько процентов при этом изменится скорость первого шарика, если отношение масс шариков $m_1/m_2=n=2$?
- №3. По наклонной плоскости вверх катится без скольжения полый обруч. Ему сообщена начальная скорость $v_0 = 3,14$ м/с, параллельная наклонной плоскости. Установить, какой путь пройдет обруч, если угол наклона плоскости $\alpha = 30^\circ$.
- №4. Искусственный спутник обращается вокруг Земли по круговой орбите на высоте H = 3200 км над поверхностью Земли. Определить линейную скорость спутника.
- №5. На концах тонкого стержня длиной l = 50 см укреплено по одинаковому грузику. Под действием силы тяжести система колеблется в вертикальной плоскости вокруг оси, которая делит длину стержня в отношении $\gamma = 4:5$. Пренебрегая массой стержня, определите период колебаний системы T.
- №6. Сколько полных колебаний должен сделать маятник, логарифмический декремент затухания которого $\delta = 0{,}054$, для того, чтобы амплитуда его колебаний уменьшилась в три раза?
- №7. Смещение от положения равновесия точки, отстоящей от источника колебаний на расстоянии l=4 см, в момент времени t=T/6 равно половине амплитуды. Найти длину бегушей волны λ .
- №8. В сосуде емкостью V = 83 л находится $m_1 = 8$ г водорода и $m_2 = 12$ г гелия. Давление газа равно p = 0.425 МПа. Определить температуру газа T.
- №9. Найти полную кинетическую энергию, а также кинетическую энергию вращательного движения одной молекулы аммиака NH_3 при температуре t = 27°C.
- №10. Два сосуда равного объема соединены трубкой с краном. В одном сосуде находится $v_1 = 2$ моль азота, а в другом $v_2 = 2$ моль водорода при одинаковой температуре и одинаковом давлении. Когда кран открыли, начался изотермический процесс диффузии. Определить суммарное изменение энтропии.
- №11. Тепловая машина Карно совершает работу с v = 2 молями одноатомного идеального газа между тепловым резервуаром с температурой $t_1 = 327$ °C и холодильником с температурой $t_2 = 27$ °C. Отношение наибольшего объема газа к наименьшему объему в данном процессе равно 8. Какую работу A совершает машина за один цикл?
- №12. Лед массой $m_1 = 2$ кг при температуре $t_1 = 0$ °C был превращен в воду той же температуры с помощью пара, имеющего температуру $t_2 = 100$ °C. Определить массу m_2 израсходованного пара. Каково изменение ΔS энтропии системы лед—пар?

Третий семестр

- 1. Конденсатор с парафиновым диэлектриком имеет емкость $C=4,42\cdot 10^{-11}$ Ф и заряжен до разности потенциалов $\Delta \varphi=150$ В. Напряженность поля внутри конденсатора $E=6\cdot 10^2$ В/м. Определить площадь пластины конденсатора s, энергию поля конденсатора W и поверхностную плотность заряда σ на пластине.
- 2. Напряжение на шинах электростанции U = 10 кВ. Расстояние до потребителя l = 500 км (линия двухпроводная). Станция должна передать потребителю мощность N = 100 кВт. Потери напряжения на проводах не должны превышать 4%. Вычислить массу m медных проходов на участке электростанция потребитель.
- 3. В горизонтальной плоскости вращается прямолинейный проводник длиной l=0,5 м вокруг оси, проходящей через конец проводника. При этом он пересекает вертикальное однородное поле напряженностью H=50 А/м. По проводнику течет ток силой I=4 А, угловая скорость его вращения $\omega=20$ с⁻¹. Вычислить работу A вращения проводника за $\tau=2$ мин.
- 4. Конденсатору емкостью C=0,4 мк Φ сообщается заряд q=10 мкКл, после чего он замыкается на катушку с индуктивностью L=1 мГн. Чему равна максимальная сила $I_{\rm max}$ тока в катушке?
- 5. Расстояние от двух когерентных источников до экрана L=1,5 м, расстояние между ними d=0,18 мм. Сколько светлых полос поместится на отрезке, длиной l=1 см, считая от центра картины, если длина волны света $\lambda=0,6$ мкм.
- 6. На дифракционную решетку, содержащую n=600 штрихов на 1 мм, падает нормально монохроматический свет с длиной волны $\lambda=0,546$ мкм. Определить изменение угла отклонения лучей второго дифракционного максимума $\Delta \varphi_2$, если взять решетку со n=100 штрихами на 1 мм.
- 7. Две призмы Николя поставлены одна за другой в скрещенном положении на пути естественного света. Какая доля всей энергии луча пройдет через систему, если между этими двумя николями расположить третий таким образом, что его оптическая ось составит с осью первого угол $\gamma = 45^{\circ}$? Поглощением света в николях пренебречь.
- 8. Фотоны с энергией $E_{\Phi} = 4,9$ эВ выбивают электроны из металла, работа выхода из которого $A_{\text{вых}} = 4,5$ эВ. Определите максимальный импульс, передаваемый поверхности металла каждым вылетевшим электроном.
- 9. Определить наименьшую и наибольшую энергии фотона в инфракрасной серии спектра водорода (серия Пашена).
- 10. Электрон находится в потенциальном ящике. Определить плотность вероятности нахождения электрона на втором энергетическом уровне в интервале $0 \le x \le l/2$.

- 3.3 Задания и контрольные вопросы по лабораторным работам соответствуют рабочей программе дисциплины. Лабораторная работа считается полностью выполненной и зачтенной при следующих условиях:
- выполнена экспериментальная часть (произведены измерения, данные подписаны инженером);
- проведена математическая обработка измерений, согласно методическим пособиям (заполнены таблицы, рассчитаны физические характеристики по расчётным формулам, построены графики на миллиметровой бумаге, рассчитаны погрешности, сделаны выводы по работе);
- протокол-отчёт сдан на проверку преподавателю; преподаватель может задать вопросы по расчётам, характеристикам, методам обработки измерений, единицам измерения и т.д.
- для теоретической защиты студенту предлагаются вопросы на основе комплекса вопросов к лабораторной работе. при защите студенту предлагаются не только теоретические вопросы, но и по процедуре выполнения лабораторной работы (на основе соответствующих методических пособий). студент обязан записать ответы на вопросы на отдельном листе бумаги (законы, формулы, определения, единицы измерения величин, поясняющие рисунки, графики). преподаватель может предложить студенту решить элементарную задачу на понимание рассматриваемых законов (записать закон в векторной или скалярной форме, сделать поясняющий чертёж с указанием характеристик, выразить неизвестные величины через заданные величины и т.д.).

Задания и контрольные вопросы по лабораторным работам:

Второй семестр (очная и заочная формы).

- * Лабораторные работы, выполняемые студентами очной формы обучения;
- # Лабораторные работы, выполняемые студентами заочной формы обучения.

Лабораторная работа №1.# Основы физических измерений. Измерения штангенциркулем и микрометром, определение плотности твердых тел правильной геометрической формы.

Задание к лабораторной работе:

Изучить методы физических измерений. Выполнить измерения штангенциркулем и микрометром, определить плотности твердых тел правильной геометрической формы.

- 1. Что такое физическая величина?
- 2. Что такое измерение? Виды измерения, их определения.

- 3. Что такое результат измерения?
- 4. Что такое доверительный интервал, чем он определяется?
- 5. Что такое погрешность измерений?
- 1. Коэффициент Стьюдента.
- 2. Случайная погрешность.
- 3. Погрешность округления.
- 4. Приборная погрешность.
- 5. Полная погрешность прямых измерений.
- 6. Правила представления результатов измерений.

Лабораторная работа №2.*# Исследование механического движения на машине Атвуда.

Задание к лабораторной работе:

Изучить законы поступательного и вращательного движения твёрдых тел. Исследовать механическое движение на машине Атвуда.

Контрольные вопросы:

- 1. Объяснить схему установки, задачи опыта и методику выполнения эксперимента.
- 2. Полное ускорение при криволинейном движении Вектор и модуль полного ускорения.
 - 3. Нормальное ускорение, тангенциальное ускорение. Вектор и модуль.
- 4. Основные характеристики движения материальной точки по окружности. Связь между линейными и угловыми величинами.
 - 5. Масса, сила.
 - 6. Иимпульс тела. Изменение импульса тела. Импульс силы.
 - 7. Законы Ньютона.
 - 8. Момент инерции.
 - 9. Момент силы.
 - 10. Основной закон динамики вращательного движения тела относительно оси.

Лабораторная работа №3. Исследование механического движения при скатывании тел на установке Максвелла.

Задание к лабораторной работе:

Изучить закономерности плоскопараллельного движения. Выполнить исследование движения твёрдого тела при помощи маятника Максвелла.

Контрольные вопросы:

1. Описать экспериментальную установку, цели и методику проведения эксперимента.

- 2. Понятие о линейных и угловых скоростях и ускорениях.
- 3. Понятие о массе и моменте инерции. Теорема Штейнера.
- 4. Понятие о силе и моменте силы.
- 5. Понятие о качении твёрдых тел и способы описания качения.
- 6. Понятие о мгновенном центре скоростей и оси мгновенного вращения.
- 7. Законы динамики при поступательном и вращательном движениях тел.
- 8. Какой вид механического движения твёрдого тела реализуется при скатывании тел по двум отвесным нитям?
- 9. Какие силы в механике называются потенциальными и непотенциальными? Привести примеры потенциальных и непотенциальных сил.
 - 10. Понятие об энергии и работе силы. Общефизический закон сохранения энергии.
 - 11. Понятие о механической энергии.
- 12. Объяснить, почему диск Максвелла с добавочным кольцом опускается медленнее, чем диск без добавочного кольца.

Лабораторная работа №4.# Установка Обербека.

Задание к лабораторной работе:

Изучить законы вращательного движения твёрдых тел. Исследовать вращательное движение тела с помощью маятника Обербека. Ознакомиться с понятием момента инерции.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Физическими величинами, характеризующие вращение твёрдого тела вокруг неподвижной оси.
- 3. Момент инерции точки; твёрдого тела: определение, обозначение, единицы измерения.
 - 4. Момент инерции цилиндра, диска, стержня.
 - 5. Понятие угловой скорости. Взаимосвязь угловой и линейной скоростей.
 - 6. Понятие углового ускорения. Взаимосвязь углового и линейного ускорений.
 - 7. Понятие момент силы: определение, обозначение, единицы измерения, направление.
- 8. Формулировка и формула основного закона динамики вращательного движения твёрдого тела.

Лабораторная работа №5. Изучение и применение физического и математического маятников.

Задание к лабораторной работе:

Исследовать процесс гармонических колебаний математического и физического маятника. Выполнить экспериментальную проверку справедливости теоремы Гюйгенса-Штернера.

Контрольные вопросы:

- 1. Объяснить схему экспериментальной установки, цели и методику проведения эксперимента.
- 2. Понятие «колебание». Гармонические колебания: определение и уравнение колебаний.
 - 3. Основные характеристики колебаний.
 - 4. Момент инерции. Теорема Гюйгенса Штейнера.
- 5. Понятие «математический маятник». Уравнение колебаний математического маятника.
 - 6. Понятие «физический маятник». Уравнение колебаний математического маятника.

Лабораторная работа №6.*# Определение коэффициента внутреннего трения по методу Стокса.

Задание к лабораторной работе:

Изучит движения тела в вязкой жидкости. Определить коэффициент динамической вязкости для нескольких предлагаемых жидкостей.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Явление вязкости. Закон, описывающий явление вязкости.
- 3. Силы, действующие на шарик, падающий в жидкость.
- 4. Как изменяется скорость движения шарика с увеличением его диаметра?
- 5. Какие явления переноса существуют и каким законам они подчиняются?
- 6. Коэффициенты переноса: формулы, величины, входящие в формулы.
- 7. Длина свободного пробега: формула, величины, входящие в формулы.
- 8. Характеристические скорости: средняя арифметическая, наиболее вероятная скорость, средняя квадратичная скорость. Формулы, величины, входящие в формулы.

Лабораторная работа №7.# Определение отношения теплоемкостей воздуха методом адиабатного расширения.

Задание к лабораторной работе:

Изучить законы термодинамики для различных термодинамических процессов. Определить коэффициент Пуассона для воздуха.

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Понятие «внутренняя энергия»?
- 3. Работа в термодинамике. Графический смысл работы.
- 4. Теплоёмкость. Виды теплоемкостей. Единицы измерения.
- 5. Первое начало термодинамики: формулировка, формула, физический смысл входящих величин.
 - 6. Первое начало термодинамики для изопроцессов.
 - 7. Адиабатный процесс. Уравнение Пуассона. Коэффициент Пуассона.
 - 8. Первое начало термодинамики для адиабатного процесса.
 - 9. Физический смысл универсальной газовой постоянной R.
 - 10. Формулировка и формула уравнения Майера.
 - 11. Второе начало термодинамики.
 - 12. Прямой и обратный цикл. Термический КПД. Холодильный коэффициент.

Лабораторная работа №8. Изучение изотермического процесса. Проверка закона Бойля – Мариотта.

Задание к лабораторной работе:

Изучить изотермический процесс. Выполнить проверку закона Бойля – Мариотта.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Модель идеального газа в МКТ и термодинамике.
- 3. Макропараметры состояния системы: определение, обозначение, единицы измерения.
- 4. Уравнение состояния идеального газа: формулировка, формула, величины, входяшие в формулу.
 - 5. Изопроцессы: определение, уравнения, графическое представление.
 - 6. Работа в термодинамике, графический смыл работы.

Третий семестр (очная и заочная формы).

- * Лабораторные работы, выполняемые студентами, обучающимися по заочной форме;
- # Лабораторные работы, выполняемые студентами, обучающимися по очно-заочной форме;

Лабораторная работа №9.*# Моделирование плоскопараллельного электростатического поля током в проводящем листе.

Задание к лабораторной работе:

Изучить силовые линии и эквипотенциальные поверхности полей, созданных различными электрическими зарядами.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Закон Кулона.
- 3. Понятие напряженности электрического поля.
- 4. Понятие потенциала электрического поля.
- 5. Связь между напряженностью и потенциалом.
- 6. Эквипотенциальные поверхности.
- 7. Работа электрического поля по перемещению точечного заряда.
- 8. Понятие о линейной, поверхностной и объемной плотностях заряда.

Лабораторная работа №10.# Исследование магнитного поля на оси кольцевой катушки.

Задание к лабораторной работе:

Исследовать магнитное поле, созданное внутри соленоида. Проверить эмпирическую зависимость с помощью расчётов по аналитическим формулам.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Магнитное поле. Магнитная индукция
- 3. Принцип действия датчика Холла.
- 4. Нарисовать картину силовых линий магнитного поля кольцевой катушки.
- 5. Закон Био Савара Лапласа.
- 6. Применение закона Био Савара Лапласа к расчёту магнитной индукции, создаваемой круговым витком с током.
- 7. Применение закона Био Савара Лапласа к расчёту магнитной индукции, создаваемой прямолинейным проводником с током.
- 8. Применение закона Био Савара Лапласа к расчёту магнитной индукции, создаваемой бесконечно длинным прямолинейным проводником с током.
 - 9. Поток вектора магнитной индукции.

Лабораторная работа №11.# Определение удельного заряда электрона методом магнетрона.

Задание к лабораторной работе:

Изучить движение заряженных частиц в электрических и магнитных полях. Определить с помощью магнетрона удельный заряд электрона.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Сила Лоренца. Определение, формула, направление (правило левой руки), рисунок.
- 3. Работа по перемещению заряда в электрическом поле: определение, формула, величины, входящие в формулу.
 - 4. Что такое критическая сила тока в соленоиде? Как ее определить?
 - 5. Влияние на полученные результаты изменения направления тока в соленоиде.
- 6. Изменяется ли напряжённость (потенциал) электрического поля в пространстве между катодом и анодом лампового диода?
- 7. Что такое цилиндрическая система координат? Чем она принципиально отличается от декартовой?

Лабораторная работа №12.*# Определение длины волны монохроматического света с помощью интерференции от двух щелей.

Задание к лабораторной работе:

Изучить метод Юнга. Исследовать зависимость ширины интерференционной полосы от длины волны и параметров установки.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Волновая природа света. Световая волна. График.
- 3. Световой вектор.
- 4. Интенсивность света. Связь интенсивности и амплитуды.
- 5. Интерференция света. Когерентные волны.
- 6. Оптическая и геометрическая длина пути. Связь между ними. Физический смысл коэффициента пропорциональности между ними.
 - 7. Сложение колебаний от двух источников. Рисунок.
 - 8. Условие минимума и условие максимума для разности хода и разности фаз.
 - 9. Методы получения интерференционной картины: примеры с рисунками.
 - 10. Метод Юнга: рисунок, формулы.
 - 11. Интерференция в тонких пленках: рисунок, формулы.
 - 12. Кольца Ньютона.
 - 13. Применение интерференции.

Лабораторная работа №13.# Изучение явления дифракции света.

Задание к лабораторной работе:

Исследовать спектр, получаемый с помощью дифракционной решётки. Определить длину волны, параметры неизвестной решётки.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Волна. Виды волн. Уравнение плоской волны. Волновое число.
- 3. Волновой фронт, волновая поверхность. Длина волны, фазовая скорость, период, фаза.
 - 4. Волновая природа света. Световая волна. График.
 - 5. Интенсивность света. Связь интенсивности и амплитуды.
 - 6. Принципы, лежащие в основе волновой теории света.
 - 7. В чём состоит явление дифракции в оптике?
 - 8. Виды дифракции.
 - 9. Принцип Гюйгенса. Принцип Гюйгенса-Френеля.
 - 10. Метод зон Френеля.
- 11. Дифракция Фраунгофера на одной щели. Условие максимумов и минимумов дифракции.
 - 12. Дифракционная решётка. Дифракционный спектр.
 - 13. Решётка как дисперсионный прибор.

Лабораторная работа №14.# Изучение явления вращения плоскости поляризации.

Задание на лабораторную работу: Определить концентрацию раствора глюкозы по углу поворота плоскости поляризации.

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Какой свет называется естественным и какой поляризованным?
- 3. Принцип действия поляриметра.
- 4. Методы получения поляризованного света.
- 5. Виды поляризации света: определение, рисунки.
- 6. Закон Малюса: формулировка, формула, рисунок.
- 7. Механизм вращения плоскости колебаний. Пояснительный рисунок.
- 8. Что такое световой вектор? Что определило выбор этого вектора в качестве светового?
 - 9. Сущность метода определения концентрации оптически активных веществ.

10. Можно ли круговым поляриметром определить концентрацию иных оптически активных веществ?

Лабораторная работа № 15. Изучение поляризации света. Проверка закона Малюса.

Задание на лабораторную работу: Изучить явление поляризации света. Выполнить экспериментальную проверку закона Малюса.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Перечислить основные свойства электромагнитных волн.
- 3. Назвать разновидности поляризации света.
- 4. Поляризаторы. Получение плоскополяризованного света.
- 5. Объяснить закон Малюса.
- 6. Применение поляризации в современной технике.

Лабораторная работа №16.# Изучение законов внешнего фотоэффекта.

Задание на лабораторную работу: Построить вольт – амперную характеристику вакуумного диода; определить максимальную скорость фотоэлектронов; рассчитать работу выхода для материала катода.

Контрольные вопросы:

- 1. Объяснить схему установки, цели и методику выполнения эксперимента.
- 2. Уравнение Эйнштейна для внешнего фотоэффекта.
- 3. Дайте определение внешнего и внутреннего фотоэффекта.
- 4. Сформулируйте основные законы внешнего фотоэффекта.
- 5. Что такое задерживающее напряжение?
- 6. Что такое ток насыщения?
- 7. Работа выхода.
- 8. Как выполнялось измерение задерживающего напряжения в работе? Какие результаты получены в данной работе?
 - 9. Что такое граничная частота и «красная граница» внешнего фотоэффекта?
- 10. Чем определяется максимальная кинетическая энергия электронов, вылетающих под действием света с поверхности металлов?

Лабораторная работа №17. Исследование теплового излучения.

Задание на лабораторную работу: Вычислить значение энергетической светимости нити лампы накаливания, считая её чёрным телом; рассчитать значений интегральной поглощательной способности.

- 1. Тепловое излучение. Равновесность теплового излучения.
- 2. Основные характеристики теплового излучения: спектральная плотность энергетической светимости, энергетическая светимость тела, спектральная поглощательная способность.
 - 3. Чёрное и серое тело.
- 4. Закон Кирхгофа для теплового излучения. Физический смысл универсальной функции Кирхгофа.
 - 5. Закон Стефана Больцмана и закон смещения Вина.
- 6. Формула Рэлея Джинса для спектральной плотности энергетической светимости чёрного тела. «Ультрафиолетовая катастрофа».
- 7. Формула Вина для спектральной плотности энергетической светимости чёрного тела.
- 8. Квантовая гипотеза Планка. Формула Планка для универсальной функции Кирхгофа.

Лабораторная работа №18.# Изучение атомных спектров при помощи призменного спектрографа.

Задание на лабораторную работу: Зарегистрировать спектры одноатомных газов; рассчитать постоянную Ридберга.

Контрольные вопросы:

- 1. Модель атома Томсона. Опыт Резерфорда. Модель атома Резерфорда. Недостатки модели.
 - 2. Постулаты Бора.
 - 3. Линейчатый спектр атома водорода. Обобщённая формула Бальмера.
- 4. Возможные радиусы стационарных орбит электрона в атоме водорода. (формула радиуса n ой орбиты).
 - 5. Возможные значения скоростей электрона на орбитах.
- 6. Кинетическая и потенциальная энергия электрона на n ой орбите. Полная энергия электрона в атоме водорода. Квантование энергии.
 - 7. Энергия ионизации, энергия связи данного состояния и энергия возбуждения
 - 8. Достоинства и недостатки теории Бора.

Лабораторная работа №19. Исследование оптических свойств прозрачных веществ.

Задание на лабораторную работу: Определить показатель преломления пластинок из различных веществ; рассчитать скорости распространения света в этих веществах.

- 1. Понятие «световой вектор». Определение. Обозначение. Единицы измерения.
- 2. Уравнение плоской волны и его решение.
- 3. Физический смысл показателя преломления. Абсолютный и относительный показатель преломления.
 - 4. Устройство и принцип действия микроскопа.
 - 5. Факторы, влияющие на практическое увеличение микроскопов.
 - 6. Построение изображения в собирающей линзе при различных положения предмета.

Лабораторная работа №20. Изучение сложения электромагнитных колебаний с помощью осциллографа.

Задание на лабораторную работу: Получить фигуры Лиссажу при сложении взаимно перпендикулярных колебаний; определить неизвестную частоту одного из складываемых колебаний.

Контрольные вопросы:

- 1. Понятие «электромагнитные колебания».
- 2. Понятие «гармонические колебания»
- 3. Основные характеристики гармонических колебаний: амплитуда, частота, период, фаза колебаний.
 - 4. Суть метода «фигуры Лиссажу».
- 5. Объяснить причины получения различных фигур Лиссажу при сложении колебаний с одинаковыми частотами.
- 6. Объяснить как использовать фигуры Лиссажу для нахождения неизвестной частоты одного из складываемых колебаний.

Лабораторная работа №21. Определение резонансного потенциала возбуждения атомов газа методом Франка и Герца.

Задание на лабораторную работу: Рассчитать первый потенциал возбуждения исследуемого газа; построить вольтамперную характеристику.

- 1. Планетарная модель атома по Резерфорду. Записать уравнение 2- го закона Ньютона для электрона, вращающегося вокруг ядра, и для полной энергии электрона в атоме водорода.
- 2. В чем заключается несостоятельность моделей атома с точки зрения классической механики и электродинамики?
 - 3. Гипотеза Планка, её экспериментальные предпосылки.
 - 4. Постулаты Бора.

- 5. Экспериментальное подтверждение постулатов Бора опытами Франка и Герца. Дать принципиальную схему установки.
- 6. Почему предложенный Франком и Герцем метод наиболее пригоден для инертных газов и паров металлов?
- 7. Зачем в экспериментальной установке используется задерживающее поле (задерживающий потенциал)?

Лабораторная работа №22. Изучение эффекта Холла в полупроводниках.

Задание на лабораторную работу: Снять зависимость ЭДС Холла от магнитной индукции; определить постоянную Холла и концентрацию носителей заряда.

Контрольные вопросы:

- 1. Движение частиц в магнитном поле.
- 2. Сила Лоренца. Результирующая сила, действующая на заряженную частицу в электромагнитном поле.
 - 3. Заряженная частица в скрещенных электрическом и магнитном полях.
 - 4. Электропроводность материалов.
 - 5. Эффект Холла.
 - 6. Вывод рабочей формулы.

Лабораторная работа №23. Изучение работы электронного осциллографа.

Задание на лабораторную работу: Изучить основные принципы работы электронного осциллографа; определить основные характеристики электрических процессов с помощью осциллографа (амплитуду, длительность)

- 1. Что называется электронно-лучевым осциллографом? Где он применяется?
- 2. Преимущество осциллографа перед вольтметром.
- 3. Основные узлы осциллографа.
- 4. Принципы конструкции и работы электронно-лучевой трубки.
- 5. Способ фокусировки электронного пучка.
- 6. Назначение блока развёртки времени.
- 7. Объяснить появление неподвижной синусоиды на экране осциллографа.
- 8. Объяснить, как измерить напряжение, частоту при помощи осциллографа.
- 9. Назначение блока синхронизации.
- 3.4. Тестовые задания и ключи к ним приведены в Приложении 1.

4 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

4.1 Промежуточная аттестация по дисциплине в форме зачета проходит по результатам прохождения всех видов текущего контроля успеваемости.

В том числе, успешно выполнившие лабораторные работы и получившие положительные оценки по результатам выполнения самостоятельных работ.

Положительная оценка ("зачтено") выставляется, если студент овладел приемами и методами решения задач, отчитался по упражнениям, написав соответствующие контрольные или самостоятельные работы; приобрел требуемые навыки проведения физического эксперимента, выполнив и защитив в соответствии с учебным планом требуемое количество лабораторных работ; ответил на зачетные теоретические вопросы.

Оценка "**незачет**" – студент не овладел приемами и методами решения типовых задач, соответственно не отчитался по упражнениям; не приобрел требуемых навыков проведения физического эксперимента, соответственно не выполнив и не защитив требуемое учебным планом количество лабораторных работ; не ответил на зачетные теоретические вопросы.

Студент, не выполнивший лабораторный практикум семестра, получает оценку "незачет". Студент, выполнивший лабораторный практикум, но имеющий неудовлетворительную оценку по результатам выполнения самостоятельных работ в семестре, выполняет самостоятельные работы и повторно сдает теоретический зачет.

4.1.2 Для студентов заочной формы обучения зачет получают лица, выполнившие контрольную работу и защитившие её, а также выполнившие и защитившие в соответствии с учебным планом требуемое количество лабораторных работ.

Положительная оценка ("зачтено") выставляется, если студент овладел приемами и методами решения задач, отчитался по упражнениям, выполнил и защитил требуемое количество лабораторных работ, ответил на зачетные теоретические вопросы.

Оценка "**незачет**" выставляется, если студент не овладел приемами и методами решения типовых задач, соответственно не отчитался по упражнениям, не выполнивший лабораторный практикум семестра, не ответил на зачетные теоретические вопросы.

Контрольные вопросы по дисциплине, которые при необходимости могут быть использованы для промежуточной аттестации в форме зачета:

Второй семестр (очная и заочная формы обучения).

1. Понятие механической системы, системы отсчета, материальной точки, абсолютно твердого тела, абсолютно упругого тела, абсолютно неупругого тела.

- 2. Виды движения. Основная задача механики. Способы задания положения тела в пространстве. Место классической механики в современной физике. Виды движения.
- 3. Путь, перемещение, траектория, скорость, средняя скорость. Кинематические законы поступательного движения.
- 4. Ускорение, тангенциальное и нормальное ускорения. Направления, способы вычисления.
- 5. Угловое перемещение, угловая скорость, угловое ускорение. Связь угловой скорости с линейной, углового ускорения с тангенциальным. Кинематический закон вращательного движения.
 - 6. Понятие массы тела, силы, импульса. Виды взаимодействий. Законы Ньютона.
 - 7. Закон сохранения импульса.
- 8. Центр масс системы, его свойства. Инертная и гравитационная массы. Принцип эквивалентности.
 - 9. Закон всемирного тяготения. Космические скорости.
 - 10. Виды упругих деформаций. Характеристики деформаций. Закон Гука.
 - 11. Момент инерции материальной точки, момент инерции тела. Теорема Штейнера.
 - 12. Понятие момента силы и момента импульса, их направления и модули.
 - 13. Основное уравнение динамики вращательного движения.
- 14. Закон сохранения момента импульса. Момент импульса твердого тела, вращающегося вокруг неподвижной оси.
- 15. Работа и мощность при поступательном движении. Кинетическая энергия поступательного движения.
- 16. Работа и мощность при вращательном движении. Кинетическая энергия вращательного и плоского движения.
- 17. Консервативные силы, их свойства. Диссипативные силы. Потенциальная энергия во внешнем поле сил.
 - 18. Закон сохранения механической энергии.
- 19. Колебательное движение. Виды колебаний. Гармонические колебания. Определение частоты, периода, амплитуды, фазы колебаний.
- 20. Закон сохранения энергии в идеальных механических колебательных системах (математический и пружинный маятники).
- 21. Математический и физический маятники. Периоды их колебаний. Понятие приведенной длины физического маятника.

- 22. Затухающие колебания. Дифференциальное уравнение и его решение на примере механической системы (без вывода).
- 23. Основные характеристики затухающих механических колебаний: декремент, логарифмический декремент, добротность колебательной системы.
- 24. Вынужденные колебания. Дифференциальное уравнение и его решение для механической системы (без вывода).
- 25. Резонанс. Резонансная частота. Резонансная амплитуда. Резонансные кривые. На примере механической колебательной системы.
- 26. Сложение гармонических колебаний одного направления. Векторная диаграмма, биения.
 - 27. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.
- 28. Понятие о волновых процессах, виды волн. Фронт волны, длина волны, волновой вектор, волновое число. Скорость упругих продольных и поперечных волн в твердых телах и в газе.
 - 29. Волновое уравнение. Уравнение плоской монохроматической волны.
 - 30. Перенос энергии волной. Поток энергии, плотность потока энергии. Вектор Умова.
 - 31. Стоячие волны, уравнение стоячей волны. Перенос энергии в стоячей волне.
- 32. Понятия: молекула, структурная единица, моль, идеальный газ, параметры состояния, процесс, релаксация; принцип построения температурных шкал. Соотношение термодинамических и статистических взглядов.
- 33. Уравнение состояния идеального газа. Частные случаи (V=const, P=const, T=const). Графическое представление. Закон Дальтона.
 - 34. Основное уравнение молекулярно-кинетической теории газов.
 - 35. Распределение Максвелла по скоростям. Графические представления.
 - 36. Средняя арифметическая, среднеквадратичная, наивероятная скорости.
 - 37. Барометрическая формула (ограничения, допущения). Распределение Больцмана.
- 38. Степени свободы молекул. Гипотеза о равнораспределении энергии. Энергия, приходящаяся на колебательную степень свободы (принципиальное отличие от других степеней свободы).
- 39. Работа газа, внутренняя энергия газа. Первое начало термодинамики и его применение к изопроцессам.
- 40. Понятия теплоемкости, удельной теплоемкости, молярной теплоемкости. Единицы измерения. Теплоемкости при P=const, V=const. Уравнение Майера.
 - 41. Адиабатический процесс. Уравнение адиабаты. График адиабаты.

- 42. Физические основы работы тепловых двигателей. Цикл Карно. КПД идеальной тепловой машин и КПД необратимой тепловой машины.
 - 43. Понятие энтропии. Второе и третье начала термодинамики.
 - 44. Понятие об эффективном диаметре и средней длине свободного пробега молекулы
 - 45. Диффузия, закон Фика, коэффициент диффузии.
 - 46. Теплопроводность, закон Фурье, коэффициент теплопроводности.
 - 47. Вязкость, закон Ньютона, коэффициент динамической вязкости.
- 4.2 Промежуточная аттестация по дисциплине проводится также в форме экзамена в третьем семестре обучения.
 - 4.2.1 К экзамену допускаются студенты очной формы обучения:
- положительно аттестованные по результатам прохождения всех видов текущего контроля успеваемости (получившие при этой аттестации оценку "зачет");
- получившие положительную оценку по результатам лабораторного практикума в третьем семестре;
- получившие положительную оценку по результатам выполнения самостоятельных работ в третьем семестре.
 - 4.2.2 К экзамену допускаются студенты заочной формы обучения:
- положительно аттестованные по результатам освоения дисциплины во втором семестре (получившие при этой аттестации оценку "зачет");
- получившие положительную оценку по результатам лабораторного практикума в третьем семестре;
 - выполнившие и защитившие контрольную работу в третьем семестре

Экзаменационный билет содержит два теоретических вопроса и задачу.

- 4.2 3. Экзаменационные оценки выставляются в соответствии со следующими критериями:
- "отлично" студент освоил весь теоретический материал, включая все вопросы для самостоятельного изучения, свободно оперирует физическими понятиями и законами, может привести необходимые обоснования и доказательства; овладел приемами и методами решения задач, отчитался по упражнениям, написав соответствующие контрольные или самостоятельные работы; приобрел требуемые навыки проведения физического эксперимента, выполнив и защитив в соответствии с учебным планом требуемое количество лабораторных работ.
- "хорошо" студент освоил весь теоретический материал, включая некоторые вопросы для самостоятельного изучения, свободно оперирует физическими понятиями и законами, по большинству вопросов может привести необходимые обоснования и доказательства; овладел

основными приемами и методами решения задач, отчитался по упражнениям, написав соответствующие контрольные или самостоятельные работы; приобрел требуемые навыки проведения физического эксперимента, выполнив и защитив в соответствии с учебным планом требуемое количество лабораторных работ.

- "удовлетворительно" студент освоил весь теоретический материал на уровне определений и формулировок, но не в состоянии привести необходимые обоснования и доказательства, не освоил вопросы для самостоятельного изучения; овладел основными приемами и методами решения типовых задач, отчитался по упражнениям, написав соответствующие контрольные или самостоятельные работы; приобрел требуемые навыки проведения физического эксперимента, выполнив и защитив в соответствии с учебным планом требуемое количество лабораторных работ.
- "неудовлетворительно" студент не освоил хотя бы один из разделов физики, изучаемых в текущем семестре, не в состоянии привести корректные определения и формулировки физических законов и явлений, не освоил вопросы для самостоятельного изучения; не овладел приемами и методами решения типовых задач, соответственно не отчитался по упражнениям; не приобрел требуемых навыков проведения физического эксперимента, соответственно не выполнив и не защитив требуемое учебным планом количество лабораторных работ.

Вопросы для промежуточной аттестации (экзамен) по дисциплине:

- 1. Электрический заряд. Закон сохранения заряда. Закон Кулона.
- 2. Напряженность и потенциал электростатического поля. Принцип суперпозиции для напряженностей потенциалов электростатических полей. Работа по перемещению заряда в электростатическом поле.
- 3. Эквипотенциальные поверхности. Связь вектора напряженности электрического поля с потенциалом.
 - 4. Поток вектора напряженности электрического поля. Теорема Гаусса.
- 5. Электрический диполь. Дипольный момент. Диполь во внешнем однородном электрическом поле.
- 8. Диэлектрики в электрическом поле. Виды поляризации диэлектриков. Электрическое поле в диэлектрике. Поляризованность диэлектрика.

Диэлектрическая проницаемость среды.

- 9. Проводники в электрическом поле. Электрическое поле в проводниках. Электрическая емкость проводников.
- 10. Конденсаторы. Соединение конденсаторов. Энергия, запасенная конденсатором. Объемная плотность энергии электрического поля.

- 11. Электрический ток. Характеристики электрического тока (направление, плотность, подвижность). Электродвижущая сила, напряжение.
- 12. Закон Ома для однородного участка цепи. Электрическое сопротивление, проводимость. Соединение проводников.
- 13. Закон Ома для неоднородного участка цепи. Закон Ома для замкнутой цепи. Закон Ома в дифференциальной форме.
 - 14. Разветвленные цепи, правила Кирхгофа.
 - 15. Работа и мощность тока. Закон Джоуля-Ленца.
- 16. Магнитное поле и источники. Вектор индукции магнитного поля. Принцип суперпозиций магнитных полей.
 - 17. Закон Био-Савара-Лапласа и его применение для расчета магнитных полей.
- 18. Магнитный поток. Теорема Гаусса для магнитного поля. Циркуляция вектора магнитной индукции. (Закон полного тока).
 - 19. Сила Ампера. Работа по перемещению проводника с током в магнитном поле.
- 20. Вращающий момент, действующий на контура с током в магнитном поле. Потенциальная энергия контура с током в магнитном поле.
 - 21. Движение заряженных частиц в магнитном поле. Сила Лоренца.
 - 22. Эффект Холла.
- 23. Намагничивание магнетиков. Гипотеза Ампера. Классификация магнетиков, их свойства и основные характеристики. (Диамагнетики, парамагнетики, ферромагнетики, гистерезис).
- 24. Теорема о циркуляции для магнитного поля в веществе. (Закон полного тока). Понятие напряженности магнитного поля.
 - 25. Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
 - 26. Явление самоиндукции и взаимоиндукции. Понятие об индуктивности.
 - 27. Энергия магнитного поля, объемная плотность энергии магнитного поля.
- 28. Изменение силы тока в цепи при подключении и отключении источника (экстратоки замыкания и размыкания цепи).
- 29. Полная система уравнений Максвелла в интегральной форме. Ток смещения.
- 30. Гармонические электромагнитные колебания в идеальном колебательном контуре. Формула Томсона.
- 31. Затухающие колебания в колебательном контуре. Дифференциальное уравнение и его решение (без вывода).

- 32. Основные характеристики затухающих электромагнитных колебаний: декремент, блогарифмический декремент, коэффициент затухания, частота, период, волновое сопротивление).
- 33. Вынужденные колебания в колебательном контуре. Дифференциальное уравнение и его решение (без вывода).
- 34. Резонанс напряжения и тока. Резонансная частота. Резонансные амплитуды. Резонансные кривые.
- 35. Эффективное (действующее) значение тока и напряжения. Закон Джоуля-Ленца для переменного тока.
- 36. Понятие об электромагнитных волнах. Их основные характеристики: амплитуда, длина волны, период, волновое число, волновой вектор, интенсивность волны.
- 37. Волновое уравнение. Уравнение плоской монохроматической электромагнитной волны.
- 38. Энергия и импульс электромагнитных волн. Перенос энергии волной. Поток энергии, плотность потока энергии. Вектор Пойнтинга.
- 39. Световые волны, шкала электромагнитных волн. Оптический показатель преломления и его связь с характеристиками среды.
- 40. Когерентные волны. Условие когерентности. Время когерентности. Оптическая и геометрическая разности хода.
- 41. Интерференция. Условия максимумов и минимумов интерференции (для оптической разности хода и для разности фаз). Опыт Юнга. Ширина интерференционных максимумов.
 - 42. Интерференция в тонких пленках. Просветление оптики.
- 43. Понятие о дифракции световых волн. Принцип Гюйгенса-Френеля. Метод зон Френеля.
 - 44. Дифракция Фраунгофера на щели (условия минимумов и максимумов). Дифракционная решетка, ее принцип работы, условие главных максимумов.
 - 45. Дифракция рентгеновских лучей. Формула Вульфа-Брэгга.
- 46. Понятие поляризации света, виды поляризации. Степень поляризации. Закон Малюса.
 - 47. Поляризация света при преломлении и отражении. Угол Брюстера.
- 48. Оптически активные вещества. Угол поворота плоскости поляризации в твердых телах и в растворах.
 - 49. Поглощение света. Закон Бугера.

- 50. Спектральные характеристики приборов: угловая и линейная дисперсии, разрешающая способность. Угловая дисперсия и разрешающая способность дифракционной решетки.
- 51. Тепловое излучение, его свойства. Абсолютно черное тело. Испускательная и поглощательная способности. Закон Кирхгофа, закон Стефана-Больцмана.
- 52. Формулы Вина и Рэлея-Джинса (основные идеи), УФ катастрофа. Закон смещения Вина.
 - 53. Энергия и импульс световых квантов. Гипотеза Планка. Формула Планка.
 - 54. Фотоэффект, законы Столетова.
 - 55. Эффект Комптона.
- 56. Закономерности атомных спектров, спектральные серии, обобщенная формула Бальмера.
 - 57. Постулаты Бора, правило квантования круговых орбит.
- 58. Принцип неопределенности Гейзенберга, оценка размеров и энергии атома водорода на его основе.
- 59. Уравнение Шредингера (временн*о*е и для стационарных состояний), нормировка и смысл ψ функции.
 - 60. Квантование энергии (на примере одномерной потенциальной ямы).
- 61. Отражение и преломление частиц на низком потенциальном барьере, особенности процесса.
- 62. Отражение и преломление частиц на высоком потенциальном барьере, туннельный эффект.
- 63. Положение электрона на орбите в атоме водорода по классической и квантовой теории.
- 64. Орбитальное гиромагнитное отношение. Пространственное квантование момента импульса электрона.
- 65. Спин электрона. Спиновое гиромагнитное отношение, его отличие от орбитального. Магнетон Бора.
 - 66. Заполнение электронных слоев и оболочек. Принцип Паули.
 - 67. Кратность вырождения. Правило отбора.

Типовые задачи к экзаменационным билетам:

№1. В вершинах треугольника со сторонами по $l = 2 \cdot 10^{-2}$ м находятся равные заряды по $q = 2 \cdot 10^{-9}$ Кл. Найти равнодействующую сил, действующих на четвертый заряд $Q = 10^{-9}$ Кл, помещенный на середине одной из сторон треугольника.

- **№2.** Заряженный шарик подвешен на диэлектрической нити во внешнем электрическом поле, силовые линии которого горизонтальны. При этом нить образует с вертикалью угол $\alpha = 45^{\circ}$. На сколько изменится угол отклонения нити при уменьшении заряд шарика на 18%?
- **№3.** Определить потенциал φ точки поля, находящейся на расстоянии $l=5\cdot 10^{-2}$ м от центра заряженного шара, если напряженность поля в этой точке $E=3\cdot 10^5$ В/м. Определить заряд шара.
- **№4.** Расстояние между пластинами слюдяного конденсатора d=2,2 мм, а площадь каждой пластины $s=6\cdot 10^{-4}$ м². Пластины притягиваются с силой F=0,4 мН. Определить разность потенциалов $\Delta \varphi$ между пластинами и электрическую емкость C конденсатора.
- №5. Напряжение на шинах электростанции U = 10 кВ. Расстояние до потребителя l = 500 км (линия двухпроводная). Станция должна передать потребителю мощность N = 100 кВт. Потери напряжения на проводах не должны превышать 4%. Вычислить массу m медных проходов на участке электростанция потребитель.
- **№6.** В однородном горизонтальном магнитном поле находится в равновесии горизонтальный прямолинейный алюминиевый проводник с током силой I = 10 А, расположенный перпендикулярно полю. Определить индукцию поля, считая радиус проводника равным r = 2 мм.
- №7. Два электрона движутся в одном направлении вдоль одной прямой с одинаковой по модулю скоростью $v = 10^4$ м/с. Найти напряженность магнитного поля H зарядов при расстоянии между ними $d = 4 \cdot 10^{-8}$ см. Точка, для которой определяется напряженность магнитного поля, лежит на серединном к траектории перпендикуляре на расстоянии

$$l = 3.10^{-8}$$
 cm.

Типовые экзаменационные билеты по дисциплине:

Билет 1.

- 1. Электрический заряд. Закон сохранения заряда. Закон Кулона
- 2. Интерференция в тонких пленках. Просветление оптики.
- 3. Задача.

<u>Билет 2</u>.

- 1. Закон Ома для однородного участка цепи. Электрическое сопротивление, проводимость. Соединение проводников.1.
- 2. Понятие о дифракции световых волн. Принцип Гюйгенса—Френеля. Метод зон Френеля.
- 3. Задача.

<u>Билет 3</u>.

- 1. Магнитное поле и источники. Вектор индукции магнитного поля. Принцип суперпозиций магнитных полей.
- 2. Эффект Комптона.
- 3. Задача.

Билет 4.

- 1. Явление электромагнитной индукции. Закон Фарадея. Правило Ленца.
- 2. Уравнение Шредингера (временн*о*е и для стационарных состояний), нормировка и смысл ψ функции.
- 3. Задача.

5 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Физика» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 15.03.04 Автоматизация технологических процессов и производств.

Фонд оценочных средств рассмотрен и одобрен на заседании кафедры физики (протокол № 1 от 31.08.2022 г.).

Заведующий кафедрой

Н.Я. Синявский

Фонд оценочных средств рассмотрен и одобрен на заседании кафедры автоматизации производственных процессов 08.04.2022 г. (протокол № 8).

Заведующий кафедрой

А.Н. Румянцев

Приложение № 1

ТЕСТОВЫЕ ЗАДАНИЯ ПО ДИСЦИПЛИНЕ

ОПК-1: Применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования в профессиональной деятельности Индикатор достижения компетенции ОПК-1.7: Использует основные законы физики в профессиональной деятельности

Вариант 1

3. производная от радиус-вектора точки по
времени
4. вектор, равный отношению вектора пере-
мещения к промежутку времени

Вопрос 2	
Второй закон Ньютона можно сформулировать следующим образом:	
1. Скорость изменения импульса тела равна	3. Всякое тело находится в состоянии покоя
действующей на него силе	или равномерного прямолинейного движе-
	ния, пока взаимодействие с другими телами
	не заставит его изменить это состояние
2. Во всех инерциальных системах отсчёта	4. Силы, с которыми действуют друг на
все механические явления протекают одина-	друга взаимодействующие тела, равны по ве-
ково при одинаковых начальных условиях	личине и противоположны по направлению

Bonpoc 3	
Момент инерции тонкостенного цилиндра радиуса R и массы m относительно оси, прохо-	
дящей вдоль его оси симметрии, определяется следующим выражением:	
1. 2MR ²	$3. \mathrm{MR}^2$
2. 5/2MR ²	4. 2/5MR ²

Bonpoc 4	
При резонансе	
1. амплитуда вынужденных колебаний до-	3. начальная фаза колебаний равна нулю
стигает максимума	
2. фаза вынужденных колебаний достигает	4. внешнее воздействие оказывается в фазе с
максимума	колебаниями системы

Bonpoc 5	
Закон Бойля-Мариотта (уравнение изотермы)	описывается следующим выражением:
1. $V=V_0[1+\beta(t-t_0)]$	3. PV=const
2. $P=P_0[1+\alpha(t-t_0)]$	4. PV ^γ =const

Bonpoc 6	
Формула Майера выглядит следующим образом:	
$1. c_p = c_v + R$	3. PV^{γ} =const
2. $c_p/c_v=\gamma$	4. S=k ln W

Bonpoc 7	
Формулировка Клаузиуса второго начала термодинамики заключается в следующем:	
1. Теплота не может самопроизвольно пере-	3. Любая термодинамическая изолированная
ходить от тела более нагретого к менее	система со временем приходит в состояние
нагретому	равновесия, характеризуемое некоторой тем-
	пературой
2. Количество тепла, сообщённое системе,	4. Теплота не может самопроизвольно пере-
идёт на приращение внутренней энергии си-	ходить от тела менее нагретого к более
стемы и совершение системой работы над	нагретому
внешними телами	

Bonpoc 8	
Теплопроводность – это	
1. обусловленное тепловым движением мо-	3. процесс обмена импульсами молекул
лекул проникновение одних веществ в	между слоями вещества
объём, занятый другими веществами	
2. процесс переноса тепловой энергии, обу-	4. процесс нагревания или охлаждения тер-
словленный хаотическим движением моле-	модинамической системы
кул	

Bonpoc 9	
Два параллельно соединенных конденсатора различных емкостей $C_2 > C_1$ заряжаются. Как	
распределяются на них заряды?	
$1. q_1 = q_2$	$3. q_1 < q_2$
$2. q_1 > q_2$	4. $q_1 = q_2 = 0$

Bonpoc 10	
Два металлических шара разных диаметров ($d_1 = 2 d_2$) заряжены до одинакового потенци-	
ала. Заряды на них отвечают одному из соотношений:	
$1. q_1 = q_2$	$3.4q_1 = q_2$
$2. q_1 = 2 q_2$	$4. q_1 = q_2/2$

Вопрос 11	
Верный ответ: свет – это	
1. поток электронов	3. продольная электромагнитная волна
2. движение частиц среды	4. поперечная электромагнитная волна

Bonpoc 12		
Скорость распространения электромагнитной волны при переходе её из среды с показате-		
лем преломления n= 1,5 в вакуум изменится в раз		
1. 2	3. 2,5	
2. 3	4. 1,5	

Bonpoc 13	
У парамагнетиков намагниченность:	
1. совпадает по направлению с напряженно-	3. направлена под углом к напряженности
стью внешнего магнитного поля	внешнего магнитного поля
2. направлена в сторону, противоположную	4. перпендикулярна к напряженности внеш-
напряженности внешнего магнитного поля	него магнитного поля

Bonpoc 14		
Чтобы вода закипела скорее, надо соединить обмотки двух нагревателей, опущенных в		
стакан с водой,		
1. параллельно	3. последовательно	
2. включить одну обмотку	4. безразлично	

Bonpoc 15		
Скорость распространения электромагнитных колебаний в стекле, если ϵ = 7, μ = 1, есть		
1. 0,43 · 10 ⁸ m / c	$3. \ 1,13 \cdot 10^{\ 8} \ \text{m} \ / \ \text{c}$	
2. 1,31 · 10 ⁸ m / c	4. 3 · 10 ⁸ м / с	

Bonpoc 16	
Угловое ускорение – это	
1. вторая производная от радиус-вектора по	3. отношение момента сил, действующих на
времени	тело, к его моменту инерции
2. производная от угловой скорости по вре-	4. производная радиус-вектора по времени
мени	

Bonpoc 17		
Момент силы относительно точки определяется выражением		
1. M = [R, F]	$3. M=V^2/R$	
2. $M = J \varepsilon$	4. M =ε R	

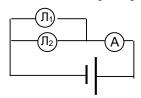
Bonpoc 18		
Кинетическая энергия вращающегося тела в классической механике определяется следую-		
щим соотношением:		
1. $T=J\omega^2/2$	3. T=mgh	
2. $T=mV^2/2$	$4. T=mV^2/R$	

Bonpoc 19		
Уравнение Бернулли описывается следующей формулой:		
$1. \rho V^2/2 + \rho g h + P = const$	3. ρgV=const	
2. mV/2+ mgh + P = const	4. SV+ρgh+P=const	

Bonpoc 20		
Уравнение Клапейрона-Менделеева выглядит следующим образом:		
1. P+V=μRT	3. P+V=R/T	
2. PV=vRT	4. P/V=μRT	

Bonpoc 21		
Уравнение, выражающее первое начало термодинамики выглядит следующим образом:		
1. Q=ΔU+A	3. dQ=TdS	
2. $\eta = 1 - T_2/T_1$	4. S=klnΩ	

Bonpoc 22		
Выражение для КПД цикла Карно выглядит следующим образом:		
1. $\eta=1-T_{max}/T_{min}$	3. η=Tmin/Tmax-1	
2. $\eta = T_{min}/T_{max}$	4. $\eta=1-T_{\min}/T_{\max}$	

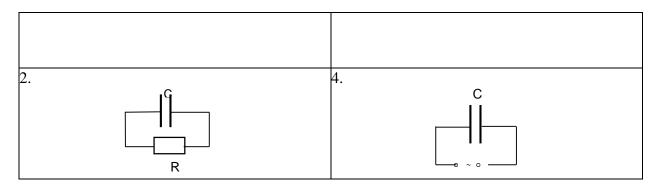

Если диаметр провода и его длину уменьшить в 2 раза, то сопротивление провода изменится следующим образом:

, , , , , , , , , , , , , , , , , , , ,	
1. увеличится в 2 раза	3. уменьшится в 4 раза
2. возрастет в 4 раза	4. уменьшится в 4 раза

Вопрос 24 Магнитное поле создаётся: 1. взаимодействующими электрическими зарядами 2. неподвижными электрическими зарядами 4. движущимся потоком заряженных частиц

Bonpoc 25

Показание амперметра при перегорании лампочки Π_2 изменится следующим образом:


1. уменьшится	3. не изменится
2. увеличится	4. амперметр покажет 0

Bonpoc 26		
В шкале электромагнитных волн видимое излучение находится между:		
1. ультрафиолетовым и рентгеновским	3. рентгеновским и гамма- излучениями	
излучениями		
2. радиоволнами и инфракрасным	4. инфракрасным и ультрафиолетовым	
излучением	излучениями	

Bonpoc 27		
Если естественный свет падает на границу раздела под углом Брюстера, то отраженный		
луч:		
1. частично поляризован	3. разделяется на два	
2. плоско поляризован	4. циркулярно поляризован	

Вопрос 28 Если напряженность поля \vec{E} увеличить в 6 раз, то плотность тока в проводнике изменится следующим образом: 1. возрастет в 36 раз 3. уменьшится в 36 раз 2. уменьшится в 6 раз 4. увеличится в 6 раз

Вопрос 29 Электрическая цепь, в которой можно возбудить свободные электромагнитные колебания $q = q_0 \cos(\omega_0 t + \alpha)$:

Bonpoc 30 Вектор плотности потока электромагнитной энергии определяется следующим выражением: 1. S = [E B] 3. S = [D B] 2. S = [E H] 4. S = [DH]

Вариант 2

Bonpoc 1	
При поступательном движении	
1. тело движется по прямой	3. все точки тела движутся по прямым линиям, параллельным друг другу
2. любая прямая, связанная с телом перемещается параллельно самой себе	4. тело движется равномерно

Bonpoc 2		
По отношению к траектории движения вектор ускорения раскладывают на компо-		
ненты.		
1. вертикальную и горизонтальную	3. перпендикулярную и параллельную	
2. нормальную и тангенциальную	4. путевую и перемещательную	

Bonpoc 3		
Аналогом массы в уравнении динамики вращательного движения является		
1. момент инерции	3. угловой момент	
2. момент вращения	4. момент движения	

Bonpoc 4	
Закон Архимеда описывается следующей формулой.	
1. F _A =mgh	3. $F_A = \rho g V$
2. F _A =F/S	4. F _A =ρgh

Bonpoc 5

Колебания точки описываются выражением: x=2sin(5t+2). Начальная фаза колебаний

равна	
1. 2 рад	3. 7 рад
2. 5 рад	4. 0 рад

Bonpoc 6		
Изотермы идеального газа в координатах P-V представляют собой		
1. параболы	3. гиперболы	
2. прямые	4. адиабаты	

Bonpoc 7	
Идеальный газ	
1. состоит из молекул, которые представляются материальными точками	3. подчиняется уравнению Клапейрона- Менделеева
2. состоит из молекул, взаимодействующих друг с другом	4. подчиняется уравнению Ван-дер-Ваальса

Bonpoc 8	
Показатель адиабаты равен отношению	
1. теплоёмкости газа при постоянном давлении к теплоёмкости при постоянном объёме	1
1	4. количества подведённого к системе тепла к изменению энергии системы в адиабатическом процессе

Bonpoc 9	
Зная угол Брюстера, можно определить:	
1. работу выхода	3. показатель преломления
2. степень поляризации	4. угол дифракции

Bonpoc 10		
При переходе светового луча из воздуха в некоторое вещество скорость света изменяется		
на 20 %. Показатель преломления этого вещества равен:		
1. 1,25	3. 2	
2. 1,5	4. 2,5	

Bonpoc 11	
Если увеличить расстояние между пластинами в 2 раза, напряженность поля плоского конденсатора изменится следующим образом:	
1. увеличится в 2 раза	3. не изменится
2. увеличится в 4 раза	4. уменьшится в 2 раза

Bonpoc 12	
Величина электродвижущей силы индукции зависит от:	
1. способа изменения магнитного потока	3. величины индукционного тока
2. скорости изменения магнитного потока	4. направления магнитного потока

Bonpoc 13	
Из перечисленных ниже электромагнитных излучений меньшую частоту имеет:	
1. видимое	3. рентгеновское
2. инфракрасное	4. γ — излучение

Bonpoc 14	
Собственная циклическая частота электромагнитных колебаний в простейшем колеба-	
тельном контуре зависит от:	
1. начальной фазы колебаний	3. величины емкости и сопротивления
2. величины емкости и индуктивности	4. амплитуды колебаний

Bonpoc 15	
В законе Малюса: $I = I_0 \cos^2 \varphi$, I_0 есть инт	генсивность:
1. естественного света	3. частично поляризованного света
2. плоско поляризованного света	4. эллиптически поляризованного света

Bonpoc 16	
Идеальная жидкость – это жидкость	
1. с нулевой плотностью	3. в которой отсутствует внутреннее трение
2. для которой выполняются законы Паскаля	4. для которой выполняется закон Бернулли
и Архимеда	

Bonpoc 17	
Теорема Штейнера описывается следующей формулой.	
$1. J=J_c+m a^2$	$3. M = d (J\omega)/dt$
2. $M = [R, F]$	$4. M = R\varepsilon$

Bonpoc 18	
Инерциальной называется система отсчёта	
1. в которой выполняется первый закон Нью-	3. в которой выполняется второй закон Нью-
тона	тона
2. в которой все механические явления про-	4. которая движется с ускорением
текают одинаково при одинаковых началь-	
ных условиях	

Вопрос 19 Равномерное вращательное движение материальной точки полностью характе-	
ризуется вращения.	
1. угловой скоростью и периодом	3. угловой скоростью и частотой
2. частотой и периодом	4. радиусом и частотой

Bonpoc 20		
Первое начало термодинамики можно сформулировать следующим образом.		
тепла от тела с более низкой температурой к	3. Невозможен самопроизвольный переход тепла от тела с более высокой температурой к телу с более низкой температурой	
идёт на приращение внутренней энергии си-	4. Невозможен круговой процесс, единственным результатом которого было бы совершение работы за счёт охлаждения теплового резервуара	

Bonpoc 21		
Теплоёмкость в изотермическом процессе равна		
1. ±∞	3. vR	
2.0	4. νRT	

Bonpoc 22		
Коэффициент полезного действия тепловой машины, работающей по циклу Карно		
1. всегда больше, чем КПД любого другого	3. зависит от свойств рабочего тела и разно-	
цикла с теми же температурами нагревателя	сти температур нагревателя и холодильника	
и холодильника		
2. зависит только от свойств рабочего тела и	4. не зависит от свойств рабочего тела и тем-	
не зависит от температур нагревателя и хо-	ператур нагревателя и холодильника	
лодильника		

Bonpoc 23	
Внутреннее трение можно определить, как	
1. процесс изменения скоростей движения молекул	3. свойство реальной жидкости оказывать сопротивление перемещению её слоёв друг относительно друга
2. обусловленное тепловым движением мо- лекул проникновение одних веществ в объём, занятый другими веществами	4. процесс установления равновесного состояния системы

Bonpoc 24		
Расстояния от соседних зон Френеля до заданной точки наблюдения дифракции отлича-		
ются друг от друга на: (λ - длина волны).		
1. \(\lambda/4\)	$3. \ 3\lambda/4$	
2. λ/2	4. λ	

Bonpoc 25	
Закон, которому соответствует формула $Q = U^2 t / R$:	
1. Кулона	3. Видемана – Франца
2. Ома в интегральной форме	4. Джоуля – Ленца

Bonpoc 26	
Верная картина силовых линий магнитного п	оля прямого тока (+):
1.	3.
2.	4.

Bonpoc 27	
Закон полного тока для токов проводимости:	
щимся в магнитном поле, действует сила	3. циркуляция вектора напряженности магнитного поля вдоль замкнутого контура равна сумме токов, охватываемых данным контуром
	4. магнитное поле тока, протекающего по бесконечно длинному соленоиду, сосредоточено внутри соленоида

Bonpoc 28		
Сила тока, протекающего в катушке, изменяется по закону $I=0,1t^2$. Если при этом на		
концах катушки в момент времени 5с наводится ЭДС самоиндукции величиной ε _s =2,0·10 ⁻¹		
² В, то индуктивность катушки равна:		
1. 0,01 Гн	3. 0,02 Гн	
2. 0,03 Гн	4. 0,04 Гн	

Bonpoc 29		
Кусок неизолированной проволоки имеет сопротивление R=2 Ом. Если ее разрезать по-		
средине и свить полученные половины по всей длине, то чему будет равно сопротивление		
этой же проволоки:		
1. 0,5 Ом	3. 0,25 Ом	
2. 2 Ом	4. 4 Ом	

По прямолинейному проводнику течет ток I, как показано на рисунке. Направление вектора магнитной индукции в точке A:

1. к нам	3. влево

2. от нас 4. вправо

Вариант 3

Bonpoc 1	
Плотность вещества - это	
1. масса единичного объёма вещества	3. произведение массы тела на его объём
1 1	4. его способность сохранять форму в условиях внешних воздействий

Bonpoc 2		
Тело массой 1 кг, двигаясь под действием силы тяжести в течении 2 секунд получает им-		
пульс		
1. 2 H·c	3. 20 H·c	
2. 1 H·c	4. 5 H·c	

Bonpoc 3	
1. Момент инерции однородного диска радиуса R и массы m относительно его оси вра-	
щения определяется следующим выражением.	
1. 1/2MR ²	3. MR
2. 2MR ²	4. MR ²

Bonpoc 4	
Условие неразрывности жидкости описывается следующей формулой.	
1. $S_1v_1 = S_2v_2$	3. $\rho_1 gh = \rho_2 gh$
2. $P_1v_1 = P_2v_2$	4. $\rho_1 g V_1 = \rho_2 g V_2$

Bonpoc 5	
Физический маятник – это	
1. материальная точка, подвешенная на невесомой нерастяжимой нити	3. груз, закреплённый на пружине
*	4. физическое тело, совершающее колебания под действием силы тяжести

Bonpoc 6	
Момент импульса материальной точки определяется как	
1. векторное произведение её радиус-вектора и импульса	3. производная от импульса по времени
	4. сумма произведений координат материальной точки на соответствующие им проекции импульса

Bonpoc 7		
Колебания точки описываются выражением: x=3sin(πt+5). Период колебаний равен		
1. 5 Гц	3. 7 Гц	
2. 3 Гц	4. 2 Гц	

Bonpoc 8		
Электрическим моментом диполя называется векторная величина, определяемая выраже-		
нием:		
$1. \vec{P} = m\vec{\upsilon}$	$3. \vec{P} = q \vec{\ell}$	
$\vec{P} = \vec{D} - \varepsilon_0 \vec{E}$	$\vec{P} = \alpha \varepsilon_0 \vec{E}$	

Bonpoc 9	
Формула, определяющая энергию заряженного проводника, в которой допущена ошибка –	
это	
1. $W = c\phi^2/2$	3. W = $q^2/2c$
2. $W = q\phi^2/2$	$4. W = q\phi/2$

Вопрос 10 Магнитный поток $\Phi = 40$ мВб пронизывает замкнутый контур. Среднее значение ЭДС индукции, возникающей в контуре, если магнитный поток изменился до нуля за время, равное $2 \cdot 10^{-3}$ с, определяется как... 1.2 B $3.80 \cdot 10^{-6} \text{ B}$ 4.20 B

Вопрос 11 Решение дифференциального уравнения, описывающего затухающие колебания в колебательном контуре: $\frac{d^2q}{dt^2} + 2\beta \frac{dq}{dt} + \omega_o^2 q = 0$ имеет вид: $1. \ q = q_0 \cos{(\omega_0 t + \alpha)}$ $3. \ q = q_0 \cos{(\omega_0 t + \alpha)}$ $4. \ q = q_0 \ e^{-\beta t} \cos{(\omega_0 t + \alpha)}$

Bonpoc 12	
Заряженная частица влетает в однородное магнитное поле под углом $\alpha = \pi/3$ к линиям	
магнитной индукции. Траектория, по которой будет двигаться частица:	
1. её направление движения не изменится	3. по прямой вдоль линий индукции
2 по винтовой пинии	4 по окружности

Bonpoc 13	
Оптическая разность хода двух интерферирующих волн монохроматического света равна	
0,3 λ. Разность фаз Δφ равна	
1. 0,3 π	3. 0,5 π
2. 0,4 π	4. 0,6 π

Bonpoc 14		
Красная граница фотоэффекта зависит от следующих факторов:		
1. химической природы вещества	3. частоты падающего на катод света	
2. интенсивности падающего на катод света	4. максимальной скорости фотоэлектронов	

Bonpoc 15	
Линии только ультрафиолетовой области спектра находятся в одной из указанных спек-	
тральных серий: Лаймана, Бальмера, Пашена или Брэкета. Ответ:	
1. Лаймана	3. Пашена
2. Бальмера	4. Брэкета

Bonpoc 16	
Импульс тела – это	
1. произведение массы тела на его скорость	3. отношение силы, действующей на тело к его массе
2. произведение массы тела на квадрат его скорости, делённый на два	4. кинетическая энергия движения тела

Bonpoc 17	
Относительно сохранения механической энергии справедливо следующее утверждение:	
механическая энергия	
1. замкнутой системы остаётся постоянной	3. тела остаётся постоянной при взаимодей-
	ствиях
2. замкнутой консервативной системы оста-	4. тела не изменяется под действием консер-
ётся постоянной	вативных сил

Центр масс двух грузов массами 2 и 6 кг, расположенных на расстоянии 3 м друг от друга, находится на расстоянии ... от груза большей массы. Размерами грузов можно пренебречь в сравнении с расстоянием между ними.

1. 0,75 м	3. 1,0 м
2. 1,5 м	4. 2,0 м

Bonpoc 19	
Давление в неподвижной несжимаемой жидкости	
1. не зависит от расстояния до её поверхно-	3. зависит от расстояния до её поверхности и
сти	не зависит от рода жидкости
2. не зависит от рода жидкости	4. определяется по формуле: P=P ₀ +ρgh

Bonpoc 20	
Стационарным называют течение	
1. параметры которого не зависят от коорди-	3. которое не изменяется со временем
наты	
2. для которого выполняются законы Пас-	4. для которого число Рейнольдса не превы-
каля и Архимеда	шает 1000

Bonpoc 21	
Колебательный процесс характеризуется	
1. временем	3. частотой
2. координатой	4. скоростью

Bonpoc 22		
Формула емкости шара, находящегося в вакууме:		
1. εε ₀ S/ d	3. 4πεε ₀ R	
2. ε _o S/ d	4. 4πε _ο R	

Bonpoc 23	
Математическая запись теоремы Гаусса для магнитного поля:	
$ \phi_{\rm m} = \oint_{\rm s} B_{\rm n} dS $	$ \oint_{\mathbf{S}} \overrightarrow{\mathbf{B}} d\overrightarrow{\mathbf{S}} = \mu_0 \mathbf{I} $ 3. s
$ \oint_{m} = \oint_{s} B dS \cos \alpha $ 2.	$\oint_{\mathbf{S}} \overrightarrow{\mathbf{B}} d\overrightarrow{\mathbf{S}} = 0$

Bonpoc 24	
Если диаметр и длину провода уменьшить в	2 раза, его сопротивление
1. увеличится в 2 раза	3. уменьшится в 4 раза
2. возрастет в 4 раза	4. уменьшится в 2 раза

Элементы замкнутой электрической цепи, необходимые для возбуждения в ней свобод-	
ных электромагнитных колебаний:	
1. конденсатор и сопротивление	3. источник ЭДС и катушка индуктивности
2. конденсатор и катушка индуктивности	4. источник ЭДС и конденсатор

Направление линий индукции магнитного поля в центре кругового тока I, текущего против часовой стрелки:

1. по радиальной прямой от центра	3. по радиальной прямой к центру
2. по оси к нам	4. по оси от нас

Bonpoc 27

Амплитуда результирующего колебания, полученного при сложении колебаний от двух когерентных источников, минимальна, если разность фаз $^{\Delta\phi}$ равна:

1. $\Delta \varphi = 0$	3. $\Delta \varphi = 2\kappa \pi$
$\Delta \varphi = \frac{\pi}{2}$	4. $\Delta \varphi = \pi$

Bonpoc 28

Формула, определяющая потенциальный характер электростатического поля:

F J		
1. $\oint_{\ell} E_{\ell} d\ell = \varepsilon$	$3. \oint_{\ell} E_{\ell} d\ell = 0$	
2. $\oint_{S} E_n dS = \sum q_i / \epsilon_0$	$4. \oint_{S} D_{n} dS = \sum q_{i}$	

Bonpoc 29	
Единица измерения коэрцитивной силы для ферромагнетиков:	
1. Ампер –А	3 Ампер на метр - А/м
2. Ньютон – Н	4 Ньютон на метр - Н/м

Bonpoc 30

Уравнение Эйнштейна для фотоэффекта:

$hv = A - \frac{mv_{\text{Marke}}^2}{2}$	$h v = A + \frac{m v_{cpe\partial H}^2}{2}$
$2. hv = A + eU_{3a\partial}$	$4. hv = A - eU_{3a\partial}$