

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Начальник УРОПСП

Фонд оценочных средств (приложение к рабочей программе модуля) «ТЕОРИЯ ВЕРОЯТНОСТЕЙ И МАТЕМАТИЧЕСКАЯ СТАТИСТИКА»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

08.03.01 СТРОИТЕЛЬСТВО

Профиль программы

«ПРОМЫШЛЕННОЕ И ГРАЖДАНСКОЕ СТРОИТЕЛЬСТВО»

ИНСТИТУТ морских технологий, энергетики и строительства

РАЗРАБОТЧИК кафедра прикладной математики и информационных технологий

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными индикаторами достижения компетенций

Код и наименование компетенции	Индикаторы достижения компетенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями/индикаторами достижения компетенции
ОПК-1: Способен решать задачи профессиональной деятельности на основе использования теоретических и практических основ естественных и технических наук, а также математического аппарата	ОПК-1.4: Решение уравнений, описывающих основные физические процессы, с применением методов математического анализа и инженерных задач с помощью математического аппарата векторной алгебры, аналитической геометрии. Обработка расчетных и экспериментальных данных вероятностностатистическими методами	Математика (раздел «Теория вероятностей и математическая статистика»)	Знать: методы обработки расчетных и экспериментальных данных вероятностно-статистическим аппаратом. Уметь: обрабатывать расчетные и экспериментальные данные вероятностностатистическими методами. Владеть: навыками решения задач профессиональной деятельности на основе расчетных и экспериментальных данных.

2 ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПОЭТАПНОГО ФОРМИРОВАНИЯ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ (ТЕКУЩИЙ КОНТРОЛЬ) И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 2.1 Для оценки результатов освоения дисциплины используются:
- оценочные средства текущего контроля успеваемости;
- оценочные средства для промежуточной аттестации по дисциплине.
- 2.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания;
- задания по темам практических занятий;

- индивидуальные практические задания для самостоятельной внеаудиторной работы по дисциплине.
- 2.3 Оценочные средства для промежуточной аттестации включают в себя:
- задания по контрольной работе;
- экзаменационные вопросы и задания по дисциплине.

3 ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

3.1 Тестовые задания предназначены для оценки в рамках текущего контроля успеваемости знаний, приобретенных студентами на лекционных и практических занятиях и для измерения соответствующих индикаторов достижения компетенции.

Содержание теста определяется в соответствии с содержанием дисциплины пропорционально учебному времени, отведенному на изучение разделов, перечисленных в рабочей программе модуля.

Время выполнения теста 60 мин.

Типовые варианты тестовых заданий приведены в Приложении №1.

3.2 Шкала оценивания тестовых заданий основана на балльной системе: «отлично» (5 баллов), «хорошо» (4 балла), «удовлетворительно» (3 балла) и «неудовлетворительно» (2 балла), которая реализована в программном обеспечении.

Оценка «отлично» выставляется при правильном выполнении не менее 90% заданий.

Оценка «хорошо» выставляется при правильном выполнении не менее 80% заданий.

Оценка «удовлетворительно» выставляется при правильном выполнении не менее 60% заданий.

Оценка «неудовлетворительно» выставляется при правильном выполнении менее 60% заданий.

Результаты измерений индикатора считаются положительными при правильном выполнении не менее 60% заданий.

3.3 Критерии и шкала оценивания результатов выполнения заданий по темам практических занятий.

Шкала оценивания тестовых заданий основана на балльной системе: «отлично» (5 баллов), «хорошо» (4 балла), «удовлетворительно» (3 балла) и «неудовлетворительно» (2 балла).

Оценка «отлично» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам и без ошибок.

Оценка «хорошо» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам, но с незначительным количеством (не более, чем в 25% заданий) вычислительных ошибок.

Оценка «удовлетворительно» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам, но со множеством (более, чем в 25% заданий) вычислительных ошибок.

Оценка «неудовлетворительно» выставляется в случае, если задания выполнены с использованием неправильных алгоритмов и формул.

Результаты измерений индикатора считаются положительными при положительной оценке за выполнение задания.

Темы и типовые варианты заданий для практических занятий приведены в Приложении №2.

3.4 В качестве текущего контроля результатов освоения дисциплины в течение учебного семестра может быть использовано выполнение студентами тематических индивидуальных практических заданий (ИПЗ).

Шкала оценивания результатов выполнения ИПЗ основана на балльной системе: «отлично» (5 баллов), «хорошо» (4 балла), «удовлетворительно» (3 балла) и «неудовлетворительно» (2 балла).

Оценка «отлично» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам и без ошибок.

Оценка «хорошо» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам, но с незначительным количеством (не более, чем в 25% заданий) вычислительных ошибок.

Оценка «удовлетворительно» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам, но со множеством (более, чем в 25% заданий) вычислительных ошибок.

Оценка «неудовлетворительно» выставляется в случае, если задания выполнены с использованием неправильных алгоритмов и формул.

Результаты измерений индикатора считаются положительными при положительной оценке за выполнение задания.

Темы и типовые варианты ИПЗ приведены в Приложении №3.

4 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

4.1. Учебным планом предусмотрено выполнение одной контрольной работы.

Темы и типовой вариант заданий контрольной работы приведены в Приложении №4.

4.2 Шкала оценивания результатов выполнения заданий контрольной работы основана на балльной системе: «отлично» (5 баллов), «хорошо» (4 балла), «удовлетворительно» (3 балла) и «неудовлетворительно» (2 балла).

Оценка «отлично» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам и без ошибок.

Оценка «хорошо» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам, но с незначительным количеством (не более, чем в 25% заданий) вычислительных ошибок.

Оценка «удовлетворительно» выставляется в случае, если задания выполнены по правильным формулам и алгоритмам, но со множеством (более, чем в 25% заданий) вычислительных ошибок.

Оценка «неудовлетворительно» выставляется в случае, если задания выполнены с использованием неправильных алгоритмов и формул.

Результаты измерений индикатора считаются положительными при положительной оценке за выполнение задания.

4.3 Промежуточная аттестация по дисциплине проводится в форме экзамена.

К экзамену допускаются студенты, положительно аттестованные по результатам текущего контроля и контрольной работе.

Представленные экзаменационные вопросы для проведения экзамена компонуются в билеты по два вопроса, относящиеся к различным темам дисциплины, и два практических задания. На усмотрение экзаменатора экзамен может быть проведен в письменной, устной или комбинированной форме. При наличии сомнений в отношении знаний и умений студента экзаменатор может (имеет право) задать дополнительные вопросы, а также дать дополнительное задание.

Типовые экзаменационные вопросы и задания приведены в Приложении № 5.

4.4 Критерии и шкала оценивания промежуточной аттестации.

Оценка «отлично» выставляется в случае, если студент исчерпывающе, последовательно, четко и логически стройно излагал ответы на вопросы билета, обосновывая их в числе прочего и знаниями из общеобразовательных и общеинженерных дисциплин, умеет

делать обобщения и выводы, владеет основными терминами и понятиями, умеет тесно увязывать теорию с практикой, свободно справляется с задачами, вопросами и другими видами применения знаний, использовал в ответе материал дополнительной литературы, дал правильные ответы на дополнительные вопросы.

Оценка «хорошо» выставляется в случае, если студент грамотно и по существу излагал ответ на вопросы билеты, не допуская существенных неточностей, но при этом его ответы были недостаточно обоснованы, владеет основными терминами и понятиями, правильно применяет теоретические положения при решении задач; владеет основными умениями; при ответе на дополнительные вопросы допускал неточности и незначительные ошибки.

Оценка «удовлетворительно» выставляется в случае, если студент при ответе на вопросы продемонстрировал знания только основного материала, но допускал неточности, использовал недостаточно правильные формулировки, испытывает затруднения при решении задач; при ответе на дополнительные вопросы допускал ошибки.

Оценка «неудовлетворительно» выставляется в случае, если студент не смог объяснить смысл написанного им при подготовке к ответу текста; не ориентируется в терминологии дисциплины; не может ответить на дополнительные вопросы.

Компетенции в той части, в которой они должны быть сформированы в рамках изучения дисциплины, могут считаться сформированными в случае, если студент получил на экзамене положительную оценку.

5 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Теория вероятностей и математическая статистика» представляет собой компонент основной профессиональной образовательной программы по специальности 08.03.01 Строительство (профиль «Промышленное и гражданское строительство»).

Фонд оценочных средств рассмотрен и одобрен на заседании кафедры прикладной математики и информационных технологий 04.03.2022г. (протокол № 6).

И.о. заведующего кафедрой

А.И. Руденко

Фонд оценочных средств рассмотрен и одобрен на заседании кафедры строительства (протокол № 5 от $19.04.2022 \, \Gamma$.)

Monesof

Agreef

Заведующий кафедрой

В.А. Пименов

Приложение № 1

ТЕСТОВЫЕ ЗАДАНИЯ

Вариант №1

Вопрос №1. Семь студентов играли в шахматы. Каждый студент сыграл с другим студентом один раз. Количество игр равно:

- 1. 49
- 2. 21
- 3, 42
- 4. 7

Вопрос N2. Производится 6 выстрелов в мишень, вероятность попадания в мишень при каждом выстреле постоянна и равна 0,4. Математическое ожидание случайной величины X – числа попаданий в мишень – равно:

- 1.2.4
- 2. 1,2
- 3. 0,24
- 4. 0,4

Вопрос №3. Имеется 5 студенческих групп по 25 человек, в каждой из которых по 5 отличников. Из каждой группы выбирается случайным образом по одному студенту. Вероятность того, что среди выбранных студентов будет 3 отличника, равна:

- 1. 6/125
- 2. 16/256
- 3. 32/625
- 4. 8/125

Вопрос №4. Вероятность появления события в каждом из 10 независимых испытаний, равна 0,8. Математическое ожидание числа появлений события равно:

- 1.1,6
- 2. 8
- 3.0,8
- 4.0,16

Вопрос №5. В магазин поступило 30% телевизоров фирмы L, остальное — фирмы N. В продукции фирмы L брак составляет 20% телевизоров; фирмы N — 15 %. Вероятность наудачу выбрать исправный телевизор составляет:

- 1. 0,835
- 2. 0,65
- 3. 0,105
- 4. 0,2

Вопрос №6. Вероятность отказа устройства, состоящего из трех независимо работающих элементов с соответствующими вероятностями отказа элементов 0,1; 0,2; 0,05, если для этого достаточно, чтобы отказал хотя бы один элемент, равна:

- 1. 0,316
- 2. 0,35
- 3. 0,001
- 4.0,12

Вопрос №7. Прибор может работать в трёх режимах: нормальном, форсированном и недогруженном. Нормальный режим наблюдается в 60% случаев работы прибора, форсированный – в 30% и недогруженный – в 10%. Надёжность прибора (вероятность его безотказной работы в течение заданного времени) для нормального режима равна 0.8, для недогруженного – 0.9, для форсированного – 0.5. Тогда вероятность безотказной работы прибора равна:

- 1. 0,72
- 2. 0,8
- 3.0,6
- 4.0,3

Вопрос №8. Плотность вероятности f(x) равномерно распределенной случайной величины X сохраняет в интервале (2; 4) постоянное значение, равное C; вне этого интервала плотность вероятности равна нулю. Значение C равно:

- 1. 0,5
- 2. 6
- 3.3
- 4.0,1

Вопрос №9. Случайная величина X распределена равномерно на интервале (2; 6). Значение вероятности P(X=5) равно:

- 1. 0
- 2. 1
- 3. 0.25
- 4. 2

Вопрос №10. Случайная величина X распределена равномерно на отрезке [a, b], где a = 1, b = 3. Тогда математическое ожидание M(X) равно:

- 1.0,5
- 2. 2
- 3.3
- 4. 1

Вопрос №11. Время ожидания автобуса есть равномерно распределенная в интервале (0; 6) случайная величина X. Тогда среднее время ожидания (в минутах) очередного автобуса равно:

- 1.6
- 2. 8
- 3. 4
- 4. 3

Вопрос №12. Функция распределения существует для случайных величин:

- 1. только непрерывных
- 2. дискретных и непрерывных
- 3. принимающих только положительные значения
- 4. только дискретных

Вопрос №13. Ряд распределения вероятностей дискретной случайной величины

X	x_1	x_2	 x_n
p	p_I	p_2	 p_n

обладает следующим свойством: сумма $\sum p_i$ вероятностей всех возможных значений дискретной случайной величины равна:

- 1. 0
- 2. 2
- 3. -1
- 4. 1

Вопрос №14. Случайная величина X задана функцией распределения F(x). Тогда вероятность того, что X примет значение из промежутка [a;b], можно вычислить по формуле:

1.
$$P(a \le x < b) = F(b) - F(a)$$

2.
$$P(a \le x < b) = F(b) \cdot F(a)$$

3.
$$P(a \le x < b) = F^2(b) + F^2(a)$$

4.
$$P(a \le x < b) = F^{2}(b) \cdot F^{2}(a)$$

Вопрос №15. Плотность вероятности f(x) непрерывной случайной величины обладает свойством:

$$1. \int_{-\infty}^{+\infty} f(x) dx = 1$$

$$2. \int_{-\infty}^{+\infty} f(x) dx = -1$$

$$3. \int_{-\infty}^{+\infty} f(x) dx = 0$$

4.
$$\int_{-\infty}^{+\infty} f(x)dx$$
 не существует (интеграл расходится).

Вопрос №16 Для изображения дискретного статистического ряда служит ломаная, отрезки которой соединяют точки с координатами $(x_1, n_1), (x_2, n_2), ..., (x_k, n_k)$ или $(x_1, p_1^*), (x_2, p_2^*), ..., (x_k, p_k^*)$. Эта ломаная называется:

- 1. гистограммой
- 2. графиком функции распределения вероятностей
- 3. полигоном частот

4. графиком плотности вероятности

Вопрос №17. Задано статистическое распределение выборки объема $n = \sum_{i=1}^k n_i$:

x_i	<i>x</i> ₁	x_2	 x_k
n_i	n_1	n_2	 n_k

Выборочное среднее $\overline{x}_{\text{в}}$ вычисляется по формуле: $1.\frac{x_1+x_2+\cdots+x_k}{n}$

$$1. \frac{x_1 + x_2 + \dots + x_k}{n}$$

2.
$$\frac{x_1 + x_k}{2}$$

$$3. \ \frac{x_1 \cdot n_1 + x_k \cdot n_k}{n}$$

4.
$$\frac{x_1 \cdot n_1 + x_2 \cdot n_2 + \dots + x_k \cdot n_k}{n}$$

Вопрос №18 Оценка $\tilde{\theta}$ неизвестного параметра θ генеральной совокупности в виде одного числа (точки), определяемого по выборке, называется:

- 1. точечной
- 2. вероятностной
- 3. множественной
- 4. последовательной

Вопрос №19. Дан ряд распределения вероятностей дискретной случайной величины:

x_i	1	2	3
p_i	0,2	0,3	p

Значение p (вероятность того, что случайная величина примет значение 3) равно:

- 1.0,5
- 2.0
- 3.2
- 4. -1

Вопрос $N \ge 20$. По данным статистического распределения выборки объема n

x_i	1	2	3
n_i	3	5	2

выборочное среднее, вычисленное по формуле $\bar{x} = \frac{x_1 \cdot n_1 + x_2 \cdot n_2 + \dots + x_k \cdot n_k}{n}$ равно:

- 1.2
- 2.1,9

3.1,8

4.1,5

Вариант №2

Вопрос №1. Количество трехзначных чисел с различными цифрами, которые можно составить из цифр 1, 2, 3, равно:

- 1.6
- 2.27
- 3.4
- 4. 9

Вопрос №2. По формуле $P(\bar{A}) = 1 - P(A)$ рассчитывают:

- 1. вероятность события, противоположного событию А
- 2. вероятность достоверного события
- 3. вероятность невозможного события
- 4. частоту события, противоположного событию А

Вопрос №3. Производится 12 выстрелов в мишень, вероятность попадания в мишень при каждом выстреле постоянна и равна 0,6. Математическое ожидание случайной величины X – числа попаданий в мишень – равно:

- 1.7,2
- 2.6.2
- 3. 0,36
- 4. 0,66

Вопрос №4. Монета брошена 3 раза. Тогда вероятность того, что все три раза выпадет «герб», равна:

- 1. 1/8
- 2. 1/4
- 3. 1/3
- 4. 3/8

Вопрос №5. В магазин поступило 40% холодильников фирмы L, остальное — фирмы N. В продукции фирмы L брак составляет 10% холодильников; фирмы N –5 %. Вероятность наудачу выбрать неисправный холодильник составляет:

- 1. 0,07
- 2. 0,16
- 3. 0,1
- 4. 0,12

Вопрос \mathbb{N} 6. Вероятность безотказной работы устройства, состоящего из двух независимо работающих элементов с соответствующими вероятностями отказа элементов 0,3; 0,1, если для этого достаточно, чтобы отказал хотя бы один элемент, равна:

- 1. 0,63
- 2. 0,37
- 3. 0,48
- 4. 0,13

Вопрос №7. В тире имеется пять ружей, вероятность попадания из которых равны соответственно 0.5, 0.6, 0.7, 0.8 и 0.9. Вероятность промаха при одном выстреле, если стреляющий берёт одно из ружей наудачу, равна:

- 1. 0,32
- 2. 0,3
- 3.0,52
- 4.0,75

Вопрос №8. Плотность вероятности f(x) равномерно распределенной случайной величины X сохраняет в интервале (1; 5) постоянное значение, равное C; вне этого интервала плотность вероятности равна нулю. Значение C равно:

- 1. 0,5
- 2. 1
- 3.0,25
- 4.0,1

Вопрос №9. Случайная величина X распределена равномерно на интервале (2; 8). Значение вероятности P(X=6) равно:

- 1. 0.5
- 2. 1
- 3. 0,25
- 4. 0

Вопрос №10. Случайная величина X распределена равномерно на отрезке [a, b], где a = 2, b = 10. Тогда математическое ожидание M(X) равно:

- 1.0,5
- 2. 5
- 3.6
- 4.8

Вопрос №11. Случайная величина X распределена равномерно на отрезке [a, b], где a = 2, b = 8. Тогда дисперсия D(X) равна:

- 1. 2
- 2. 3
- 3. 1
- 4. 1/3

Вопрос №12. Математическое ожидание M(X)случайной величины X обладает свойством (C- постоянная величина):

- 1. M(CX) = CX
- $2. M(CX) = C^2X$
- $3. M(C) = C^2$
- 4. M(C+X)=C+M(X)

Вопрос №13. Функция распределения вероятности F(x) случайной величины обладает свойством:

1.
$$F(x) < 0$$

2.
$$0 \le F(x) \le 1$$

3.
$$F(x) > 1$$

4. F(x) неограниченновозрастает

Вопрос №14. Дана функция распределения случайной величины X

$$F(x) = \begin{cases} 0 & npu \ x \le 0, \\ 1 - \cos x & npu \ 0 < x \le \frac{\pi}{2}, \\ 1 & npu \ x > \frac{\pi}{2}. \end{cases}$$

Плотность распределения f(x), определенная из условия f(x) = F'(x), равна:

1.
$$f(x) = \begin{cases} 0 & npu & x \le 0, \\ 1 - \sin x & npu & 0 < x \le \frac{\pi}{2}, \\ 1 & npu & x > \frac{\pi}{2}. \end{cases}$$

2. $f(x) = \begin{cases} 0 & npu & x \le 0, \\ \cos x & npu & 0 < x \le \frac{\pi}{2}, \\ 0 & npu & x > \frac{\pi}{2}. \end{cases}$

3. $f(x) = \begin{cases} 0 & npu & x \le 0, \\ \cos x & npu & 0 < x \le \frac{\pi}{2}, \\ \cos x & npu & 0 < x \le \frac{\pi}{2}, \\ 1 & npu & x > \frac{\pi}{2}. \end{cases}$

4.
$$f(x) = \begin{cases} 0 & npu \ x \le 0, \\ \sin x & npu \ 0 < x \le \frac{\pi}{2}, \\ 0 & npu \ x > \frac{\pi}{2}. \end{cases}$$

Вопрос №15. Случайная величина X задана плотностью распределения вероятностей f(x). Тогда вероятность того, что X примет значение из промежутка [a;b], можно вычислить по формуле:

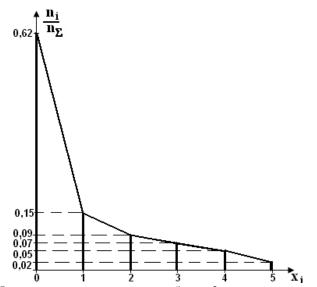
1
$$P(a \le x < b) = \int_{a}^{b} f(x) dx$$

2. $P(a \le x < b) = \frac{1}{2} \cdot \int_{a}^{b} f(x) dx$
3. $P(a \le x < b) = 1 - \int_{a}^{b} f(x) dx$
4. $P(a \le x < b) = \int_{a}^{b} f^{2}(x) dx$

Вопрос №16. Эмпирической характеристикой выборки, соответствующей теоретическому математическому ожиданию, является:

- 1. выборочное среднее
- 2. квадрат выборочного среднего
- 3. корень квадратный из выборочного среднего
- 4. корень квадратный из выборочной дисперсии

Вопрос №17. Многоугольник распределения числа задолженностей x_i по результатам сдачи сессии 100 студентов приведен на рисунке:



Число студентов, имеющих более 3-х задолженностей, равно:

- 1.15
- 2. 23
- 3.7
- 4. 1

Вопрос №18. По результатам экзамена группа студентов набрала баллы: 3, 3, 2, 3, 5, 3, 4, 3, 4, 5, 2, 3, 3, 2, 4, 2, 5, 3, 4, 3.

Полученная выборка в виде вариационного ряда имеет вид:

- 1. 2, 3, 4, 5
- 2. 5, 4, 3, 2
- 3. 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5,5

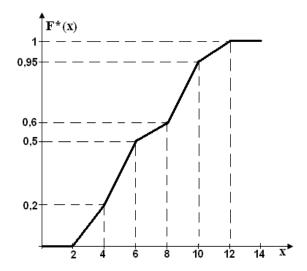
4.

x_i	2	3	4	5
n_i	4	9	4	3

Вопрос №19. Оценка $\tilde{\theta}$ неизвестного параметра θ , если с заданной вероятностью по данным выборки определяется **множество (интервал) значений**, внутри которого находится точное значение оцениваемого параметра, называется:

- 1. точечной
- 2. вероятностной
- 3. надежной
- 4. интервальной

Вопрос №20. Эмпирическая функция распределения $F^*(x)$ для n = 100 измерений случайной величины X приведена на рисунке.



Случайная величина примет значение, принадлежащее интервалу X < 4, в количестве измерений, равном:

- 1.20
- 2.10
- 3.0
- 4.50

Вариант №3

Вопрос №1. Количество пятизначных чисел с различными цифрами, которые можно составить из цифр 1, 2, 3,4,5, равно:

- 1.120
- 2.25
- 3.80
- 4.10

Вопрос №2. Сумма вероятностей двух несовместных событий равна:

- 1. сумме их вероятностей
- 2. разности их вероятностей
- 3. произведению их вероятностей
- 4. всегда равна 1

Вопрос №3. Производится 8 выстрелов в мишень, вероятность попадания в мишень при каждом выстреле постоянна и равна 0,65. Вероятность того, что будет зафиксировано ровно 3 попадания, вычисляется по формуле:

- $1.8 \cdot 0.65^3 \cdot 0.35^5$
- $2.\frac{8!}{5!} \cdot 0.65^3 \cdot 0.35^5$
- $3. \frac{\frac{8!}{8!}}{\frac{3!}{5!}} \cdot 0,65^3 \cdot 0,35^5$
- $4.0,65^3 \cdot 0,35$

Вопрос №4. В первом ящике 5 белых и 10 красных шаров. Во втором – 3 белых и 6 красных шаров. Из каждого ящика вынули по одному шару. Вероятность того, что оба шара красные, равна:

- 1. $\frac{2}{3}$
- 2. $\frac{2}{9}$
- 3. $\frac{4}{9}$
- 4. $\frac{1}{9}$

Вопрос №5. Вероятность появления события в каждом из 100 независимых испытаний, постоянна и равна 0,3. Дисперсия случайной величины X - числа появлений события - равна:

- 1.3
- 2.21
- 3.30
- 4.70

Вопрос №6. Игральная кость бросается один раз. Вероятность того, что выпадет менее 3 очков, равна:

- 1. $\frac{2}{3}$
- 2. $\frac{1}{3}$
- 3. $\frac{1}{2}$
- 4. $\frac{1}{4}$

Вопрос №7. В магазин поступило 45% микроволновых печей фирмы L, остальное – фирмы N. В продукции фирмы L брак составляет 5%; фирмы N -10 %. Вероятность наудачу выбрать исправную микроволновую печь составляет:

- 1. 0,9225
- 2. 0,9
- 3. 0,55
- 4. 0,85

Вопрос №8. В тире имеется три пистолета, вероятности попадания из которых равны соответственно 0.4, 0.5, 0.6. Вероятность попадания при одном выстреле, если стреляющий берёт один пистолет наудачу, равна:

- 1. 0,12
- 2. 0,85
- 3. 0,25
- 4. 0,5

Вопрос №9. Случайная величина X распределена равномерно на интервале (-1; 5). Значение вероятности P(X=3) равно:

- 1. 0
- 2. 1
- 3. 0,25
- 4. 0,5

Вопрос N = 10. Дискретная случайная величина X задана рядом распределения

X	1	2	3	4
p	0,15	0,45	0,25	0,15

Вероятность того, что дискретная случайная величина X примет значения, принадлежащие интервалу $1 \le X < 3$, равна:

- 1. 0,75
- 2.0,6
- 3.0,8
- 4. 0,25

Вопрос №11. Случайная величина X распределена равномерно на отрезке [a, b], где a = 2, b = 14. Тогда математическое ожидание M(X) равно:

- 1.7,5
- 2. 5
- 3.8
- 4.6

Вопрос №12. Время ожидания автобуса есть случайная величина X, равномерно распределенная в интервале (0; 15). Тогда среднее время ожидания (в минутах) очередного автобуса равно:

- 1.6
- 2.8
- 3.7,5
- 4.3

Вопрос №13. Дисперсия D(X) случайной величины X обладает свойством (C – постоянная величина):

- 1. D(CX) = CX
- 2. $D(CX) = C^2 X$
- 3. $D(C) = C^2$
- 4. D(C+X)=D(X)

Вопрос №14. Формула полной вероятности (вероятность события A, которое может наступить лишь при появлении одного из несовместных событий (гипотез) $H_1, H_2, ..., H_n$, образующих полную группу) имеет вид:

1.
$$P(A) = \sum_{k=1}^{n} P_{H_k}(A)$$

2.
$$P(A) = \sum_{k=1}^{n} P_{H_k}(A) \cdot P(H_k)$$

3.
$$P(A) = \sum_{k=1}^{n} P(H_k)$$

4.
$$P(A) = 1 - \sum_{k=1}^{n} P_{H_k}(A)$$

Вопрос №15. Дана функция распределения случайной величины X

$$F(x) = \begin{cases} 0 & npu & x \le 0, \\ x^3 & npu & 0 < x \le 1, \\ 1 & npu & x > 1. \end{cases}$$

Плотность распределения f(x), определенная из условия f(x) = F'(x), равна:

Плотность распределения
$$f(x)$$
, о $f(x) = \begin{cases} 0 & npu \ x \le 0, \\ x^3 & npu \ 0 < x \le 1, \\ 0 & npu \ x > 1. \end{cases}$

$$2. \ f(x) = \begin{cases} 0 & npu \ x \le 0, \\ x^2 & npu \ 0 < x \le 1, \\ 0 & npu \ x > 1. \end{cases}$$

$$3. \ f(x) = \begin{cases} 0 & npu \ x \le 0, \\ 3x & npu \ 0 < x \le 1, \\ 0 & npu \ x > 1. \end{cases}$$

$$4. \ f(x) = \begin{cases} 0 & npu \ x \le 0, \\ 3x^2 & npu \ 0 < x \le 1, \\ 0 & npu \ x > 1. \end{cases}$$

3.
$$f(x) = \begin{cases} 0 & npu \ x \le 0, \\ 3x & npu \ 0 < x \le 1, \\ 0 & npu \ x > 1. \end{cases}$$

4.
$$f(x) = \begin{cases} 0 & npu \ x \le 0, \\ 3x^2 & npu \ 0 < x \le 1, \\ 0 & npu \ x > 1. \end{cases}$$

Вопрос №16. Случайная величина X задана плотностью распределения вероятностей f(x). Тогда вероятность того, что X примет значение из промежутка $(a;+\infty)$, можно вычислить по формуле:

1.
$$P(x \ge a) = \int_{a}^{+\infty} f(x) dx$$

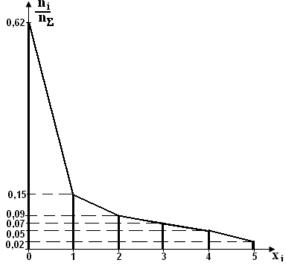
1.
$$P(x \ge a) = \int_{a}^{+\infty} f(x) dx$$

2.
$$P(x \ge a) = \frac{1}{2} \cdot \int_{a}^{+\infty} f(x) dx$$

3.
$$P(x \ge a) = 1 - \int_{a}^{+\infty} f(x) dx$$
4.
$$P(x \ge a) = \int_{a}^{+\infty} f^{2}(x) dx$$

$$4. P(x \ge a) = \int_{a}^{+\infty} f^{2}(x) dx$$

Вопрос №17. Многоугольник распределения числа задолженностей x_i по результатам сдачи сессии 100 студентов приведен на рисунке:



Число студентов, имеющих не более 2-х задолженностей, равно:

- 1.15
- 2.20
- 3.24
- 4. 1

Вопрос №18. По результатам экзамена группа студентов набрала баллы:

Полученная выборка в виде вариационного ряда имеет вид:

- 1. 2, 3, 4, 5
- 2. 5, 4, 3, 2
- 3. 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5

4.

x_i	2	3	4	5
n_i	4	7	4	5

Вопрос №19. Если случайные величины Х и У независимы, то их коэффициент корреляции r_{xy} равен:

- 1. 0
- 2. 1
- 3. -1
- $4.-\infty$

Вопрос №20. Результаты статистической обработки выборочных значений случайной величины X представлены интервальной выборкой:

Границы интервалов X	0 - 6	6 - 12	12 - 18
Относительные частоты w_i	0,25	0,25	0,5

Выборочное среднее значение $\bar{x}_{e} = \sum x_{i}w_{i}$ случайной величины, если в качестве значений x_{i} принять середины соответствующих интервалов, равно:

- 1.5
- 2. 10,5
- 3. 1
- 4. 12

Приложение №2

ЗАДАНИЯ ПО ТЕМАМ ПРАКТИЧЕСКИХ ЗАНЯТИЙ

<u>Тема 1. Предмет теории вероятностей. Классификация событий, алгебра событий.</u>
<u>Элементы комбинаторики. Различные подходы к введению понятия вероятности события.</u>
<u>Аксиомы теории вероятностей. Теоремы сложения и умножения вероятностей. Полная вероятность.</u>

Задача №1. В урне находятся 3 черных и 7 белых шаров. Из урны последовательно извлекают два шара (без возвращения в урну). Определить вероятность того, что оба извлеченных шара будут черными.

Задача №2. В первом ящике 5 белых и 7 черных шаров. Во втором -3 белых и 12 черных шаров. Из каждого ящика вынули по одному шару. Какова вероятность того, что оба шара черные?

Задача№3. Участники жеребьевки тянут из ящика жетоны с номерами от 1 до 35. Найти вероятность того, что первый наудачу извлеченный жетон не содержит в номере цифры 1.

Задача №4. В ящике находятся 50 деталей, из которых 14 деталей изготовлено на станке №1, 16 деталей — на станке №2, остальные — на станке №3. Вероятность того, что деталь, изготовленная на станке №1, отличного качества, равна 0,8. Для деталей, изготовленных на станках №2 и №3, эти вероятности соответственно равны 0,6 и 0,7. Найти вероятность того, что наудачу извлеченная из ящика деталь окажется отличного качества.

Задача №5. Имеются три партии деталей по 40 деталей в каждой партии. Число стандартных деталей в первой, второй и третьей партиях соответственно равно 18, 14 и 16. Из наудачу выбранной партии извлечена деталь, оказавшаяся стандартной. Найти вероятность того, что стандартная деталь была извлечена из первой партии.

<u>Тема 2. Формулы Бейеса, Бернулли, Пуассона. Вероятность наступления хотя бы одного события. Локальная и интегральная теоремы Лапласа. Невероятнейшее число наступления события.</u>

Задача №1. Отдел технического контроля проверяет изделие на стандартность. Вероятность того, что изделие стандартно, равна 0,7. Найти вероятность того, что из четырех проверенных изделий три изделия стандартные

Задача №2. Вероятность появления событий A в каждом испытании равна 0,8. Определить наиболее вероятное число появлений событий A при проведении четырех независимых испытаний.

Задача №3. В ящике 10 деталей, из которых четыре окрашены. Сборщик взял три детали. Найти вероятность того, что хотя бы одна из взятых деталей окрашена.

Задача №4 Вероятность того, что деталь не прошла проверку ОТК, равна 0.2. Найти вероятность того, что среди 400 случайно отобранных деталей окажется непроверенных от 70 до 100 деталей.

<u>Тема 3. Случайные величины, дискретные и непрерывные случайные величины.</u> <u>Распределение дискретных случайных величин. Функция распределения, ее основные свойства.</u> <u>Числовые характеристики дискретных случайных величин. Функция распределения вероятностей, плотность распределения непрерывных случайных величин, их свойства. Числовые характеристики непрерывных случайных величин, их свойства.</u>

Задача №1. Дискретная случайная величина X задана рядом распределения, приведенным в таблице. Определите, чему равно математическое ожидание заданной дискретной случайной величины

x_i	-1	0	1	2	3	4
p_i	0,2	0,15	0,25	0,1	0,2	0,1

Задача №2. Дискретная случайная величина X задана функцией распределения, приведенной в таблице.

X	0	1	2	3	4	5	6
F(x)	0	0,134	0,445	0,721	0,959	0,996	1

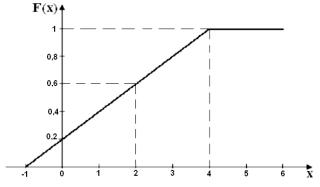
Определите, чему равна вероятность того, что дискретная случайная величина X примет значения, принадлежащие интервалу 1 < X < 3.

Задача №3. Дискретная случайная величина X задана рядом распределения, приведенным в таблице.

x_i	0	1	2	3	4
p_i	0,15	0,2	0,25	0,2	0,2

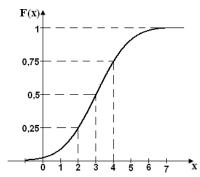
Определить, чему равна вероятность того, что дискретная случайная величина примет значения, принадлежащие интервалу $X \le 2$.

Задача №4. Непрерывная случайная величина имеет функцию распределения, приведенную на рисунке



Чему равна вероятность того, что случайная величина X примет значение, принадлежащее интервалу x>2?

Задача №5. Непрерывная случайная величина имеет функцию распределения, приведенную на рисунке.



Чему равна вероятность того, что случайная величина X примет значение, принадлежащее интервалу x < 2?

Задача №6. Случайная величина X имеет среднеквадратичное отклонение $\sigma_x = 2$. Чему равна дисперсия случайной величины Z = 2x - 5?

Задача №7. Случайные величины X и Y имеют математические ожидания $m_x = 3$, $m_y = 2$. Чему равно математическое ожидание случайной величины Z = 4x - 3y?

<u>Тема 4. Примеры законов распределения случайных величин и их числовые характеристики Предельные теоремы вероятностей (закон больших чисел).</u>

Задача №1. Непрерывная случайная величина X имеет нормальный закон распределения, заданный плотностью вероятности

$$\varphi(x) = \frac{1}{\sqrt{8\pi}} \exp \left[-\frac{(x+2)^2}{8} \right].$$

Определите, чему равны дисперсия D_x , среднее квадратичное отклонение σ_x и математическое ожидание m_x случайной величины X.

Задача N2. Непрерывная случайная величина X имеет экспоненциальное распределение, заданное плотностью вероятности

$$f(x) = \begin{cases} 0, & \text{при } x < 0 \\ 3e^{-3x}, & \text{при } x \ge 0. \end{cases}$$

Определите, чему равны дисперсия D_x , среднее квадратичное отклонение σ_x и математическое ожидание m_x случайной величины X.

Задача №3. Непрерывная случайная величина X имеет экспоненциальное распределение, заданное функцией распределения

$$F(x) = \begin{cases} 0, & \text{при } x < 0 \\ 1 - e^{-0.5x}, & \text{при } x \ge 0. \end{cases}$$

Определите, чему равны среднеквадратичное отклонение σ_{x} , дисперсия D_x и математическое ожидание m_x случайной величины X.

Задача \mathfrak{N} \mathfrak{d} 4. Непрерывная случайная величина X имеет равномерное распределение, заданное функцией распределения.

$$F(x) = \begin{cases} 0 & \text{при } x < 2\\ \frac{x-2}{8} & \text{при } 2 \le x < 10\\ 1 & \text{при } x \ge 10. \end{cases}$$

Чему равны дисперсия D_x , среднее квадратичное отклонение σ_x , и математическое ожидание m_x случайной величины X?

<u>Тема 5. Основные понятия и задачи математической статистики. Полигон и гистограмма. Числовые характеристики генеральной и выборочной совокупностей.</u> Статистические функции параметров распределения (точечные, интервальные).

Задача №1. В результате измерения случайной величины X получены следующие значения

№ измерения	1	2	3	4	5	6	7	8
Значение случайной величины	19	22	18	17	23	18	21	15

Чему равна мода измеряемой случайной величины?

Задача №2. В результате измерения случайной величины X получены следующие значения

№ измерения	1	2	3	4
Значение случайной величины	5	3	2	4

Чему равно выборочное среднее значение, выборочная дисперсия, исправленная выборочная дисперсия случайной величины X?

Задача N23. Дискретная случайная величина X при измерениях принимала значения x_i с частотами n_i , приведенными в таблице

x_i	0	1	2	3	4
n_i	340	400	175	60	25

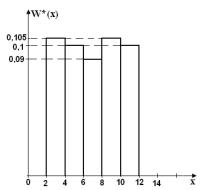
Чему равны мода, выборочные значения математического ожидания, начального момента второго порядка и дисперсии случайной величины?

Задача N24. Результаты статистической обработки выборочных значений случайной величины X представлены сгруппированной интегральной выборкой.

Границы интервалов X	0-4	4-8	8-12	12-16
Относительные частоты $n_i \setminus N$	0,15	0,25	0,4	0,2

Чему равно выборочное среднее значение и выборочный начальный момент второго порядка случайной величины?

Задача №5. Гистограмма относительных частот значений измеряемой случайной величины X приведена на рисунке.



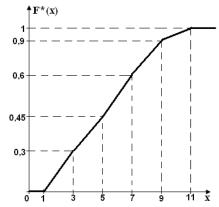
Чему равно выборочное значение математического ожидания и начального момента второго порядка случайной величины X?

Задача №6. По результатам статистической обработки выборочных значений непрерывной случайной величины X получены значения эмпирической функции распределения $F^*(x)$, приведенные в таблице.

X	1	5	9	13	17	21
$F^*(x)$	0	0,1	0,4	0,7	0,8	1

Чему равно выборочное среднее значение случайной величины X?

Задача N27. По результатам статистической обработки выборочных значений случайной величины X получена эмпирическая функция распределения $F^*(x)$, приведенная на рисунке.



Чему равно выборочное среднее значение случайной величины X?

<u>Тема 6. Распределения Пирсона, Стьюдента, Фишера-Снедекора. Нахождение доверительных интервалов при нормальном распределении Статистическая проверка статистических гипотез. Виды гипотез. Методы проверки Числовые характеристики генеральной и выборочной совокупностей. Статистические оценки параметров распределения.</u>

Задача№1. При построении гистограммы относительных частот 100 результатов измерений случайной величины X получили значения относительных частот попадания значений случайной величины X в интервалы (строка 1), которые приведены во второй строке таблицы. В третьей строке приведены вероятности попадания случайной величины X в данные интервалы, найденные по теоретическому закону распределения, принятому в качестве гипотезы.

Границы интервалов	1-3	3-5	5-7	7-9
$P_i^* = \frac{n_i}{100}$	0,2	0,3	0,35	0,15
P_i	0,25	0,25	0,25	0,25

Чему равно значение хи-квадрат (χ^2) для выбранного в качестве гипотезы теоретического закона распределения?

Задача №2. По результатам статистической обработки экспериментальных данных получены следующие выборочные значения математического ожидания $m_x^* = 4$ и дисперсии $D_x^* = 3$.

Для гипотезы о равномерном распределении измеряемой случайной величины X определить точечную оценку границ "a" и "b" теоретического распределения случайной величины.

Задача№3. В результате статистической обработки экспериментальных данных получена гистограмма, на соответствие которой проверяется пять гипотез H_1 ; H_2 ; H_3 ; H_4 ; H_5 о теоретическом законе распределения измеряемой случайной величины X. Рассчитанные значения критерия X измеряемой случайной величины X измеряемой случайной X измеряемой случайной величины X измеряемой случайной величины X измеряемой случайной величины X измеряемой случайной X измеряемой X измеряе

H_i	H_1	H_2	H 3	H_4	H_5
χ^2_i	9,32	8,71	6,22	7,15	13,06

Какая из гипотез о теоретическом законе распределения измеряемой случайной величины X является наиболее предпочтительной?

<u>Тема 7. Элементы регрессионного анализа в линейной форме. Метод наименьших квадратов.</u>

Задача №1.

Дана таблица распределения 100 заводов по производственным средствам X (тыс.ден.ед) и по суточной выработке $Y(\tau)$. Известно, что между X и Y существует линейная корреляционная зависимость.

- а) найти уравнение прямой регрессии х на у.
- б) построить эмпирическую линию регрессии и точки (X,Y)

X	64	72	80	88	96	104	112	120	m _x
1,0	6	2	4		_		-	_	12
1,3	_	3	8	6	_	_	-	-	17
1,6	_	_	~	8	14	5	_	_	27
1,9	_	_	_	7	8	9	_	_	24
2,2	_		_	_	4	5	6		15
2,5	_	-	_	-	-	1	1	3	5
m _y	6	5	12	21	26	20	7	3	100

Приложение №3

ТЕМЫ И ТИПОВЫЕ ВАРИАНТЫ ИНДИВИДУАЛЬНЫХ ПРАКТИЧЕСКИХ ЗАДАНИЙ

Задание №1

- <u>Тема 1. Предмет теории вероятностей. Классификация событий, алгебра событий.</u> <u>Элементы комбинаторики. Различные подходы к введению понятия вероятности события.</u> <u>Аксиомы теории вероятностей. Теоремы сложения и умножения вероятностей. Полная вероятность.</u>
- <u>Тема 2. Формулы Бейеса, Бернулли, Пуассона. Вероятность наступления хотя бы одного события. Локальная и интегральная теоремы Лапласа. Невероятнейшее число наступления события.</u>
- Тема 3. Случайные величины, дискретные и непрерывные случайные величины. Распределение дискретных случайных величин. Функция распределения, ее основные свойства. Числовые характеристики дискретных случайных величин. Функция распределения вероятностей, плотность распределения непрерывных случайных величин, их свойства. Числовые характеристики непрерывных случайных величин, их свойства
- <u>Тема 4. Примеры законов распределения случайных величин и их числовые</u> характеристики. Предельные теоремы вероятностей (закон больших чисел).
- 1). В ящике 15 теннисных мячей, из которых 9 новых. Для первой игры наугад берутся три мяча, которые после игры возвращаются в ящик. Для второй игры также наугад берутся три мяча. Найти вероятность того, что все мячи, взятые для второй игры, новые.
- 2). На восьми одинаковых карточках написаны соответственно числа 2,4,6,7,8,11,12 и 13. Наугад берутся две карточки. Определить вероятность того, что образованная из двух полученных чисел дробь сократима.
- 3). В группе спортсменов 25 лыжников, 7 велосипедистов и 8 бегуна. Вероятность выполнить квалификационную норму такова: для лыжника 0.92, для велосипедиста 0.87 и для бегуна 0.75. Наудачу выбранный спортсмен не выполнил квалификационную норму. Найти вероятность того, что это бегун.
- 4). В ящике находятся катушки четырёх цветов: белых катушек 50%, красных -20%, зелёных -20%, синих -10%. Какова вероятность того, что взятая наудачу катушка окажется зелёной или синей?
- 5). В цехе 6 моторов. Для каждого мотора вероятность того, что он в данный момент включён, равна 0.8. Найти вероятность того, что в данный момент: а) включено 4 мотора; б) включены все моторы; в) выключены все моторы.

6). Случайная дискретная величина X задана законом распределения:

X	4,6	4,9	5,6	5,9	6,6	6,8	6,9	7,3	7,8	8,0
P	0,341	0,115	0,022	0,102	0,122	0,132	0,031	0,042	0,051	0,042

Требуется: а) найти выражение и построить график интегральной функции распределения случайной величины X; б) найти математическое ожидание случайной величины (0,6X); в) найти дисперсию среднее квадратическое отклонение случайной величины (X-6).

7). Случайная величина X имеет следующую интегральную функцию распределения

вероятностей
$$F(x) = \begin{cases} 0, ecnu \cdot x \le 5, \\ \frac{7x - 35}{14}, ecnu \cdot 5 < x \le 7, \\ 1, ecnu \cdot x > 7. \end{cases}$$

Требуется: а) найти дифференциальную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина X принимает значение из интервала (4,5;7,5); г) найти числовые характеристики случайной величины X.

8). Случайная величина X имеет следующую дифференциальную функцию распределения вероятностей $f(x) = \begin{cases} 0, ecnu \cdot |x| \geq 2, \\ \frac{1}{\pi \sqrt{4-x^2}}, ecnu \cdot |x| < 2. \end{cases}$

Требуется: а) найти интегральную функцию распределения вероятностей; б) построить графики f(x) и F(x); в) найти вероятность того, что случайная величина X принимает значение из интервала (-3;4); г) найти числовые характеристики случайной величины X.

9). Случайная непрерывная величина X распределена по нормальному закону с параметрами a=-0.8 и $\sigma=1.8$. Записать дифференциальную и интегральную функции распределения вероятностей и найти числовые характеристики случайной величины X.

Залание №2

<u>Тема 5. Основные понятия и задачи математической статистики. Полигон и гистограмма. Числовые характеристики генеральной и выборочной совокупностей.</u> Статистические функции параметров распределения (точечные, интервальные).

<u>Тема 6. Распределения Пирсона, Стьюдента, Фишера-Снедекора. Нахождение доверительных интервалов при нормальном распределении Статистическая проверка статистических гипотез. Виды гипотез. Методы проверки Числовые характеристики генеральной и выборочной совокупностей. Статистические оценки параметров распределения.</u>

<u>Тема 7. Элементы регрессионного анализа в линейной форме. Метод наименьших квадратов</u>

В результате эксперимента получены данные, записанные в виде статистического ряда. Требуется:

- 1. Записать значения результатов эксперимента в виде вариационного ряда;
- 2. Найти размах варьирования и разбить его на 9 интервалов;
- 3. Построить полигон частот, гистограмму относительных частот и график эмпирической функции распределения;
- 4. Найти числовые характеристики выборки x , D_{ε} ;
- 5. Приняв в качестве нулевой гипотезы H_0 : генеральная совокупность, из которой извлечена выборка, имеет нормальное распределение, проверить ее, используя критерий Пирсона при уровне значимости $\alpha = 0.025$;
- 6. Найти доверительные интервалы для математического ожидания и среднего квадратичного отклонения при надежности $\gamma = 0.95$.

Экспериментальные данные:

17,1	21,4	15,9	19,1	22,4	20,7	17,9	18,6	21,8	16,1
19,1	20,5	14,2	16,9	17,8	18,1	19,1	15,8	18,8	17,2
16,2	17,3	22,5	19,9	21,1	15,1	17,7	19,8	14,9	20,5
17,5	19,2	18,5	15,7	14,0	18,6	21,2	16,8	19,3	17,8
18,8	14,3	17,1	19,5	16,3	20,3	17,9	23,0	17,2	15,2
15,6	17,4	21,3	22,1	20,1	14,5	19,3	18,4	16,7	18,2
16,4	18,7	14,3	18,2	19,1	15,3	21,5	17,2	22,6	20,4
22,8	17,5	20,2	15,5	21,6	18,1	20,5	14,0	18,9	16,5
20,8	16,6	18,3	21,7	17,4	23,0	21,1	19,8	15,4	18,1
18,9	14,7	19,5	20,9	15,8	20,2	21,8	18,2	21,2	20,1

Приложение №4

ТЕМЫ И ТИПОВОЙ ВАРИАНТ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ (ОЧНАЯ ФОРМА)

<u>Тема 1. Теоремы сложения и умножения вероятностей. Полная вероятность.</u>
<u>Тема 2. Формулы Бейеса, Бернулли, Пуассона. Вероятность наступления хотя бы одного события. Локальная и интегральная теоремы Лапласа. Невероятнейшее число наступления события.</u>

- 1. В сосуд емкостью 10 л попала ровно одна болезнетворная бактерия. Какова вероятность зачерпнуть ее при наборе из этого сосуда стакана воды (200 cm^3) ?
- 2. В урне 2 белых и 3 черных шара. Из урны вынимают подряд два шара. Найдите вероятность того, что оба шара белые.
- 3. Брошена игральная кость. Найдите вероятность того, что выпадет четное число очков.
- 4. При стрельбе по мишени вероятность сделать отличный выстрел равна 0,3, а вероятность выстрела на оценку «хорошо» равна 0,4. Какова вероятность получить за сделанный выстрел оценку не ниже «хорошо»?
- 5. В партии из 100 деталей отдел технического контроля обнаружил 5 нестандартных деталей. Чему равна относительная частота появления нестандартных деталей?
- 6. Пусть всхожесть семян оценивается вероятностью 0,7. Какова вероятность того, что из двух посеянных семян взойдет хотя бы одно.

ТЕМЫ И ТИПОВОЙ ВАРИАНТ ЗАДАНИЙ КОНТРОЛЬНОЙ РАБОТЫ (ОЧНО-ЗАОЧНАЯ ФОРМА)

- Тема 1. Теоремы сложения и умножения вероятностей. Полная вероятность.
- <u>Тема 2. Формулы Бейеса, Бернулли, Пуассона. Вероятность наступления хотя бы одного события. Локальная и интегральная теоремы Лапласа. Невероятнейшее число наступления события.</u>
- <u>Тема 3. Случайные величины, дискретные и непрерывные случайные величины.</u>
 <u>Распределение дискретных случайных величин. Функция распределения, ее основные свойства.</u>
 <u>Числовые характеристики дискретных случайных величин. Функция распределения вероятностей, плотность распределения непрерывных случайных величин, их свойства.</u>
 <u>Числовые характеристики непрерывных случайных величин, их свойства</u>
- <u>Тема 4. Примеры законов распределения случайных величин и их числовые</u> характеристики Предельные теоремы вероятностей (закон больших чисел).
- <u>Тема 5. Основные понятия и задачи математической статистики. Полигон и гистограмма. Числовые характеристики генеральной и выборочной совокупностей. Статистические функции параметров распределения (точечные, интервальные).</u>

- 1. В каждой из двух урн содержится по 6 черных шаров и по 4 белых. Из первой урны наудачу извлечен один шар и переложен во вторую. Найти вероятность того, что шар, извлеченный из второй урны, окажется черным.
- 2. На заводе имеется N=5 цехов. Вероятность того, что некачественная деталь отсутствует в этих цехах, одинакова и равна p=0,2. Составить закон распределения числа цехов, на которых искомая деталь отсутствует в данный момент. Построить многоугольник распределения. Найти дисперсию и среднеквадратичное отклонение числа цехов, на которых искомая деталь отсутствует в данный момент.
- 3. Дискретная случайная величина X может принимать только два значения: x_1 и x_2 , причем $x_1 < x_2$. Известны вероятность $p_1 = 0,1$ возможного значения x_1 , математическое ожидание M(X)=3,9 и дисперсия D(X)=0,09. Найти закон распределения этой случайной величины.
- 4. Случайная величина X задана интегральной функцией (функцией распределения) F(x). Требуется: 1) найти дифференциальную функцию (плотность вероятности); 2) найти математическое ожидание и дисперсию X; 3) построить графики интегральной и дифференциальной функций.

$$F(x) = \begin{cases} 0 & npu \ x \le 0 \\ \frac{x^2}{100} & npu \ 0 < x \le 10 \\ 1npu & x > 10 \end{cases}$$

5. Заданы среднее квадратичное отклонение σ =10 нормально распределенной случайной величины X, выборочная средняя \bar{x} =18,61 , объем выборки n=16. Найти доверительный интервал для оценки неизвестного математического ожидания а с заданной надежностью γ =0,95

Формулировки и перечень всех задач, с указаниями к решению и образцами решений типовых заданий, представлены в пособии:

Антипов, Ю.Н. Теория вероятностей и математическая статистика. Учебно-методическое пособие по освоению дисциплины для студентов заочной формы обучения по направлениям подготовки в бакалавриате / Ю.Н. Антипов, Ж.И. Виницкая, Т.А. Кутузова. – Калининград, Издательство ФГБОУ ВО «КГТУ», 2016. – 78 с.

Приложение №5

ТИПОВЫЕ ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ

- 1. Основные понятия комбинаторики: размещения, перестановки, сочетания.
- 2. Виды случайных событий.
- 3. Алгебра событий.
- 4. Классическое и статистическое определения вероятности события. Свойства вероятности.
- 5. Теорема сложения вероятностей несовместных событий.
- 6. Теорема умножения вероятностей независимых событий.
- 7. Условная вероятность. Теорема умножения вероятностей зависимых событий.
- 8. Теорема сложения вероятностей совместных событий.
- 9. Противоположные события. Вероятность появления хотя бы одного события.
- 10. Полная группа событий. Формула полной вероятности.
- 11. Вероятность гипотез. Формулы Бейеса.
- 12. Повторение испытаний. Формула Бернулли.
- 13. Локальная теорема Лапласа.
- 14. Распределение Пуассона.
- 15. Интегральная теорема Лапласа.
- 16. Случайные величины.
- 17. Закон распределения вероятностей дискретной случайной величины.
- 18. Ряд и многоугольник распределения.
- 19. Числовые характеристики дискретных случайных величин.
- 20. Математическое ожидание дискретной случайной величины, его свойства.
- 21. Математическое ожидание числа появлений события в независимых испытаниях.
- 22. Дисперсия дискретной случайной величины, её свойства.
- 23. Формула для вычисления дисперсии.
- 24. Дисперсия числа появлений события в независимых испытаниях.
- 25. Среднее квадратическое отклонение. Закон больших чисел.
- 26. Функция распределения вероятностей случайной величины, её свойства, график.
- 27. Плотность распределения вероятностей непрерывной случайной величины, её св-ва.
- 28. Вероятность попадания непрерывной случайной величины в заданный интервал.
- 29. Нахождение функции распределения по известной плотности распределения.
- 30. Вероятностный смысл плотности распределения.
- 31. Закон равномерного распределения вероятностей
- 32. Показательное распределение.
- 33. Числовые характеристики непрерывных случайных величин.
- 34. Нормальное распределение, его математическое ожидание, дисперсия.
- 35. Нормальная кривая.
- 36. Доверительные интервалы для оценки математического ожидания нормального распределения при известном δ.
- 37. Вероятность попадания в заданный интервал нормальной случайной величины.
- 38. Понятие о системе двух случайных величин.
- 39. Закон распределения вероятностей дискретной двумерной случайной величины.
- 40. Функция распределения двумерной случайной величины.
- 41. Двумерная плотность вероятности.
- 42. Числовые характеристики системы двух случайных величин.
- 43. Корреляционный момент и коэффициент корреляции.
- 44. Линейная регрессия и линейная корреляция.

- **45.** Генеральная и выборочная совокупность. Повторная и бесповторная выборки. Статистическое распределение выборки.
- 46. Эмпирическая функция распределения.
- 47. Полигон и гистограмма.
- 48. Статистические оценки параметров распределения.
- 49. Несмещённые, эффективные и состоятельные оценки.
- 50. Генеральная средняя. Выборочная средняя. Групповая и общая средние.
- 51. Генеральная дисперсия. Выборочная дисперсия.
- 52. Формула для вычисления дисперсии.
- 53. Точность оценки, доверительная вероятность (надёжность). Доверительный интервал.
- 54. Функциональная, статистическая и корреляционная зависимости.
- 55. Выборочные уравнения регрессии.
- 56. Выборочный коэффициент корреляции.
- 57. Статистическая гипотеза. Нулевая и конкурирующая, простая и сложная гипотеза.
- 58. Критерии согласия.
- 59. Методы проверки статистических гипотез.

ТИПОВЫЕ ЭКЗАМЕНАЦИОННЫЕ ЗАДАНИЯ

- 1). В ящике 100 деталей, из них 10 бракованных. Наудачу извлечены четыре детали. Найти вероятность того, что среди извлечённых деталей: а) нет бракованных; б) нет годных.
- 2). В партии 10% нестандартных деталей. Наудачу отобраны четыре детали. Написать биномиальный закон распределения случайной дискретной величины X числа нестандартных деталей среди четырёх отобранных.
- 3) Среди 30 экзаменационных билетов 8 лёгких. Два студента по очереди берут по билету. Какова вероятность того, что студентам достанется не больше одного лёгкого билета?
- 4). 40% изделий данного предприятия это продукция высшего сорта. Некто приобрёл 5 изделий, изготовленных на этом предприятии. Чему равна вероятность, что четыре из них высшего сорта?
- 5). Из 20 стрелков 5 попадают в мишень с вероятностью 0.8; 8-с вероятностью 0.7; 4- с вероятностью 0.6 и 3- с вероятностью 0.5. Найти вероятность того, что наудачу выбранный студент не поразит мишень.
- 6). Из 30 кинескопов, имеющихся в телевизионном ателье, 7 штук произведены заводам № 1, 15-3аводом № 2, восемь заводом № 3. Вероятность того, что кинескоп изготовленный заводом № 1, в течение гарантийного срока не выйдет из строя, равна 0.95. Для кинескопа завода № 2 такая вероятность равна 0.9, а для завода № 3 0.8. Выбранный наудачу кинескоп выдержал гарантийный срок. Найти вероятность того, что это был кинескоп, изготовленный заводом № 3.
- 7). Вероятность выклева стерляди из икры в искусственных условиях, равна 0.7. Сколько икринок стерляди нужно взять на контроль, чтобы с надёжностью 0,95 можно было ожидать, что отклонение относительной частоты от вероятности выклева не превзойдёт 0,05?
- 8) Случайная величина X имеет следующую интегральную функцию распределения

вероятностей
$$F(x) = \begin{cases} 0, ecnu \cdot x < 1, \\ 1 - e^{-0.5(x-1)}, ecnu \cdot x \ge 1. \end{cases}$$

Требуется: а) найти дифференциальную функцию распределения вероятностей; б) найти вероятность того, что случайная величина X принимает значение из интервала (0,5;2,5)