

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ И.о. директора института

Фонд оценочных средств (приложение к рабочей программе модуля) «ЛИСКРЕТНЫЕ МОЛЕ ЛИ ПРОИЗВОЛСТВЕННЫХ СИСТЕ

«ДИСКРЕТНЫЕ МОДЕЛИ ПРОИЗВОДСТВЕННЫХ СИСТЕМ»

основной профессиональной образовательной программы магистратуры по направлению подготовки

15.04.04 АВТОМАТИЗАЦИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ И ПРОИЗВОДСТВ

ИНСТИТУТ РАЗРАБОТЧИК цифровых технологий

кафедра прикладной математики и информационных технологий

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование компетен-	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные			
ции	7	с компетенциями			
ОПК-5 Способен разрабатывать аналитические и численные методы при создании математических моделей машин, приводов, оборудования, систем, технологических процессов	Дискретные модели производственных систем	- математический аппарат, принципы и этапы разработки дискретных и вероятностных моделей в научной, проектной и производственно-технологической деятельности; - задачи и типовые методы разработки моделей производственных и технологических процессов с целью анализа их эффективности; - численные и аналитические методы для исследования дискретных и вероятностных математических моделей эффективности; - численные и аналитические методы для исследования дискретных и вероятностных математических моделей. Уметь: - исследовать и формализовать реальную производственную систему для разработки дискретных вероятностных моделей в производственно—технологической деятельности; - численные и аналитические методы для исследования дискретных и вероятностных моделей в производственно—технологической деятельности; - численные и аналитические методы для исследования дискретных и вероятностных математических моделей. Владеть: - современными информационными технологиями для разработки программ имитационного моделирования и обработки экспериментальных данных;			

	- навыками разработки и при- менения компьютерных про- грамм на основе дискретных и вероятностных моделей.		

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов;
- задания по расчетно-графической работе.

Промежуточная аттестация в форме зачета проходит по результатам прохождения всех видов текущего контроля успеваемости. В отдельных случаях (при не прохождении всех видов текущего контроля) зачет может быть проведен в виде тестирования.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5		
оценок	0-40%	41-60%	61-80 %	81-100 %		
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»		
	тельно»	тельно»				
Критерий	«не зачтено»	«зачтено»				
1 Системность	Обладает частич-	Обладает мини-	Обладает набо-	Обладает полно-		
и полнота зна-	ными и разрознен-	мальным набором	ром знаний, до-	той знаний и си-		
ний в отноше-	ными знаниями, ко-	знаний, необходи-	статочным для	стемным взглядом		
нии изучаемых	торые не может	мым для систем-	системного	на изучаемый объ-		
объектов	научно-корректно	ного взгляда на	взгляда на изуча-	ект		
	связывать между со-	изучаемый объект	емый объект			
	бой (только некото-					
	рые из которых мо-					
	жет связывать					
	между собой)					
2 Работа с ин-	Не в состоянии	Может найти не-	Может найти,	Может найти, си-		
формацией	находить необходи-	обходимую ин-	интерпретиро-	стематизировать		
	мую информацию,	формацию в рам-	вать и система-	необходимую ин-		
	либо в состоянии	ках поставленной	тизировать необ-	формацию, а		
	находить отдельные	задачи				

Система	2	3	4	5		
оценок	0-40%	41-60%	61-80 %	81-100 %		
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»		
	тельно»	тельно»				
Критерий	«не зачтено»		«зачтено»			
	фрагменты инфор-		ходимую инфор-	также выявить но-		
	мации в рамках по-		мацию в рамках	вые, дополнитель-		
	ставленной задачи		поставленной за-	ные источники ин-		
			дачи	формации в рам-		
				ках поставленной		
				задачи		
3 Научное	Не может делать	В состоянии осу-	В состоянии осу-	В состоянии осу-		
осмысление	научно корректных	ществлять научно	ществлять систе-	ществлять систе-		
изучаемого яв-	выводов из имею-	корректный ана-	матический и	матический и		
ления, про-	щихся у него сведе-	лиз предоставлен-	научно коррект-	научно-коррект-		
цесса, объекта	ний, в состоянии	ной информации	ный анализ	ный анализ предо-		
	проанализировать		предоставленной	ставленной ин-		
	только некоторые		информации, во-	формации, вовле-		
	из имеющихся у		влекает в иссле-	кает в исследова-		
	него сведений		дование новые	ние новые реле-		
			релевантные за-	вантные постав-		
			даче данные	ленной задаче дан-		
				ные, предлагает		
				новые ракурсы по-		
				ставленной задачи		
4 Освоение	В состоянии решать	В состоянии ре-	В состоянии ре-	Не только владеет		
стандартных	только фрагменты	шать поставлен-	шать поставлен-	алгоритмом и по-		
алгоритмов ре-	поставленной за-	ные задачи в соот-	ные задачи в со-	нимает его ос-		
шения профес-	дачи в соответствии	ветствии с задан-	ответствии с за-	новы, но и предла-		
сиональных за-	с заданным алгорит-	ным алгоритмом	данным алгорит-	гает новые реше-		
дач	мом, не освоил		мом, понимает	ния в рамках по-		
	предложенный ал-		основы предло-	ставленной задачи		
	горитм, допускает		женного алго-			
	ошибки		ритма			

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

ОПК-5 Способен разрабатывать аналитические и численные методы при создании математических моделей машин, приводов, оборудования, систем, технологических процессов.

Тестовые задания открытого типа

1. Упрощенный образ изучаемого явления, записанный с помощью математической символики, называется

Ответ: математическая модель.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ

5

2. Процесс установления соответствия математической модели реальной системе и исследования

полученной модели с целью изучения характеристик реальной системы называется

Ответ: математическое моделирование.

3. Модели, описывающие объекты, процессы (системы), на функционирование которых суще-

ственное влияние оказывают случайные возмущающие факторы (воздействия), называются

Ответ: стохастические (вероятностные).

4. Модели, описывающие объекты, процессы (системы), на функционирование которых суще-

ственное влияние оказывают случайные возмущающие факторы (воздействия), называются

Ответ: детерминированные

5. Кортеж, в котором установлены входной, выходной и внутренний алфавиты, а также функция

переходов и функция выходов, определяет

Ответ: конечный автомат.

6. Случайный процесс, протекающий в системе, в котором для любого момента времени t_0 вероят-

ность любого состояния системы при $t>t_0$ зависит только от ее состояния при $t=t_0$ и не зависит

от того, как и когда система пришла в это состояние, называется

Ответ: марковский (случайный процесс без последствий).

7. Марковский случайный процесс с дискретными состояниями и дискретным временем называ-

ется

Ответ: марковская цепь.

8. Если в марковской цепи возможен переход из любого состояния A_i в любое другое состояние

 A_i за конечное число шагов, то цепь называется

Ответ: эргодическая.

9. Последовательность однородных событий, состоящих в переходах системы от одного состояния к другому, образует

————
Ответ: поток событий.

10. Стационарный пуассоновский поток событий, обладающий свойствами ординарности, стационарности и отсутствия последействия. называется

Ответ: простейший поток.

11. Динамическая система, предназначенная для эффективного обслуживания потока заявок (требований на обслуживание) при ограничениях на ресурсы системы, называется

Ответ: система массового обслуживания.

12. В протоколе FIFO правила выбора заявок из очереди выбирается заявка, которая в очереди

Ответ: первая.

13. В протоколе LIFO правила выбора заявок из очереди выбирается заявка, которая в очереди

Ответ: последняя.

14. Чтобы вычислить все вероятности состояний системы массового обслуживания в функции времени, нужно составить

Ответ: уравнения Колмогорова.

15. Марковский процесс, протекающий в системе с конечным числом состояний, называется процессом размножения и гибели, если структура графа его состояний является

Ответ: линейной.

16. Система массового обслуживания, в которой все источники заявок находятся внутри системы, называются

Ответ: замкнутые (системы Энсгета).

17. Принцип, в соответствии с которым поступающие на вход обслуживающей системы требования подключаются из очереди к процедуре обслуживания, называется

Ответ: дисциплина очереди.

18. Если в системе массового обслуживания входящий поток требований и выходящий поток обслуженных заявок являются пуассоновскими, то такая система называется

Ответ: марковская.

19. Средняя доля поступающих заявок, обслуживаемых системой массового обслуживания, называется

Ответ: относительная пропускная способность.

20. Среднее число заявок, обслуживаемых системой массового обслуживания в единицу времени, называется

Ответ: абсолютная пропускная способность.

21. Вероятность того, что заявка покинет систему массового обслуживания без обслуживания, называется

Ответ: вероятность отказа.

22 Последовательность заявок, поступающих на обслуживание в систему массового обслуживания, называется

Ответ: поток заявок (входящий поток).

23. Среднее число заявок, поступающих в систему массового обслуживания, называется

Ответ: интенсивность потока заявок.

Тестовые задания закрытого типа

- 1. Система массового обслуживания (СМО), в которой отсутствует очередь, называется
- а. нулевая СМО
- <u>б.</u> СМО с отказами
- в. потоковая СМО
- г. СМО без ограничений на длину очереди
- 2. Сумма вероятностей всех состояний системы массового обслуживания равна
- a. 0,5
- б. 0,1
- $B.0,5^n$
- <u>г.</u> 1

- 3. Если в одноканальной системе массового обслуживания время обслуживания одной заявки t=0.5, то интенсивность обслуживания равна
- a. 1
- б. 0,5
- **B.** 2
- г. 5
- 4. Пусть на вход системы с отказами, состоящей из одного канала обслуживания с интенсивностью обслуживания λ , поступает пуассоновский поток заявок с интенсивностью μ . Тогда в стационарном режиме вероятность отказа в обслуживании определяется по формуле
- a. $P_{\text{OTK}}^* = \frac{\lambda}{\mu}$
- $\underline{\mathbf{6.}}\,P_{\mathrm{OTK}}^* = \frac{\lambda}{\lambda + \mu}$
- B. $P_{\text{отк}}^* = \frac{\lambda}{\lambda \mu}$
- Γ . $P_{\text{OTK}}^* = \frac{\lambda \mu}{\lambda + \mu}$
- 5. Пусть на вход системы с отказами, состоящей из одного канала обслуживания с интенсивностью обслуживания λ , поступает пуассоновский поток заявок с интенсивностью μ . Тогда в стационарном режиме вероятность обслуживания определяется по формуле
- a. $P_0^* = \frac{\mu}{\lambda}$
- $\underline{\mathbf{6.}} P_{0}^{*} = \frac{\mu}{\lambda + \mu}$
- в. $P_0^* = \frac{\lambda \mu}{\mu}$
- Γ . $P_0^* = \frac{\lambda \mu}{\lambda \mu}$
- 6. Пусть P_{ij} -матрица вероятностей перехода дискретной однородной цепи Маркова из состояния i в состояние j за один шаг. Тогда матрица P_n переходных вероятностей за n шагов определяется по формуле
- a. $P_n = n \cdot P_{ij}$.
- б. $P_n = \frac{1}{n} \cdot P_{ij}$
- $\underline{\mathbf{B.}} P_n = P_{ij}^{\ n}$
- г. $P_n = (P_{ij})^T$
- 7. Число возможных состояний одноканальной системы массового обслуживания с отказами равно
- <u>a</u>. 2
- б. 1

в. 3

г. 4

З ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/ КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Задание на расчетно-графическую работу

На систему массового обслуживания (СМО) поступают заявки. Среднее время ожидания поступления очередной заявки — a ч. Среднее время обслуживания одной заявки —b ч. Найти предельные вероятности состояний системы, показатели эффективности СМО, рассчитать экономическую эффективность работы СМО, если доход от обслуживания одной заявки составляет c руб., а содержание одного канала обслуживания обходится в d руб/ч.

Расчеты провести для:

- 1) одноканальной СМО с отказами;
- 2) трехканальной СМО с отказами;
- 3) одноканальной СМО с неограниченной очередью;
- 4) четырехканальной СМО с неограниченной очередью;
- 5) одноканальной СМО с очередью не более трех заявок;
- 6) двухканальной СМО с очередью не более четырех заявок.

№ва-	1	2	3	4	5	6	7	8	9	10
ри-										
анта										
a	4,0	4,0	2,0	4,0	6,0	5,0	8,0	6,0	7,0	9,0
b	3,5	2,5	1,5	2,5	4,5	4,5	7,5	5,5	6,5	8,5
С	8000	7000	7500	3500	2400	4200	6500	5500	9000	8000
d	300	400	240	120	95	150	150	100	300	200

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Дискретные модели производственных систем» представляет собой компонент основной профессиональной образовательной программы магистратуры по направлению подготовки 15.04.04 Автоматизация технологических процессов и производств.

Преподаватель-разработчик – к.т.н., доцент Т.В. Ермакова

Фонд оценочных средств рассмотрен и одобрен и.о. заведующего кафедрой прикладной математики и информационных технологий.

И.о. заведующего кафедрой

А.И. Руденко

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой цифровых систем автоматики

И.о. заведующего кафедрой

В.И. Устич

Фонд оценочных средств рассмотрен и одобрен методической комиссией института цифровых технологий (протокол №5 от 29 августа 2024 г).

Председатель методической комиссии

