

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Директор института

Фонд оценочных средств (приложение к рабочей программе дисциплины) «КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ В СУДОСТРОЕНИИ»

основной профессиональной образовательной программы магистратуры по направлению подготовки

26.04.02 КОРАБЛЕСТРОЕНИЕ, ОКЕАНОТЕХНИКА И СИСТЕМОТЕХНИКА ОБЪЕКТОВ МОРСКОЙ ИНФРАСТРУКТУРЫ

ИНСТИТУТ РАЗРАБОТЧИК Морских технологий, энергетики и строительства Научно-образовательный центр судостроения, морской инфраструктуры и техники

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование компетенции	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями
ОПК-2 Способен применять фундаментальные основы теории моделирования как основного метода исследования и научно обоснованного метода оценки характеристик сложных систем, используемого для принятия решений в сфере проектирования и постройки средств океанотехники; ПК-3 Способен применять технологии и инструменты искусственного интеллекта при создании современных и перспективных кораблей и судов	Компьютерное моделирование в судостроении	Знать: - фундаментальные принципы, методы и классификацию компьютерного моделирования сложных технических систем, их применимость и ограничения в судостроении, с акцентом на корпусные конструкции; - основные типы математических моделей, используемых для описания поведения корпусных конструкций судов; - основные понятия в использовании метода цифровых двойников. Уметь: - формулировать инженерные задачи проектирования и оценки характеристик корпуса судна в виде задач компьютерного моделирования; - выбирать и научно обосновывать адекватный тип математической модели и численный метод для исследования конкретных характеристик корпуса судна как сложной системы; - создавать геометрические и расчетные модели корпусных конструкций в специализированном ПО. Владеть: - навыками применения основных методов компьютерного моделирования для анализа прочности, устойчивости и гидродинамических характеристик корпусных конструкций; - практическими навыками работы с основными специализированными программными комплексами.

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов;

К оценочным средствам для промежуточной аттестации относятся:

- типовые задания по расчетно-графической работе.

Промежуточная аттестация по дисциплине в первом семестре проводится в форме зачета, во втором семестре — в форме дифференцированного зачета, которые выставляются по результатам прохождения всех видов текущего контроля успеваемости. При необходимости тестовые задания закрытого и открытого типов могут быть использованы для проведения промежуточной аттестации.

1.3 Оценивание тестовых заданий открытого и закрытого типа

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (таблица 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетворит	«удовлетворите	«хорошо»	«отлично»
	ельно»	льно»		
Критерий	«не зачтено»		«зачтено»	
1 Системность	Обладает	Обладает	Обладает	Обладает
и полнота	частичными и	минимальным	набором	полнотой
знаний в	разрозненными	набором знаний,	знаний,	знаний и
отношении	знаниями,	необходимым	достаточным	системным
изучаемых	которые не может	для системного	для	взглядом на
объектов	научно- корректно	взгляда на	системного	изучаемый
	связывать между	изучаемый	взгляда на	объект
	собой (только	объект	изучаемый	
	некоторые из		объект	
	которых может			
	связывать между			
	собой)			
2 Работа с	Не в состоянии	Может найти	Может найти,	Может найти,
информацией	находить	необходимую	интерпретиро	систематизир
	необходимую	информацию в	вать и	овать
	информацию,	рамках	систематизир	необходимую
	либо в состоянии	поставленной	овать	информацию,
	находить	задачи	необходимую	а также
	отдельные		информацию	выявить
	фрагменты		в рамках	новые,
	информации в		поставленной	дополнительн
	рамках		задачи	ые источники
	поставленной			информации
	задачи			в рамках
				поставленной
				задачи
3 Научное	Не может делать	В состоянии	В состоянии	В состоянии
осмысление	научно	осуществлять	осуществлять	осуществлять
изучаемого	корректных	научно	систематичес	систематичес

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетворит	«удовлетворите	«хорошо»	«отлично»
	ельно»	льно»	-	
Критерий	«не зачтено»		«зачтено»	
явления,	выводов из	корректный	кий и научно	кий и научно-
процесса,	имеющихся у него	анализ	корректный	корректный
объекта	сведений, в	предоставленной	анализ	анализ
	состоянии	информации	предоставлен	предоставлен
	проанализировать		ной	ной
	только некоторые		информации,	информации,
	из имеющихся у		вовлекает в	вовлекает в
	него сведений		исследование	исследование
			новые	новые
			релевантные	релевантные
			задаче	поставленной
			данные	задаче
				данные,
				предлагает
				новые
				ракурсы
				поставленной
				задачи
4 Освоение	В состоянии	В состоянии	В состоянии	Не только
стандартных	решать только	решать	решать	владеет
алгоритмов	фрагменты	поставленные	поставленные	алгоритмом и
решения	поставленной	задачи в	задачи в	понимает его
профессионал	задачи в	соответствии с	соответствии	основы, но и
ьных задач	соответствии с	заданным	с заданным	предлагает
	заданным	алгоритмом	алгоритмом,	новые
	алгоритмом, не		понимает	решения в
	освоил		основы	рамках
	предложенный		предложенног	поставленной
	алгоритм,		о алгоритма	задачи
	допускает ошибки			

1.4 Оценивание тестовых заданий открытого и закрытого типа осуществляется по системе зачтено / не зачтено («зачтено» – 41-100% правильных ответов; «не зачтено» – менее 40 % правильных ответов) или по пятибалльной системе (оценка «неудовлетворительно» - менее 40 % правильных ответов; оценка «удовлетворительно» – от 41 до 60 % правильных ответов; оценка «хорошо» – от 61 до 80 % правильных ответов; оценка «отлично» – от 81 до 100 % правильных ответов). Для заданий открытого типа оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕ-СТАЦИИ

ОПК-2 Способен применять фундаментальные основы теории моделирования как основного метода исследования и научно обоснованного метода оценки характеристик сложных систем, используемого для принятия решений в сфере проектирования и постройки средств океанотехники;

ПК-3 Способен применять технологии и инструменты искусственного интеллекта при создании современных и перспективных кораблей и судов

	Тестовые задания открытого типа:
	1. Процесс создания трехмерной копии судна, охватывающей его геометрию, кон-
струкі	цию и системы, называется
	Ответ: Цифровой двойник
	2. Международный стандарт для обмена данными электронной модели изделия в су-
достро	рении обозначается как
	Ответ: ISO 10303 (STEP)
OTC	3. Раздел механики, изучающий движение жидкостей и их взаимодействие с телами,
	Ответ: Гидродинамика
судна,	4. Метод численного моделирования, применяемый для расчета обтекания корпуса это
	Ответ: Метод конечных объемов (МКО)
как	5. Аббревиатура CFD в контексте гидродинамических расчетов расшифровывается
	Ответ: Вычислительная гидродинамика
ный),	6. Параметр, определяющий режим течения жидкости (ламинарный или турбулент-
	Ответ: Число Рейнольдса

7. Тип моделирования, позволяющий оценить поведение конструкции под нагрузкой
с учетом деформаций и напряжений, это
Ответ: Метод конечных элементов
8. Процесс проектирования, в котором человек задает компьютеру или алгоритму
набор требований, ограничений и целей, а затем получает от него сотни или тысячи вари-
антов решений, это
Ответ: Генеративный дизайн
9. Классификация компьютерного моделирования по типу математических моделей
включает детерминированные и модели.
Ответ: Стохастические
10. Математическая модель, используемая для анализа колебаний корпуса судна, это
модель
Ответ: Динамическая
11. Процесс верификации компьютерной модели направлен на
Ответ: Проверку корректности математической модели
12. Набор решателей с открытым исходным кодом, применяемый для гидродинами-
ческих расчетов в судостроении, это
Ответ: OpenFOAM
•
13. Метод, используемый для моделирования взаимодействия корпуса судна с вол-
нами, это
Ответ: Метод панелей
14 M
14. Метод автоматизированного проектирования, который предполагает создание
3D-моделей с использованием параметров, зависимостей и ограничений, это
·

Ответ: Параметрическое моделирование

15. Технология, используемая для автоматизации проектирования судовых кон-
струкций, это
Ответ: CAD-система
16. Процесс создания расчетной сетки для численного моделирования называется
17. Основное уравнение, используемое в гидродинамических расчетах для описания
движения жидкости, это
Ответ: Уравнение Навье-Стокса
18. Метод, применяемый для анализа усталостной прочности корпусных конструкций, это
Ответ: Спектральный анализ
19. Программное обеспечение для моделирования и анализа физических процессов
при проектировании изделий, это (аббревиатура).
Ответ: САЕ
20. Понятие, обозначающее совокупность данных о судне, хранящихся в единой ин-
формационной среде, это
Ответ: Информационная модель судна
21. Автоматизированный метод проектирования, использующий математические ал-
горитмы для определения оптимального распределения материала внутри заданного про-
странства, с целью создания конструкций с улучшенными характеристиками, такими как
повышенная прочность и пониженная масса, при соблюдении ограничений по условиям
эксплуатации, это
Ответ: Топологическая оптимизация
22. Процесс сравнения результатов компьютерного моделирования с эксперимен-
тальными данными называется
Ответ: Валидация модели

Тестовые задания закрытого типа:

- 23. Метод, применяемый для анализа напряженно-деформированного состояния судовых конструкций, это
 - а) Метод конечных элементов (МКЭ)
 - б) Метод конечных разностей
 - в) Метод статического взвешивания
 - г) Метод линейной регрессии
- 24. Пакет программ, используемый для решения задач вычислительной гидродинамики, это
 - a) AutoCAD
 - **6) ANSYS Fluent**
 - в) Microsoft Excel
 - г) Adobe Photoshop
 - 25. Стандарт, применяемый для обмена данными электронной модели изделия, это
 - a) ISO 9001
 - б) ISO 10303 (STEP)
 - B) ΓΟCT P 21.1101
 - г) ПУЭ
 - 26. Электронная модель судна представляет собой
 - а) Цифровое представление судна
 - б) Фотографию корпуса в 3D
 - в) Электронный журнал судна
 - г) Схему энергоснабжения
 - 27. Метод, используемый для расчета сопротивления воды движению судна, это
 - а) Метод термодинамического анализа
 - б) Метод статического взвешивания
 - в) Метод химического анализа
 - г) Метод вычислительной гидродинамики (CFD)

- 28. Документ, устанавливающий требования к моделированию судовых конструкций в России, это
 - a) ΓΟCT 9464
 - б) СНиП 2.05.02
 - в) Правила Российского морского регистра судоходства (РМРС)
 - г) ПУЭ
 - 29. Эвристический метод, применяемый для оптимизации проектных решений, это
 - а) Метод простых итераций
 - б) Генетический алгоритм
 - в) Метод Гаусса
 - г) Метод Ньютона
- 30. Метод, используемый для моделирования свободной поверхности при расчете волнового сопротивления, это
 - а) Метод конечных разностей
 - б) Метод VOF (Volume of Fluid)
 - в) Метод Монте-Карло
 - г) Метод Эйлера

Ответ: б

3 ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ / КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Учебным планом дисциплины предусмотрено выполнение расчетно-графической работы (РГР).

Целью РГР является практическое применение и закрепление студентами теоретических знаний, полученных при изучении дисциплины «Компьютерное моделирование в судостроении» путем решения конкретных инженерных задач и приобретение навыков: построения электронных моделей судов; проведения вычислительных экспериментов с использованием методов вычислительной гидродинамики (СFD) и метода конечных элементов (МКЭ); анализа результатов моделирования и их интерпретации; оптимизации проектных параметров с применением современных программных средств.

Выполнение РГР предполагает проработку ряда задач:

- Выбор и обоснование объекта моделирования (например, тип судна, его обводы).
- Создание геометрической 3D-модели корпуса в САПР.
- Построение расчетной сетки для CFD-анализа.
- Моделирование обтекания корпуса судна с определением поля давлений и сил сопротивления.
- Анализ напряженно-деформированного состояния конструкции методом конечных элементов.
 - Интерпретация полученных результатов и формулирование выводов.
 - Оформление пояснительной записки и графической части.

Исходные данные для выполнения РГР выдаются преподавателем индивидуально.

Задание на расчетно-графической работу включает в себя следующие исходные данные:

- Тип судна (например, контейнеровоз, танкер, катер).
- Основные элементы теоретического чертежа (длина, ширина, осадка, коэффициенты полноты).
 - Условия моделирования (скорость хода, глубина акватории, режим течения).
- Требования к программному обеспечению (например, ANSYS, NAPA, SolidWorks, OpenFOAM).
 - Форма представления результатов (графики, эпюры, 3D-визуализации).

Содержание пояснительной записки РГР (перечень подлежащих разработке вопросов):

- 1. Титульный лист.
- 2. Задание на РГР.

- 3. Введение (актуальность, цели и задачи работы).
- 4. Обзор программных средств для компьютерного моделирования.
- 5. Описание объекта исследования и исходных данных.
- 6. Построение геометрической модели корпуса.
- 7. Подготовка расчетной сетки.
- 8. Результаты CFD-анализа (поле скоростей, давлений, сопротивление воды).
- 9. Результаты МКЭ-анализа (напряжения, деформации).
- 10. Анализ и интерпретация результатов.
- 11. Заключение.
- 12. Список использованных источников.
- 13. Приложения (графики, скриншоты, таблицы).

Защита РГР проводится после предоставления завершенной работы и устранения всех замечаний. Защита проводится устно в формате собеседования по материалам работы. Система и критерии выставления оценки приведены в таблице 2.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Компьютерное моделирование в судостроении»» представляет собой компонент основной профессиональной образовательной программы магистратуры по направлению подготовки 26.04.02 «Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры».

Преподаватель-разработчик — Романюта Д.А., заместитель директора научно-образовательного центра судостроения, морской инфраструктуры и техники.

Фонд оценочных средств рассмотрен и одобрен директором научно-образовательного центра судостроения, морской инфраструктуры и техники.

Директор НОЦ СМИТ	Е.А. Чуреев.
	<u>_</u>

Фонд оценочных средств рассмотрен и одобрен методической комиссией института морских технологий, энергетики и строительства (протокол № 6 от 26.08.2025).

Председатель методической комиссии Белих О.А. Белых