

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ Начальник УРОПСП

Фонд оценочных средств (приложение в рабочей программе модуля) «ПРОЕКТИРОВАНИЕ СУДОВ»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

26.03.02 КОРАБЛЕСТРОЕНИЕ, ОКЕАНОТЕХНИКА И СИСТЕМОТЕХНИКА ОБЪЕКТОВ МОРСКОЙ ИНФРАСТРУКТУРЫ

Профиль программы «КОРАБЛЕСТРОЕНИЕ»

ИНСТИТУТ морских технологий, энергетики и строительства

РАЗРАБОТЧИК кафедра кораблестроения

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными индикаторами достижения компетенций

Код и наименование	Индикаторы достижения	Дисциплина	Результаты обучения (владения, умения и знания), соотнесенные с компетенциями/индикаторами достижения
компетенции	компетенции		компетенции
ПКС-1: Выполнение проектно-конструкторской документации и подготовка документов при техническом сопровождении производства судов, плавучих сооружений, аппаратов и их составных частей; ПКС-2: Разработка и модернизация проектов, техническое сопровождение производства судов, плавучих сооружений, аппаратов и их составных частей	ПКС-1.2: Выполнение эскизных, технических проектов составных частей судов, плавучих сооружений, аппаратов; ПКС-2.2: Разработка эскизных, технических проектов судов, плавучих сооружений, аппаратов и их составных частей	Проектирова- ние судов	Знать: - основные положения методологии проектирования судов и его организации, - основные качества проекта и судна, технико-экономические условия его эксплуатации и постройки, - математическую постановку и методы решения задачи проектирования судна, - методы и способы составления и совместного решения уравнений теории проектирования судов, - роль и место проверочных расчетов в процессе проектирования, - способы разработки форм обводов проектируемого судна, - нормативные документы, используемые при проектировании судов особенности проектирования и эксплуатации транспортных судов, Уметь: - составлять и решать систему уравнений теории проектирования, определять водоизмещение, мощность, главные измерения и другие характеристики судов ФРП, обосновать необходимость проверочных расчетов и проводить их, - использовать современный программный и математический аппарат в задачах проектирования транспортных судов, - разрабатывать чертежи теоретический и общего расположения, осуществлять выбор архитектурного типа, подбор и компоновку комплектующего оборудования судна, обосновывать принимаемые проектные решения,

- осуществлять разработку и технико-
экономическое обоснование техниче-
ского задания на проектирование су-
дов,
<u>Владеть:</u>
навыками в постановке задачи проек-
тирования транспортных судов и ее
реализации с учетом современных
научно-технических достижений в об-
ласти судостроения

2 ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ ДЛЯ ПОЭТАПНОГО ФОРМИРОВА-НИЯ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ДИСЦИПЛИНЫ (ТЕКУЩИЙ КОНТРОЛЬ) И ПРО-МЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 2.1 Для оценки результатов освоения дисциплины используются:
- оценочные средства текущего контроля успеваемости;
- оценочные средства для промежуточной аттестации по дисциплине.
- 2.2 К оценочным средствам текущего контроля успеваемости относятся:
- задания по контрольной работе (заочная форма обучения);
- тестовые задания;
- 2.3 К оценочным средствам для промежуточной аттестации по дисциплине, проводимой в форме зачета и экзамена, относятся:
 - задания по курсовым проектам;
- промежуточная аттестация в форме зачета проходит по результатам прохождения всех видов текущего контроля успеваемости;
 - вопросы к экзамену.

3 ОЦЕНОЧНЫЕ СРЕДСТВА ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ

3.1. В приложении №1 приведены типовые задания по контрольной работе, выполняемой студентами заочной формы обучения.

Оценивание контрольной работы осуществляется по системе «зачтено/ не зачтено». Критерии оценивания приведены в таблице 2.

3.2. Типовые тестовые задания приведены в приложении №2.

Оценивание результатов тестирования осуществляется по следующей системе:

- 60% заданий и выше оценка «зачтено»;
- менее 60 % оценка «не зачтено».

4 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ ПО ДИСЦИПЛИНЕ

4.1. Промежуточная аттестация в форме зачета в 6-м семестре проходит по результатам прохождения текущего контроля успеваемости.

В отдельных случаях (в случае непрохождения всех видов текущего контроля) зачет может приниматься в виде устного опроса. В таком случае, к оценочным средствам промежуточной аттестации относятся контрольные вопросы по дисциплине.

Зачет может приниматься в виде устного опроса по трем вопросам из перечня типовых контрольных вопросов по дисциплине, представленного в приложении №3.

Критерии оценивая результатов выполнения работы предоставлены в таблице 2.

4.2. Типовое задание к курсовому проекту представлено в приложении №4.

Оценивание курсового проекта осуществляется по пятибалльной шкале, в соответствии с критериями, представленными в таблице 2.

4.3. Промежуточная аттестация в форме экзамена в 7-м семестре проводится по билетам. Перечень типовых экзаменационных вопросов приведен в приложении №5.

Экзаменационные оценки выставляются по пятибалльной шкале в соответствии с критериями, представленными в таблице 2.

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори- тельно»	«удовлетвори- тельно»	«хорошо»	«отлично»
Критерий	«не зачтено»		«зачтено»	
1. Системность	Обладает частич-	Обладает ми-	Обладает	Обладает полно-
и полнота зна-	ными и разрознен-	нимальным	набором знаний,	той знаний и си-
ний в отноше-	ными знаниями, ко-	набором зна-	достаточным для	стемным
нии изучаемых	торые не может	ний, необходи-	системного	взглядом на изу-
объектов	научно- корректно	мым для си-	взгляда на изучае-	чаемый объект
	связывать между со-	стемного	мый объект	
	бой (только некото-	взгляда на изу-		
	рые из которых мо-	чаемый объект		
	жет связывать между			
	собой)			
2. Работа с ин-	Не в состоянии нахо-	Может найти	Может найти, ин-	Может найти, си-
формацией	дить необходимую	необходимую	терпретировать и	стематизировать
	информацию, либо в	информацию в	систематизиро-	необходимую ин-
	состоянии находить	рамках постав-	вать необходимую	формацию, а
	отдельные фраг-	ленной задачи	информацию в	также выявить но-
	менты информации в		рамках поставлен-	вые, дополнитель-
	рамках поставленной		ной задачи	ные источники
	задачи			информации в
				рамках поставлен-
				ной задачи

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетвори- тельно»	«удовлетвори- тельно»	«хорошо»	«отлично»
Критерий	«не зачтено»		«зачтено»	
3. Научное	Не может делать	В состоянии	В состоянии осу-	В состоянии осу-
осмысление	научно корректных	осуществлять	ществлять систе-	ществлять систе-
изучаемого яв-	выводов из имею-	научно кор-	матический и	матический и
ления, про-	щихся у него сведе-	ректный анализ	научно коррект-	научно-коррект-
цесса, объекта	ний, в состоянии проанализировать только некоторые из имеющихся у него сведений	предоставлен- ной информа- ции	ный анализ предоставленной информации, вовлекает в исследование новые релевантные задаче данные	ный анализ предоставленной информации, вовлекает в исследование новые релевантные поставленной задачеданные, предлагает новые ра-
				курсы поставлен- ной задачи
4. Освоение	В состоянии решать	В состоянии	В состоянии ре-	Не только владеет
стандартных	только фрагменты	решать постав-	шать поставлен-	алгоритмом и по-
алгоритмов ре-	поставленной задачи	ленные задачи	ные задачи в соот-	нимает его ос-
шения профес-	в соответствии с за-	в соответствии	ветствии с задан-	новы, но и предла-
сиональных за-	данным алгоритмом,	с заданным ал-	ным алгоритмом,	гает новые реше-
дач	не освоил предло-	горитмом	понимает основы	ния в рамках по-
	женный алгоритм,		предложенного	ставленной задачи
	допускает ошибки		алгоритма	

5 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Проектирование судов» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 26.03.02 Кораблестроение, океанотехника и системотехника объектов морской инфраструктуры, профиль «Кораблестроение».

Фонд оценочных средств рассмотрен и одобрен на заседании кафедры кораблестроения (протокол № 6а от $25.04.2022 \, \Gamma$.)

Заведующий кафедрой

С.В. Дятченко

ТИПОВЫЕ ЗАДАНИЯ ПО КОНТРОЛЬНОЙ РАБОТЕ

(для студентов заочной формы обучения)

- 1. Разрабатывается проект среднего приемно-транспортного рефрижераторного судна чистой грузоподъемностью $P_{\Gamma P}$ 3000 т, скоростью $V_S = 16$ узлов. Удельная погрузочная кубатура груза $\mu_{UH} = 2,5$ м³/т. Дайте оценку водоизмещения, грузоподъемности и главных размерений проектируемого судна. У однотипного судна-прототипа коэффициент утилизации водоизмещения по чистой грузовместимости $\eta_{.\Gamma P0} = 0,40$, коэффициент общей полноты $\delta_0 = 0,67$ и соотношения главных размерений: L/B = 5,0; B/T = 2,74.
- 2. Разрабатывается проект транспортного рефрижераторного судна (TPC) дедвейтом DW = 8000 т. Близкое судно-прототип имеет следующие соотношения главных размерений: L/B = 6,34; B/T = 2,9; H/T = 1,8; коэффициент общей полноты $\delta = 0,67$. Дайте оценку водоизмещения и главных размерений проектируемого судна, если близкое судно-прототип имеет коэффициент утилизации водоизмещения по дедвейту равным $\eta DW0 = 0,56$.
- 3. Разрабатывается проект приемно-транспортного рефрижератора грузоподъемностью $P\Gamma P = 9000$ т, скоростью V = 19узлов. Коэффициент утилизации водоизмещения по грузоподъемности $\eta \Gamma p = 0,6$. Принимается геометрическое подобие проекта и прототипа (D0 = 19630 т, L0 = 100,0 м, B0 = 23,0 м, H0 = 13,7 м, T0 = 8,1 м, $N\Gamma D = 8500$ кВт, VS0 = 19,5 узла). Дайте оценку водоизмещения, главных размерений и коэффициента общей полноты проектируемого судна. С использованием адмиралтейской формы рассчитайте его мощностью. Укажите, к какой группе судов по скоростным характеристикам (быстроходные, среднескоростные, тихоходные) оно относится.
- 4. Разрабатывается проект плавбазы дедвейтом DW=12000т. Близкое судно-прототип имеет водоизмещение D0 = 19000 т, DW0 = 10100т, длину расчетную L0 = 149,0 м, ширину B0 = 21,34 м, высоту борта H0 = 12,64 м, осадку T0 = 8,0 м. Принято решение о сохранении поперечных размеров и об аффинном преобразовании теоретического чертежа по его длине (осадка при этом считается неизменной). Дайте оценку водоизмещения, главных размерений и коэффициента общей полноты проектируемого судна.
- 5. Разрабатывается проект универсального транспортного рефрижераторного судна дедвейтом DW = 6500 т, скоростью V = 17 узлов и с дальностью плавания r = 7000 миль. Дайте оценку водоизмещения, коэффициента общей полноты и главных размерений проектируемого судна, ориентируясь на близкий прототип, у которого D0 = 10350 т, DW0 = 6000 т, грузоподъемность PГР = 4140 т, соотношения главных размерений: L/B = 6.7; B/T = 2.8; H/T = 1.6. Чему станет равно водоизмещение проектируемого судна, если его грузоподъемность увеличится на Δ PГР = 370 т, а коэффициент Нормана равен η H = 1.67.

- 6. Разрабатывается проект большого морозильного траулера (БМРТ) для автономного лова, обработки рыбы и доставки готовой продукции в порт, дедвейтом DW = 1500 т эксплуатационной скоростью VS = 15 узлов и дальностью плавания r = 8000 миль. Приняты следующие соотношения главных размерений: L/B = 5,6; B/T = 2,6; H/T = 1,7 и коэффициент общей полноты $\delta = 0,6$. Дайте оценку водоизмещения и главных размерений проектируемого судна. У однотипного судна-прототипа коэффициент утилизации водоизмещения по дедвейту $\eta dw0 = 0,4$.
- 7. Разрабатывается проект большого морозильного траулера (БМРТ). Близкое судно-прототип имеет водоизмещение D=3600 т, длину расчетную L0=75,0 м, ширину B0=14,0 м, высоту борта B0=10 м, осадку T0=5,5 м. Принято решение об аффинном подобии проекта и судна-прототипа с коэффициентами подобия Ia=1,1; Ia=1,00; Ia=1,01. Дайте оценку водоизмещения, главных размерений и коэффициента общей полноты проектируемого БМРТ. Охарактеризуйте архитектурно-конструктивный тип современных БМРТ.
- 8. Разрабатывается проект суперсейнера дедвейтом DW = 1500 т. Приняты следующие значения относительной длины 1 = 4,5, отношения B/T = 2,5 и коэффициента общей полноты $\delta = 0,6$. Скорость судна VS = 16 узлов. Дайте оценку водоизмещения и главных размерений проектируемого судна, если у однотипного судна-прототипа коэффициент утилизации водоизмещения по дедвейту $\eta DW0 = 0,443$. К какой категории судов по скоростным характеристикам относится проектируемое судно?
- 9. Разрабатывается проект большого морозильного траулера (БМРТ) для автономного лова, обработки рыбы и доставки готовой продукции в порт, дедвейтом DW = 1500 т эксплуатационной скоростью VS = 15 узлов и дальностью плавания r =8000 миль. Приняты следующие соотношения главных размерений: L/B = 5,6; B/T = 2,6; H/T = 1,7 и коэффициент общей полноты δ = 0,6. Дайте оценку водоизмещения и главных размерений проектируемого судна. У однотипного судна-прототипа коэффициент утилизации водоизмещения по дедвейту η dw0 = 0,4.
- 10. Разрабатывается проект большого морозильного траулера (БМРТ). Близкое судно-прототип имеет водоизмещение D=3600 т, длину расчетную L0=75,0 м, ширину B0=14,0 м, высоту борта B0=10 м, осадку T0=5,5 м. Принято решение об аффинном подобии проекта и судна-прототипа с коэффициентами подобия Ia=1,1; ba=1,05; ta=1,0. Дайте оценку водоизмещения, главных размерений и коэффициента общей полноты проектируемого БМРТ. Охарактеризуйте архитектурно-конструктивный тип современных БМРТ.
- 11. Разрабатывается проект рыболовного сейнера (PC) дедвейтом DW = 40т. Приняты следующие соотношения главных размерений: L/B = 4.0; B/T = 2.4. Надводный борт судна в грузу $Fh\delta = 0.8$, коэффициент общей полноты $\delta = 0.52$, а коэффициент полноты конструктивной ватерлинии $\alpha = 0.78$. Дайте оценку водоизмещения и главных размерений проектируемого сей-

нера, если у однотипного судна-прототипа коэффициент утилизации водоизмещения по дедвейту $\eta DW0 = 0,237$. Определите увеличение вместимости проектируемого судна, если его корпус аффинно увеличить по длине на 10%.

12. Разрабатывается проект суперсейнера дедвейтом DW = 1500 т. Приняты следующие значения относительной длины 1 = 4,5, отношения B/T = 2,5 и коэффициента общей полноты $\delta = 0,6$. Скорость судна VS = 16 узлов. Дайте оценку водоизмещения и главных размерений проектируемого судна, если у однотипного судна-прототипа коэффициент утилизации водо-измещения по дедвейту $\eta DW0 = 0,443$. К какой категории судов по скоростным характеристикам относится проектируемое судно?

ТЕСТОВЫЕ ЗАДАНИЯ ПО ДИСЦИПЛИНЕ

Вариант №1

Вариант №1		
1. Технико-эксплу-	1) главные размерения; водоизмещение; дедвейт; грузоподъ-	
атационные характери-	емность	
стики судна опреде-	2) главные размерения; водоизмещение; дедвейт; грузоподъ-	
ляют	емность; грузовместимость	
	3) главные размерения; водоизмещение; дедвейт; грузоподъ-	
	емность; грузовместимость; скорость и дальность плавания	
	4) главные размерения; водоизмещение; дедвейт; грузоподъ-	
	емность; грузовместимость; скорость	
2. Архитектурно-	1) формой и количеством корпусов; формой форштевня ми-	
конструктивный тип	дель-шпангоута и кормы; высотой надводного борта и рас-	
судна определяют	положением МО; системой набора перекрытий; количе-	
	ством и конструкцией палуб	
	2) формой и количеством корпусов; формой форштевня ми-	
	дель-шпангоута и кормы; расположением МО и высотой	
	надводного борта	
	3) количеством и конструкцией палуб; формой и количе-	
	ством корпусов; формой форштевня мидель-шпангоута и	
	кормы	
	4) формой и количеством корпусов; формой форштевня ми-	
	дель-шпангоута и кормы; системой набора перекрытий; вы-	
	сотой надводного борта	
3. Дедвейт судна	1) полезный груз (показатель грузоподъемности); топливо и	
ЭТО	смазочное масло; экипаж с багажом; жидкий балласт	
	2) полезный груз (показатель грузоподъемности); топливо и	
	вода для питания котлов	
	3) полезный груз (показатель грузоподъемности);	
	4) полезный груз (показатель грузоподъемности); топливо,	
	вода для питания котлов и смазочное масло; экипаж с бага-	
	жом	
4. Специализиро-	1) контейнеровозы; лихтеровозы; трейлерные суда; паромы	
ванные грузовые суда	2) лихтеровозы; трейлерные суда.	
для генеральных грузов	3) трейлерные суда; паромы; контейнеровозы	
это	4) паромы; контейнеровозы; лихтеровозы.	
5. Наливные суда	1) танкеры и химовозы	
для перевозки грузов	2) газовозы; танкеры и химовозы	
это	3) химовозы; газовозы; танкеры цементовозы	
	4) химовозы; танкеры цементовозы	

6. Классификация	1) грузоподъёмность; мощность энергетической установки;
известных величин в	дальность плавания
уравнениях проектиро-	2) грузоподъёмность; мощность энергетической установки;
вания	нормативы и дальность плавания
	3) грузоподъёмность; мощность энергетической установки;
	нормативы и параметры; дальность плавания
	4) грузоподъёмность; грузовместимость, мощность энерге-
	тической установки; дальность плавания
7. Стадии проекти-	1) техническое задание; эскизный проект; технический про-
рования судов	ект
3	2) техническое задание; технические предложения; эскиз-
	ный проект; технический проект
	3) техническое задание; технические предложения; эскиз-
	ный проект; технический проект; рабочая конструкторская
	документация
	4) техническое задание; проектная наработка; эскизный про-
	ект; технический проект; рабочая конструкторская докумен-
	тация
8. Основные раз-	1) корпус и твердый балласт; энергетическая установка;
делы, составляющие	электрооборудование, судовая связь и управление; вооруже-
нагрузку судна на ста-	ние (радиотехническое, навигационное); снабжение, экипаж
диях проектирования	и провизия; запасы топлива, питательной воды и смазочного
судна, включают	масла; запас водоизмещения и остойчивости; перевозимый
судна, включают	
	груз 2) корпус; энергетическая установка; экипаж и провизия; за-
	пасы топлива, перевозимый груз
	3) корпус и твердый балласт; энергетическая установка;
	электрооборудование, снабжение, экипаж и провизия; пере-
	возимый груз
	4) корпус и твердый балласт; энергетическая установка;
	электрооборудование, судовая связь и управление; вооруже-
	ние (радиотехническое, навигационное); (остатки жидких
	грузов); снабжение, экипаж и провизия; перевозимый груз
9. Проектная трак-	1) корпус; механизмы; снабжение; топливо; перевозимый
9. Проектная трактовка нагрузки по А.В.	
Бронникову состоит из	груз 2) кортус: моходила и судбующей той ниро: нородоми и
•	2) корпус; механизмы; снабжение; топливо; перевозимый
следующих укрупнен-	груз; балласт
ных разделов	3) корпус; механизмы; снабжение; топливо; перевозимый
	груз; балласт; запас водоизмещения
	4) корпус; механизмы; снабжение; топливо; перевозимый
10. П	груз; балласт; запас водоизмещения; экипаж
10. Пересчет показа-	1) изменения обводов судна прототипа в определенном мас-
телей проектируемого	штабе по длине и ширине

судна по прототипу,	2) изменения обводов судна прототипа в определенном мас-
при полном геометри-	штабе по длине и высоте
ческом подобии, это	3) изменения обводов судна прототипа в определенном мас-
	штабе по ширине и высоте
	4) изменения обводов судна прототипа в одном и том же
	масштабе по длине, ширине и высоте
11. Пересчет показа-	1) изменение обводов корпуса исходного судна по длине и
телей проектируемого	ширине с разными масштабами
судна по прототипу,	2) изменение обводов корпуса исходного судна по длине и
при частичном (аффин-	высоте с разными масштабами
ном) геометрическом	3) изменение обводов корпуса исходного судна по ширине и
подобии, это	высоте с разными масштабами
	4) изменение обводов корпуса исходного судна по длине,
	ширине и высоте с разными масштабами
12. Определение	1) необходим один коэффициент пересчета
площади новой кон-	2) необходимы два коэффициента пересчета
структивной ватерли-	3) необходимы три коэффициента пересчета
нии с использованием	4) не используют коэффициенты пересчета
судна-прототипа	
13. На начальных	1) определить архитектурное исполнение судна
стадиях разработки	2) определить вместимость судна
проекта необходима	3) положение центра тяжести судна
схема общего располо-	4) разработать конструкцию корпуса
жения для того, чтобы	
14. Для построения	1) теоретический чертеж и мидель-шпангоут
эпюры емкости необхо-	2) теоретический чертеж и масштаб Бонжана
димы	3) теоретический чертеж; масштаб Бонжана и строевую по
	шпангоутам
	4) теоретический чертеж; масштаб Бонжана; строевые по
	шпангоутам и ватерлиниям
15. Для приближен-	1) абсциссы центра тяжести корпуса, механизмов, трюмов и
ной оценки центра тя-	цистерн по прототипу
жести судна по длине	2) абсциссы центра тяжести корпуса и механизмов по про-
на начальных стадиях	тотипу, а трюмов и цистерн по схеме общего расположения
проектирования опре-	3) абсциссы центра тяжести корпуса и механизмов по про-
деляют	тотипу, а трюмов и цистерн по эпюре емкости
	4) абсциссы центра тяжести корпуса и механизмов трюмов
	и цистерн по математическим моделям с использованием
	программных продуктов
16. Удифферентовку	1) перераспределение грузов по его длине так, чтобы сопро-
судна выполняют для	тивление судна с принятыми главными размерениями соот-
	ветствовало техническому заданию

	2)
	2) перераспределение грузов по его длине так, чтобы центр
	тяжести судна совпадал с положением центра величины
	3) перераспределения грузов по его длине так, чтобы сопро-
	тивление судна с принятыми главными размерениями и ко-
	эффициентами общей полноты приближалось к минималь-
	ному значению
	4) перераспределение грузов по его длине так, чтобы сопро-
	тивление судна с принятыми главными размерениями соот-
	ветствовало техническому проекту
17. Назначение бал-	1) необходимостью поддержания остойчивости в рейсе
ластных цистерн обу-	2) необходимостью решения проблем остойчивости и ход-
словлено	кости; образования кавитации и вибрации валопроводов и
	кормовой оконечности судна
	3) необходимостью регулирования осадки носом и кормой
	при различных условиях нагрузки
	4) необходимостью поддержания остойчивости и ходкости
18. В качестве бал-	1) диптанк в крайнем носовом трюме в виде днищевой ци-
ластных цистерн на	стерны, примыкающей к таранной переборке
транспортных судах с	2) диптанк под средней надстройкой
машинным отделением	3) увеличивают длину форпика и устанавливают цистерну
в кормовой оконечно-	4) диптанк в крайнем носовом трюме в виде днищевой ци-
сти используют	стерны, примыкающей к таранной переборке и кормовой
	оконечности после машинного отделения
19. На грузовых су-	1) 0,7-0,75
дах низший предел по-	2) 0,75
гружения гребного	3) 0,80
винта в балластном ре-	4) 0,85-0,90
жиме равен	
20. Уравнение	1) где h начальная метацентрическая высота; α –показатель
остойчивости	полноты площади мидель-шпангоута; δ - показатель общей
h	полноты
$- (a \cdot S) B^2$	2) где h начальная метацентрическая высота; α – показатель
$= \varphi_1(\alpha, \delta) \frac{B^2}{T}$	полноты; δ -показатель площади
$+ \varphi_2(\alpha, \delta)T - Z_\alpha$	3) где h начальная метацентрическая высота; α –коэффици-
$\varphi_1(\alpha,\delta) = \frac{\alpha^2}{\alpha^2}$:	ент полноты площади ватерлинии; δ -коэффициент общей
$11,4\delta$	полноты
$\varphi_{1}(\alpha, \delta) = \frac{\alpha^{2}}{11,4\delta};$ $\varphi_{2}(\alpha, \delta) = 0.5 \left(\frac{\alpha}{\beta}\right)^{0.5}$	4) где h начальная метацентрическая высота; α – показатель
φ/	полноты; δ — коэффициент общей полноты
21. Остойчивость	1) в полном грузу при отходе с равномерно распределенным
судна проверяется	во всех грузовых помещениях грузом и с полными запасами
- J P 0 2 4 P 1 0 1	и топливом
	11 1011411100111

	2) в полном грузу при приходе и с 10 процентами оставше-
	гося топлива
	3) судно в балласте при отходе без груза с75 процентами за-
	пасов и 100 процентами топлива
	4) судно в балласте при переходе без груза и с 10 процен-
	тами оставшегося топлива
22. Коэффициенты	1) 0,70 для помещений, занятых механизмами, электростан-
проницаемости должны	циями и техническим оборудованием; 0,95для жилых поме-
приниматься равными:	щений
	2) 0.75 для помещений, занятых механизмами, электростан-
	циями и техническим оборудованием; 0,95для жилых поме-
	щений
	3) 0.80 для помещений, занятых механизмами, электростан-
	циями и техническим оборудованием; 0,95для жилых поме-
	щений
	4) 0.85 для помещений, занятых механизмами, электростан-
	циями и техническим оборудованием; 0,95для жилых поме-
	щений
23. Уравнение весов,	1) используется для определить главных размерения судна
выраженных в функции	2) используется для определить необходимую мощность
главных размерений	механизмов
σLBT	3) используется для определения сил сопротивления внеш-
$= \sum f_i(\delta, L, B, T, H, \dots)$	ней среды
$+\varphi(N)+P.$	4) используется для оптимизации главных размерений и
$+ \psi(N) + I$.	определения необходимой мощности энергетической уста-
	новки
24. В уравнении	1) соотношения $\frac{L}{B}$, $\frac{B}{T}$, $\frac{H}{N}$
$D = \sum P_i + P$	2) главные размерения
где P_i - переменные	$3) \delta, L, B, T, H$
веса, а P — сумма всех	4) главные размерения и соотношения $\frac{L}{B}$, $\frac{B}{T}$, $\frac{H}{N}$
независимых весов, не-	1) Islashiste pashepenna ii eoo momenna _B , _T , _N
известными являются	
25. В уравнении	1) измерители весов p_i
$D = \sum_{i=1}^{n} P_i + P$	$\overline{}$ 2) измерители весов p_i и параметры v , r
_	$\overline{}$ 3) измерители весов p_i и коэффициенты C_i ,
где P_i - переменные	4) измерители весов p_i , коэффициенты C_i и параметры v , r
веса, а Р – сумма всех	
независимых весов, за-	
данными величинами	
являются	

26. Наиболее грубые	1) эмпирические формулы, полученные путем обработки
функциональные зави-	нагрузок построенных судов
симости формул первой	2) эмпирические формулы, полученные путем статистиче-
группы, для определе-	ской обработки нагрузок, составленных на основе расчетов
ния веса корпуса	применительно к ряду судов с систематически изменяющи-
	мися элементами
	3) формулы, полученные путем приближенного учета усло-
	вий, определяющих прочность корпуса
	4) формулы, в основу которых положен принцип детальной
	разбивки веса корпуса на большое количество составляю-
	щих
27. Уравнение весов	1) дедвейта
для грузового судна	2) скорости хода
$D = g_{\kappa} LBH + p_{\rm M} \frac{D^3 v^3}{C}$	3) дедвейта и скорости хода
	4) мощности главного двигателя
$+P_{AB}$	
при заданных значе-	
ниях	
28. Уравнение весов	1) определения δ
$D\left(1+\frac{g_{\kappa}}{\gamma\delta}\frac{H}{T}\right)$	2) определения $\frac{n}{T}$
	3) определения <i>D</i>
$-p_{\rm M} \frac{D^{\frac{2}{3}} v^3}{C} - P_{\rm AB} = 0$	4) определения $P_{ ext{\tiny ДB}}$
используют для	
29. Формула для расчета веса стального	1) $P_{ct} = g'_{CT} A_1 A_2 A_3 \delta^{\frac{1}{3}} \left(\frac{L}{H}\right)^{\frac{1}{2}} LBH$
корпуса:	1) $P_{ct} = g'_{CT} A_1 A_2 A_3 \delta^{\frac{1}{3}} \left(\frac{L}{H}\right)^{\frac{1}{2}} LBH$ 2) $P_{ct} = g'_{CT} A_1 A_2 A_3 \delta^{\frac{1}{2}} \left(\frac{L}{H}\right)^{\frac{1}{2}} LBH$
	3) $P_{ct} = g'_{ct} A_1 A_2 A_3 \delta^{\frac{1}{3}} \left(\frac{L}{H}\right)^{\frac{1}{3}} LBH$
	3) $P_{ct} = g'_{CT} A_1 A_2 A_3 \delta^{\frac{1}{3}} \left(\frac{L}{H}\right)^{\frac{1}{3}} LBH$ 4) $P_{ct} = g'_{CT} A_1 A_2 A_3 \delta^{\frac{1}{4}} \left(\frac{L}{H}\right)^{\frac{1}{2}} LBH$
30. Формула для рас-	1) $P_{06} = g_{06} \delta (LBH)^{\frac{2}{3}}$
чета веса оборудования	2
	$2) P_{06} = g_{06} (LBH)^{\frac{2}{3}}$
	3) $P_{06} = g_{06} \delta (LBH)^{\frac{1}{3}}$
	$4) P_{06} = g_{06} (LBH)^{\frac{1}{3}}$
	7-00 300(7)

Вариант №2

1. Основными эле-	1) размерения судна
ментами вместительно-	2) грузоподъемность судна
сти судна являются	3) водоизмещение

	4) объем запасов
2. В течении рейса	1) увеличивается
водоизмещение судна	2) уменьшается
порожнем	3) остается неизменным
3. В задачах проек-	1) автономность судна
тирования к дедвейту	2) экипаж
судна относят	3) оборудование машинного отделения
oydin omooni	4) переменные статьи нагрузки
4. К неизвестным	1) водоизмещение и мощность судна
величинам задачи ТПС	,
ОТНОСЯТ	2) грузоподъемность судна и численность экипажа
ОТНОСЯТ	3) относительная длина судна
	4) длина судна между перпендикулярами
5. К заданным вели-	1) водоизмещение и мощность судна
чинам задачи ТПС отно-	2) грузоподъемность судна
СЯТ	3) относительную длину судна
	4) численность экипажа
6. К параметрам за-	1) водоизмещение и мощность судна
дачи ТПС относят	2) грузоподъемность судна
	3) относительная длина судна
	4) численность экипажа
7. В задаче ТПС в	1) водоизмещение порожнем
качестве расчетного во-	2) наибольшее водоизмещение
доизмещения принима-	3) водоизмещение с 50 % нагрузки
ется	4) при балластном переходе
8. Скоростные каче-	1) скорости судна
ства судна определя-	2) мощности судна
ются значениями	3) числа Фруда
	4) числа Рейнольдса
9. Адмиралтейскую	1) тихоходных судов
формулу мощности це-	2) среднескоростных судов
лесообразно применять	3) быстроходных судов
для	4) судов на подводных крыльях
10. При росте числа	1) уменьшается
Фруда показателя сте-	2) увеличивается
пени при скорости судна	3) остается неизменным
в обобщенной формуле	4) изменяется незначительно
мощности	
11. Коэффициент со-	1) уменьшается
противления трения при	2) увеличивается
росте относительной	3) остаётся неизменным
длины судна	4) изменяется незначительно

i					
12. Коэффициент	1) уменьшается				
остаточного сопротивле-	2) увеличивается				
ния при росте относи-	3) остаётся неизменным				
тельной длины	4) изменяется незначительно				
13. Коэффициент со-	1) уменьшается				
противления трения при	2) увеличивается				
росте скорости судна	3) остаётся неизменным				
	4) изменяется незначительно				
14. Коэффициент	1) уменьшается				
остаточного сопротивле-	2) увеличивается				
ния при росте скорости	3) остаётся неизменным				
судна	4) изменяется незначительно				
	1) 101101111 10111111111111111111111111				
15. Значения коэф-	1) танкера				
фициента Нормана	2) сухогруза				
	3) пассажирского судна				
$\eta_{\rm H} = \frac{D}{\frac{1}{3}(P_{\rm M} + P_{\rm T}) + DW^{\circ}}$	4) рыболовного судна				
	7 F				
наибольшие у	1)5				
16. Дифференциаль-	1) способ последовательных приближений				
ным способом расчета	2) способ исключения статьи нагрузки				
основных элементов	3) способ Нормана				
судна называется	4) способ включения статьи нагрузки				
17. Для расчета коор-	1) Zg=Zgi/n				
динаты ЦТ судна ис-	2) $Zg = \sum Pi/Zgi$;				
пользуют формулу	3) $Zg = (\sum Pi*Zgi)/\sum Pi$				
	4) $Zg = (\sum Pi*Zgi)/n$				
18. Известны аппли-	1) $h=Zc+Zg$				
каты трех характерных	2) h=Zm-Zc;				
точек в расчетах остой-	3) h=Zm-Zg;				
чивости:	4) h=Zm+Zg;				
ЦВ (Zc) и метацентра					
(Zm). Начальная мета-					
центрическая высотой					
судна h это:					
19. Значения началь-	1) увеличиваются				
ной метацентрической	2) уменьшаются				
высоты при увеличении	3) остаются неизменными				
ширины судна					
20. Значения началь-	1) увеличиваются				
ной метацентрической	2) уменьшаются				
высоты при увеличении	3) остаются неизменными				
его длины					

21. Значения началь-	1) увеличиваются					
ной метацентрической	2) уменьшаются					
высоты судна при уве-	3) остаются неизменными					
личении его высоты	4) слабо меняются					
борта						
22. Значения началь-	1) увеличиваются					
ной метацентрической	2) уменьшаются					
высоты судна при уве-	3) остаются неизменными					
личении его ширины	4) слабо меняются					
23. Значения началь-	1) увеличиваются					
ной метацентрической	2) уменьшаются					
высоты судна при уве-	3) остаются неизменными					
личении аппликаты ЦТ	4) слабо изменяются					
	1)					
24. Значения началь-	1) увеличиваются					
ной метацентрической	2) уменьшаются					
высоты судна при уве-	3) остаются неизменными					
личении аппликаты ЦВ	4) слабо изменяются					
25. Значения началь-	1) увеличиваются					
ной метацентрической	2) уменьшаются					
высоты судна при уве-	3) остаются неизменными					
личении коэффициента	4) слабо изменяются					
общей полноты	4) Слаоо изменяются					
26. Значения началь-	1) увеличиваются					
ной метацентрической	2) уменьшаются					
высоты судна при уве-	3) остаются неизменными					
личении коэффициента	4) слабо изменяются					
полноты КВЛ	T) CHAOO HSMCHMOTCA					
27. Коэффициент	1) увеличивается					
утилизации водоизме-	2) уменьшается					
щения судна по его гру-	3) останется неизменным					
зоподъемности при ро-	4) слабо изменяется					
сте водоизмещения	.) who is inclined in					
28. Значения коэф-	1) увеличиваются					
фициента утилизации	2) уменьшаются					
водоизмещения судна	3) останется неизменным					
по его грузоподъемно-	4) слабо изменяется					
сти при росте его энер-	-,					
говооружённости						
29. Коэффициент	1) увеличивается					
утилизации водоизме-	2) уменьшается					
	3) остается неизменным					
	4) слабо изменяется					
	1) whoo iishelinelen					

щения судна по его дед-	
вейту при росте водоиз-	
мещения судна	
30. Коэффициент	1) увеличивается
утилизации водоизме-	2) уменьшается
щения судна по его дед-	3) останется неизменным
вейту при росте энерго-	4) слабо изменяется
вооруженности судна	

Вариант №3

Барнан 1 %25							
1. Классификацию	1) известные величины и нормативы						
величин в уравнениях	2) неизвестные величины и параметры						
проектирования состав-	3) известные величины, неизвестные величины и нормативы						
ляют	4)) известные величины, неизвестные величины, нормативы						
	и параметры						
2. Выбор парамет-	1) принять значения δ , α , β по подходящему судну прототипу						
ров формы корпуса	и зная водоизмещение определить и главные размерения						
	2) принять значения δ , α , β , а также соотношения главных						
	размерений по подходящему судну прототипу и, зная D						
	определить главные размерения						
	3) использовать приближенные зависимости для определе-						
	ния элементов проектируемого судна						
	4) ввиду сложности и многоплановости вопроса, связанного						
	с выбором элементов проектируемого судна, нельзя создать						
	достаточно простые и универсальные зависимости, дающие						
	однозначный и точный ответ						
3. Выбор относи-	1) определяет при данном водоизмещении абсолютную						
тельной длины судна	длину суда						
$l = \frac{L}{D^{1/3}}$	2) при фиксированных значениях коэффициента общей пол-						
$D^{1/3}$	ноты и отношения B/T определяет единственно возможное						
$= \left[\frac{1}{\gamma \delta} \left(\frac{L}{B}\right)^2 \frac{B}{T}\right]^{1/3}$	отношение <i>L/B</i>						
$-\left[\overline{\gamma\delta}\left(\overline{B}\right)\ \overline{T}\right]$	3) как параметр формы корпуса относительная длина влияет						
	на величину сопротивления движению судна						
	4) позволяет определить приемлемые с точки зрения сопро-						
	тивления воды, удифферентовки и общего расположения						
	судна главные размерения						
4. Выбор коэффици-	1) показателям ходкости						
ента общей полноты по	2) показателям остойчивости и непотопляемости						
$\delta = a - b Fr$	3) показателям грузовместимости и грузоподъемности						
	4) исходя из гидродинамических характеристик						
5. Для определения	1) при $Fr = 0.19$ -0.25 δ =0.90 – 1.68 Fr						
проектных значений б	2) при $Fr = 0.19$ -0.25 δ =0.95 – 1.68 Fr						

универсальных сухо-	3) при $Fr=0.19$ -0.25 δ = 1.02 $-$ 1.68 Fr						
грузных судов при <i>Fr</i>	4) при $Fr = 0.19$ -0.25 δ =1.07 – 1.68 Fr						
6. Формула $N = \frac{D^{2/3}v^3}{\sqrt{2}}$ отражает	1) один из видов уравнений мощности-формула адмиралтейских коэффициентов						
c _a orpanacr	2) формула связи мощности и водоизмещения через коэффи-						
	циент						
	3) формула мощности, где назначен коэффициент са						
	4) мощность энергетической установки						
7. Если задан дед-	1) экипаж, провизия, вода, расходные материалы; перевози-						
вейт судна, то составля-	мый груз, запасы топлива, воды, масла к энергетической элек-						
ющие дедвейта	троэнергетической установке, переменные жидкие грузы						
$D = p_{KO}D + p_{M} \frac{D^{2/3}}{c_{a}} +$	2) запасы топлива, воды, масла к энергетической электроэнер-						
	гетической установке						
$p_{3B}D + DW$	3) переменные жидкие грузы (вода в цистернах успокоителей,						
	вода в цистернах сборах фекальных и загрязненных вод)						
	4) жидкий балласт, принимаемый на судно для регулирования						
	его посадки и остойчивости						
8. Уравнение отра-	1) требуемые главные размерения для обеспечения грузо-						
жает	поъемности и грузовместимости						
LBH	2) уравнение грузоподъемности						
$= \frac{m_{\rm rp}\mu_{\rm rp}}{\delta_{\rm rp}(1-\xi)\lambda(1-\chi)}$	3) уравнение грузовместимости						
$\delta_{\rm Tp}(1-\xi)\lambda(1-\chi)$	4) зависимость главных элементов от принятого груза						
9. Уравнение отра-	1) необходимое для обеспечения грузоподъемности отноше-						
жает	ние						
<u>H</u>	2) необходимое для обеспечения грузовместимости отноше-						
\overline{T}	ние						
$=\frac{\mu_{\rm rp}\delta\rho\eta_{\rm rp}}{\delta_{\rm rp}(1-\xi)\lambda(1-\chi)},\eta_{\rm rp}$	3) необходимое для обеспечения грузовместимости и грузо-						
	подъемности отношение						
$=\frac{m_{\rm rp}}{R}$							
	1) Tallyenop						
1	1) танкеров 2) сууогругор						
$\frac{H}{T}$ =	2) сухогрузов 3) комбинированных судов						
$rac{\mu_{ m rp}\delta ho}{\delta_{ m rp} ho_{ m rp}\lambda(1-\chi)}$ исполь-	4) судов с комбинированными грузами						
$\delta_{\rm Tp} \rho_{\rm rp} \lambda (1-\chi)$	ту судов с комонинрованными грузами						
зуют для							
11. Если схема об-	1) необходима для обеспечения заданной грузоподъёмности						
щего расположения раз-	танкеров						
работана, то	2) необходима для обеспечения заданной грузоподъёмности						
высота трюма определя-	танкеров с двойным дном.						
емая	3) необходима для обеспечения сухогрузов с двойным дном и						
$h_{ ext{rp}} = rac{\mu_{ ext{rp}} m_{ ext{rp}}}{l_{ ext{rp}} b_{ ext{rp}} (1 - \xi)}$	двойными бортами						
$l_{\mathrm{Tp}}b_{\mathrm{Tp}}(1-\xi)$							

	4) необходима для обеспечения комбинированных судов с					
10	двойным дном					
12. Если схема об-	1) необходима для обеспечения заданной грузоподъёмности					
щего расположения раз-	танкеров					
работана, то высота	2) необходима для обеспечения заданной грузоподъёмности					
трюма определяемая по	танкеров с двойным дном					
$h_{ ext{rp}} = rac{\mu_{ ext{rp}} m_{ ext{rp}}}{l_{ ext{rp}} ho_{ ext{rp}} ho_{ ext{rp}}}$	3) необходима для обеспечения заданной грузоподъёмности					
тротрогр	танкеров с двойными бортами					
	4) необходима для обеспечения заданной грузоподъёмности					
	танкеров с двойным дном и двойными бортами					
13. Масса запасов по	1) для топлива					
формуле	2) для топлива и масла					
$m_{16} = q_{\scriptscriptstyle \mathrm{T}} k_1 k_2 N t$	3) для топлива, масла и воды для котлов					
$D^{2/3}$	4) для топлива, масла и питательной воды для котлов и эки-					
$m_{16} = q_{T} k_{1} k_{2} N t$ $= q_{T} k_{1} k_{2} \frac{D^{2/3}}{c_{a}} t$	пажа					
a						
14. Определение ши-	1) используя уравнения остойчивости и вместимости					
рины судна в первом	2) используя уравнения вместимости и плавучести					
приближении	3) используя уравнения плавучести					
1/3	4) остойчивости, вместимости и плавучести					
$B_1 = \left[\frac{D_1(B/T)}{\rho \delta_1(L/B)} \right]^{1/3}$	1) octon misocra, sweethweeth it massy teeth					
15. Выбор формы об-	1) выбирается форма носовой ветви строевой по шпангоутам и					
водов носовой оконеч-	носовой ветви конструктивной ватерлинии					
ности	2) выбирается форма носовой ветви строевой по шпангоутам;					
	носовой ветви конструктивной ватерлинии и угол притыкания					
	носовой ветви КВЛ к диаметральной плоскости					
	3) выбирается форма носовой ветви строевой по шпангоутам;					
	носовой ветви конструктивной ватерлинии, угол притыкания					
	носовой ветви КВЛ к диаметральной плоскости, форма носо-					
	вых шпангоутов и форштевня					
	4) выбирается форма носовой ветви строевой по шпангоутам;					
	носовой ветви конструктивной ватерлинии, угол притыкания					
	носовой ветви КВЛ к диаметральной плоскости и форма носо-					
	вых шпангоутов					
16. Для определения						
мощности главных ме-	$ 1) N_{\Gamma} = \frac{3}{C_N'} = \frac{3}{100 - 120} $					
ханизмов транспортных	$2) M - \frac{D^m v_s^n}{s} - \frac{D^{0.5} v_s^{3.25}}{s}$					
судов используют фор-	$\frac{2}{C_N'} - \frac{C_N'}{C_N'} - \frac{100-120}{100-120}$					
мулу В. В. Давыдова	3) $N_{\rm p} = \frac{D^m v_{\rm s}^n}{1} = \frac{D^{0.5} v_{\rm s}^{2.25}}{1}$					
	C_N' 50-60					
	1) $N_{\Gamma} = \frac{D^{m}v_{S}^{n}}{C_{N}'} = \frac{D^{0.5}v_{S}^{2.25}}{100-120}$ 2) $N_{\Gamma} = \frac{D^{m}v_{S}^{n}}{C_{N}'} = \frac{D^{0.5}v_{S}^{3.25}}{100-120}$ 3) $N_{\Gamma} = \frac{D^{m}v_{S}^{n}}{C_{N}'} = \frac{D^{0.5}v_{S}^{2.25}}{50-60}$ 4) $N_{\Gamma} = \frac{D^{m}v_{S}^{n}}{C_{N}'} = \frac{D^{0.5}v_{S}^{3.25}}{50-60}$					
	- C _N 50-60					

17. График Папмеля,	$1) W_{\rm M} = \frac{D}{L} \frac{v^3}{C\lambda} \sqrt{\Psi}$
позволяет определить	$V_{\rm M} = \frac{1}{L} \frac{1}{C\lambda} \sqrt{\Psi}$
коэффициент С в рас-	$\int \int 2 W_{\rm M} = \frac{D}{L} \frac{v^2}{G^2} \sqrt{\Psi}$
четной формуле и ис-	$\frac{L C \lambda}{20 \text{ Mz}} = \frac{D v^3}{4 + 10 \sqrt{L}}$
пользовать его в уравне-	$3) W_{\rm M} = \frac{1}{L} \frac{1}{C\lambda} (1 + \kappa) \sqrt{\Psi}$
нии мощности судов.	$2) W_{M} = \frac{D}{L} \frac{v^{2}}{C\lambda} \sqrt{\Psi}$ $3) W_{M} = \frac{D}{L} \frac{v^{3}}{C\lambda} (1+k) \sqrt{\Psi}$ $4) W_{M} = \frac{D}{L} \frac{v^{2}}{C\lambda} (1+k) \sqrt{\Psi}$
18. Длина машинно-	1) ~ = 1.5
	1) $a = 1.5 \text{ M}$
котельного отделения	2) a = 1,95 - 2,05 M
по А.В. Бронникову	3) a = 2,05 - 2,15 M
$l_{\text{мко}} = a l_{\text{гл.д}}$ для дизель-	4) $a = 2.15 - 2.25 \mathrm{M}$
ной установки с одним	
кормовым главным дви-	
гателем	
19. Длина машинно-	1) a = 2,15 M
котельного отделения	2) a = 2,25 - 2,65 M
по А.В. Бронникову	3) $a = 2,65-3,15$ M
$l_{\text{мко}} = a l_{\text{гл.д}}$ для дизель-	4) a = 3.15 - 3.65 M
редукторной установки	
с кормовым расположе-	
нием	
20. Для определения	1) $N_{\Gamma} = \frac{D^m v_s^n}{C} = \frac{D^{0.5} v_s^{2.5}}{20 \pm 2}$ 2) $N_{\Gamma} = \frac{D^m v_s^n}{C} = \frac{D^{0.5} v_s^{3.5}}{20 \pm 4}$
мощности главных ме-	D_{n}^{m} $D_{n}^{0.5}$ $D_{n}^{3.5}$
ханизмов проектируе-	
мого промыслового	3) $N_{\Gamma} = \frac{D^m v_s^n}{C} = \frac{D^{0.5} v_s^{3.5}}{20 \pm 2}$
судна А.И. Раков реко-	
мендует формулу	4) $N_{\Gamma} = \frac{D^m v_s^n}{C} = \frac{D^{0.5} v_s^{2.5}}{20 \pm 4}$
21. Состав эскизного	1) определение водоизмещения, главных размерений и коэффи-
проекта включает	циентов формы; предварительная разработка ТЧ; предвари-
	тельные расчеты мощности, водоизмещения, остойчивости.
	2) определение водоизмещения, главных размерений и коэф-
	фициентов формы; предварительная разработка ТЧ; предвари-
	тельные расчеты мощности, водоизмещения, остойчивости и
	разработка чертежей общего расположения;
	3) определение водоизмещения, главных размерений и коэф-
	фициентов формы; предварительная разработка ТЧ; предвари-
	тельные расчеты мощности, водоизмещения, остойчивости;
	разработка чертежей общего расположения; предварительный
	расчет прочности и разработка конструктивных чертежей и
	предварительный расчет весовой нагрузки.
,	

	4). определение водоизмещения, главных размерений и коэффициентов формы; предварительная разработка ТЧ; предвари-
	тельные расчеты мощности, водоизмещения, остойчивости, плавучести и прочности
22. Технико-экономические элементы гражданского судна содержат	1) скорость хода; дальность плавания; полная грузоподъемность и вместимость грузовых трюмов 2) скорость хода; дальность плавания; полная грузоподъемность и вместимость грузовых трюмов; мореходность; безопасность плавания; обитаемость 3) скорость хода; дальность плавания; полная грузоподъемность и вместимость грузовых трюмов; безопасность плавания; мореходность 4) скорость хода; дальность плавания; полная грузоподъемность и вместимость грузовых трюмов: мореходность; обитаеность и вместимость грузовых трюмов: мореходность и вместимость и вме
23. Для определение метацентрического радиуса В.Л. Поздюнин рекомендует формулу	мость $1) r = \frac{(\alpha+0,04)\alpha}{12\delta} \frac{B^2}{d}$ $2) r = \frac{(\alpha+0,08)\alpha}{12\delta} \frac{B^2}{d}$ $3) r = \frac{(\alpha+0,12)\alpha}{12\delta} \frac{B^2}{d}$ $4) r = \frac{(\alpha+0,14)\alpha}{12\delta} \frac{B^2}{d}$
24. Для определения аппликат центра величины В.Л. Поздюнин рекомендует формулу	$1) z_c = \frac{d}{1 + \frac{\delta}{\alpha}}$ $2) z_c = \frac{d}{1 + 0.5\frac{\delta}{\alpha}}$ $3) z_c = \frac{d}{1 + 0.7\frac{\delta}{\alpha}}$
25. Для транспортных судов с машинным отделением в корме имеются преимущества по сравнению с транспортными судами с машинным отделением	1) увеличивается полезный объем грузовых помещений 2) увеличивается полезный объем грузовых помещений; ликвидируется туннель гребного вала; 3) увеличить полезный объем грузовых помещений; ликвидируется туннель гребного вала; повышается эффективность использования СПГГ
26. Для транспортных судов с большими значениями коэффициента общей полноты смоченную поверхность определяют по формуле В.А. Семеки.	1) $\Omega = LT \left(2 + 1,37(\delta - 0,2) \frac{B}{T} \right)$ 2) $\Omega = LT \left(2 + 1,57(\delta - 0,247) \frac{B}{T} \right)$ 3) $\Omega = LT \left(2 + 1,37(\delta - 0,274) \frac{B}{T} \right)$ 4) $\Omega = LT \left(2 + 1,27(\delta - 0,247) \frac{B}{T} \right)$

27. Для танкеров	1) $l = 5,60 - 2,55V10^{-6} \pm (0,5 - 1,06V10^{-5})$				
большого водоизмеще-	2) $l = 5,60 - 2,55V10^{-6} \pm (0,5 - 1,06V10^{-6})$				
ния относительная	3) $l = 5.60 - 2.55V10^{-6} \pm (0.5 - 1.06V10^{-7})$				
длина судна выражается	4) $l = 5.60 - 2.55V10^{-6} \pm (0.5 - 1.06V10^{-8})$				
формулой					
28. По данным В. В.	1) $l = 4.7 - 2.5V \pm 0.3$				
Ашика, для сухогруз-	$2) l = 4,47 - 2,55V \pm 0,3$				
ных судов относитель-	3) $l = 4,57 - 2,5V \pm 0,3$				
ная длина судна выра-	4) $l = 4,4 - 2,45V \pm 0,3$				
жается формулой					
29. Численность эки-	1) M=B +bN+4				
пажа машинного со-	2) M=B +bN+3				
става сухогрузных и	3) M=B +bN+2				
наливных судов по А.В.	4) M=B +bN				
Бронникову					
30. Численность эки-	1) Π=A +aDW				
пажа палубной команды	2) $\Pi = A + aDW + 4$				
сухогрузных и налив-	3) Π=A +aDW+5				
ных судов по А.В. Брон-	4) $\Pi = A + aDW + 7$				
никову					

ТИПОВЫЕ КОНТРОЛЬНЫЕ ВОПРОСЫ ПО ДИСЦИПЛИНЕ, КОТОРЫЕ ПРИ НЕОБХОДИМОСТИ (В СЛУЧАЕ НЕ ПРОХОЖДЕНИЯ ТЕКУЩЕГО КОНТРОЛЯ) МОГУТ БЫТЬ ИСПОЛЬЗОВАНЫ ДЛЯ ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

- 1. Дайте определения понятиям проектирование, системный подход, система, модель, концепция, проект, стратегия, методология проектирования.
 - 2. Назовите круг вопросов научной дисциплины «Теория проектирования судов».
 - 3. Дайте определение математической модели судна (ММС) и объясните ее назначение.
- 4. Для чего в задачах проектирования судов используется аппарат теорий прогнозирования, принятия решений?
- 5. Почему методология проектирования историческая категория? Приведите примеры революционного (скачкообразного) развития в судостроении.
- 6. Этапы развития отечественного промышленного рыболовства и промыслового судостроения.
 - 7. Отечественная морская доктрина 2001 года.
- 8. Долгосрочные задачи отечественного промышленного рыболовства и промыслового судостроения.
- 9. Взаимосвязь концепций в организации промышленного рыболовства и проектных концепций рыболовных судов.
 - 10. В чем заключается комплексных подход к оптимизации характеристик судов ФРП?
- 11. О необходимости стохастического подхода к оценке исходной промысловой информации.
 - 12. Возможность оптимизации характеристик рыболовного судна в ходе ручных расчетов.
 - 13. Составьте схему таких расчетов и отметьте ее недостатки и упущения.
- 14. Приведите пример использования коэффициента Нормана при выполнении оптимизационного расчета.
- 15. Поясните и охарактеризуйте общую схему задачи оптимизации тралового комплекса судов ФРП по В.М. Пашину.
- 16. Определите основные проблемы по вопросам методологии оптимизационного проектирования рыболовных судов.
 - 17. Назовите варианты развития РПК и требуемый арсенал средств для их обоснования.
- 18. Сформулируйте требования к ММС для их практического использования и сферы их применения.
- 19. Сформулируйте постановку задач оптимизации характеристик рыболовного судна и разработки его ММС.

ТИПОВОЕ ЗАДАНИЕ К КУРСОВОМУ ПРОЕКТУ

Объект проектирования: морское транспортное судно (универсальный сухогруз или танкер с изолированным балластом).

Исходные данные: в задании на проектирование, указывается назначение судна (танкер или сухогруз), его грузоподъемность Ргр, т, скорость vs, yз, дальность плавания R, мили, удельная погрузочная кубатура кипового груза μ гр, m^3 /т (для сухогруза) или плотность жидкого груза ρ гр, m^3 /т (для танкера), численность экипажа пэк, чел.

Типовые варианты к курсовому проекту

сухогрузное судно					танкер						
	№ Ргр	μгр	vs	R	пэк	$N_{\underline{0}}$	Ргр	ρгр	VS	R	пэк
	1 6000	1,50	14,0	8000	20	1	16000	0,85	14,0	8000	20
	2 6000	1,55	14,0	9000	20	2	16000	0,86	14,0	9000	20
	3 6500	1,55	14,5	8500	22	3	17000	0,86	14,5	8500	22
	4 6500	1,60	14,5	9500	22	4	17000	0,87	14,5	9500	22
	5 7000	1,60	15,0	9000	23	5	18000	0,88	15,0	9000	23
	6 7000	1,65	15,0	10000	23	6	18000	0,89	15,0	10000	23
	7 7500	1,65	15,5	9000	24	7	19000	0,90	15,5	9000	24
	8 7500	1,55	15,5	9000	24	8	19000	0,91	15,5	9000	24
	9 8000	1,60	16,0	8000	25	9	20000	0,85	16,0	8000	25
	10 8000	1,50	16,0	8000	25	10	20000	0,86	16,0	8000	25
	11 8500	1,55	16,5	9000	26	11	21000	0,86	16,5	9000	26
	12 8500	1,60	16,5	9000	26	12	21000	0,87	16,5	9000	26
	13 9000	1,60	16,0	10000	28	13	22000	0,88	16,0	10000	28
	14 9000	1,65	16,0	10000	28	14	22000	0,89	16,0	10000	28
	15 9500	1,65	15,5	8000	28	15	20000	0,90	15,5	8000	28
	169500	1,65	15,5	8000	28	16	20000	0,91	15,5	8000	28

Содержание: в рамках курсового проектирования требуется разработать следующие пункты

Введение

- 1. Разработка технического задания на курсовое проектирование
- 1.1. Суда прототипы и их характеристика
- 1.2. ТЗ на проектирование судна и его техническое обоснование
- 1.3. Расчетное определение основных элементов судна в первом приближении
- 1.4. Эскиз общего расположения проекта судна
- 2. Выбор главных размерений судна
- 2.1. Расчеты элементов судна
- 2.2. Выбор главного двигателя
- 2.3. Элементы судна, принятые в проекте
- 3. Разработка теоретического чертежа

- 4.Проверочные расчеты
- 4.1. Построение эпюры емкости и проверка вместимости судна
- 4.2. Расчеты нагрузки, посадки и начальной остойчивости судна
- 5. Разработка общего расположения судна Заключение

Графическая часть: в графической части проекта необходимо представить теоретический чертеж, эпюра емкости и чертежи общего расположения спроектированного судна.

ТИПОВЫЕ ЭКЗАМЕНАЦИОННЫЕ ВОПРОСЫ

- 1. Цели и задачи проектирования судна. Основные качества проекта
- 2. Архитектурно-конструктивный тип судна (применительно к транспортным судам) по Зуеву В. А.
- 3. Архитектурно-конструктивный тип судна применительно к промысловым судам.
- 4. Моделирование в задаче проектирования. Цели моделирования. Характер моделей и способы их представления.
- 5. Классификация величин в уравнениях проектирования (по акад. В.Л. Поздюнину по В. А. Зуеву).
- 6. Понятие алгоритма проектирования и его структурной схемы.
- 7. Понятия проектирования судов с использованием аналогов и прототипа.
- 8. Элементы судна, его технические и эксплуатационные характеристики.
- 9. Постановка задачи технического проектирования и обоснование методов ее решения.
- 10. Техническое задание на проектирование.
- 11. Постановка задачи оптимизационного проектирования. Показатели эффективности проекта.
- 12. Технико-экономический анализ принимаемых проектных и организационных решений. Его роль и значение при проектировании судов.
- 13. Понятие близкого прототипа. Аффинное и геометрическое и подобие проекта и прототипа. Использование особенностей подобия для пересчета характеристик проекта
- 14. Стадии проектирования судов по В.В. Ашику.
- 15. Понятие об уравнениях и ограничениях в задачах проектирования по А. И. Ракову и Н, Б. Севастьянову.
- 16. Основные требования к математической модели судна по В. П. Иванову.
- 17. Классификация формул, выражающих массу корпуса судна. Классификация уравнений масс.
- 18. Разделы, составляющие нагрузку масс судна по В.В. Ашику.
- 19. Составляющие (части, этапы, стадии) процесса разработки проекта судна по А.В. Бронникову.
- 20. Виды водоизмещения и коэффициенты использования водоизмещения по В.В. Ашику
- 21. Методические основы определения элементов проектируемого судна по Л.М. Ногиду.
- 22. Размещение энергетической установки и габариты машинно-котельных отделений транспортных судов по А.В. Бронникову.
- 23. Методические основы определения элементов проектируемого судна по В. П. Иванову.
- 24. Определение водоизмещения судна в первом приближении по В. А. Зуеву.
- 25. Определение главных размерений и коэффициентов общей полноты в первом приближении по В. А. Зуеву.
- 26. основы определения элементов проектируемого промыслового судна по А. И. Ракову и Н. Б. Севастьянову.
- 27. Пересчеты показателей судна по прототипу при полном и условном подобии сопоставляемых судов.

- 28. Формулы размерностей и переходные множители, соответствующие критериям Фруда при пересчете по прототипу при полном подобии сопоставляемых судов.
- 29. Общие понятия о пересчетах при условном подобии сопоставляемых судов.
- 30. Формулы для пересчета кривых элементов теоретических элементов.
- 31. Пересчеты остойчивости на больших углах крена при условном подобии сопоставляемых судов по Л.М. Ногиду
- 32. Определение основных элементов судна во втором приближении по В. А. Зуеву
- 33. Технико-экономические условия эксплуатации и постройки судов по В. П. Иванову.
- 34. Основные элементы транспортных судов для перевозки массовых грузов (переход от чистой грузоподъёмности к дедвейту) А.В. Бронникову.
- 35. Характер исходной информации проектирования и классификация проектных задач.
- 36. Принятие решений в процессе проектирования. Стратегия проектирования
- 37. Системы автоматизированного проектирования (САПР) и их назначение.
- 38. Теория проектирования судов (ТПС) как научная дисциплина.
- 39. Составляющие (части, этапы, стадии) процесса разработки проекта судна по В. А. Зуеву.
- 40. Способы расчета элементов судна и адекватность используемых математических моделей. Прототипы и их использование при проектировании.
- 41. Нагрузка судна и ее изменение в рейсе. Нормативный и проектный подходы к разбивке нагрузки на разделы. Расчеты нагрузки судна при разработке проекта.
- 42. Расчеты режима работы судна. Расчетный случай нагрузки и расчетное время. Использование нагрузки прототипа и эмпирических формул для составления уравнения масс.
- 43. Составляющие сопротивления судна. Взаимосвязь элементов судна с сопротивлением трения и остаточным сопротивлением.
- 44. Адмиралтейская формула и ее использование в качестве уравнения мощности. Эмпирические формулы мощности и их использование при проектировании судов.
- 45. Обобщение адмиралтейской формулы. Способ проф. Павленко Г. Е. для составления уравнения мощности.
- 46. Алгебраические и графоаналитические способы совместного решения уравнений масс и мощности в начальных стадиях проектирования.
- 47. Математические основы дифференциальных способов расчета основных элементов судна. Дифференциальный способ Нормана. Коэффициент Нормана.
- 48. Связь между элементами судна и его грузовместимостью. Регистровая вместимость судов.
- 49. Связь между элементами судна и его грузовместимостью. Регистровая вместимость судов.
- 50. Потребные и фактические объемы и их определение в расчетах вместимости. Уравнение вместимости.
- 51. Определение абсциссы и аппликаты центра тяжести (ЦТ) судна. Проектная удифферентовка судна.
- 52. Пересчет характеристик остойчивости с прототипа. Относительная аппликата ЦТ судна и ее оценка.
- 53. Критерии остойчивости и их использование при проектировании судов. Верхний и нижний пределы остойчивости.
- 54. Уравнения остойчивости и их использование в расчетах элементов проектируемых судов. Анализ влияния элементов судна на его остойчивость.

- 55. Учет требований к непотопляемости и надводному борту судна при определении его элементов.
- 56. Учет требований к непотопляемости и надводному борту судна при определении его элементов.
- 57. Система уравнений проектирования, требования к ней и способы ее решения. Использование метода вариаций в расчетах размерений судна.
- 58. Определение элементов судна дифференциальным способом по проф. Бубнову И. Г. и их решение.
- 59. Проверочные расчеты, их роль и место в процессе проектирования судов
- 60. Классификация транспортных морских и речных судов различного назначения. и их архитектурный тип.
- 61. Транспортные суда. Их комплектующее оборудование и судовые помещения.
- 62. Наливные суда. Особенности их проектирования и технико-экономического обоснования характеристик.
- 63. Универсальные сухогрузные суда. Особенности их проектирования и технико-экономического обоснования характеристик.
- 64. Транспортные рефрижераторы. Особенности их проектирования и технико-экономического обоснования характеристик.
- 65. Контейнеровозы. Особенности их проектирования и технико-экономического обоснования характеристик.
- 66. Пассажирские суда. Особенности их проектирования и технико-экономического обоснования характеристик.
- 67. Рыболовные суда. Особенности их проектирования и технико-экономического обоснования характеристик.
- 68. Выбор характеристик формы корпуса проектируемого судна. Обводы оконечностей судна.
- 69. Проектирование теоретического чертежа. Исходные данные. Базовые кривые ТЧ.
- 70. Проектирование обводов транспортных судов.
- 71. Проектирование морских судов. Расчеты нагрузки масс водоизмещения порожнем по методике Е.В. Маслюка и А.Ф. Иконникова.
- 72. Исходные данные для проектирования общего расположения судна. Размещение основных функциональных блоков помещений.
- 73. Безопасность судов и ее учет при проектировании.
- 74. Оптимизация основных характеристик и элементов промысловых судов по А. И. Ракову.
- 75. Технико-экономическое обоснование технического задания на проектирование судна (по тематике курсового проектирования).