Федеральное государственное бюджетное образовательное учреждениевысшего образования «КАЛИНИНГРАДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

О. Е. Гончаренок

АКВАБИОТЕХНОЛОГИЯ

Учебно-методическое пособие по изучению дисциплины для студентов, обучающихся в магистратуре по направлению подготовки 35.04.07 Водные биоресурсы и аквакультура

Рецензент

кандидат биологических наук, доцент кафедры водных биоресурсов и аквакультуры ФБОУ ВО «КГТУ» Е.А. Масюткина

Гончаренок, О. Е.

Аквабиотехнология: учеб.-методич. пособие по изучению дисциплины для студ. магистратуры по напр. подгот. 35.04.07 Водные биоресурсы и аквакультура / О. Е. Гончаренок. — Калининград: Изд-во ФГБОУ ВО «КГТУ», $2025.-30~\mathrm{c}$.

В учебно-методическом пособии по изучению дисциплины «Аквабиотехнология» представлены учебно-методические рекомендации по освоению тем лекционного курса, включающие подробный план лекций по каждой изучаемой теме, а также учебно-методические рекомендации и подробный план по освоению тем практических работ курса и тематический план контактных работ преподавателя в ЭИОС.

Табл. 2, список лит. – 20 наименований

Учебно-методическое пособие по изучению дисциплины рекомендовано к изданию в качестве локального электронного методического материала для использования в учебном процессе методической комиссией института рыболовства и аквакультуры $\Phi \Gamma FOY BO$ «Калининградский государственный технический университет» «24» октября 2025 г., протокол \mathbb{N}_{2} 9

УДК 639.3.05

©Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет», 2025 г. ©Гончаренок О.Е., 2025 г.

СОДЕРЖАНИЕ

введение				4
1. МЕТОДИЧЕСК	ие рекоменд	ДАЦИИ ПО И	ЗУЧЕНИЮ Ј	ІЕКЦИОННОГО
КУРСА				
2. ТЕМАТИЧЕСКИ	Й ПЛАН ЛЕКЦИО	ОННОГО КУРСА	ДИСЦИПЛИН	НЫ11
3. МЕТОДИЧЕСКІ	ИЕ РЕКОМЕНДА	ции по выпо	олнению п	РАКТИЧЕСКИХ
РАБОТ				
4. ТЕМАТИЧ	ІЕСКИЙ П.	ПАН ПРАІ	КТИЧЕСКИХ	ЙИТКНАЕ
по дисциплине				18
5. МЕТОДИЧЕСК	ИЕ РЕКОМЕНДА	АЦИИ ПО ВЫ	ПОЛНЕНИЮ	КОНТАКТНОЙ
РАБОТЫ ПРЕПОДАВАТЕ	ЭОИЕ В ККЕ			21
6. ТЕМАТИЧЕСКИ				
по дисциплине				22
7. МЕТОДИЧ				
САМОСТОЯТЕЛЬНОЙ И	КУРСОВОЙ РАБ	ОТЫ		24
ЗАКЛЮЧЕНИЕ				26
СПИСОК РЕКОМЕ	НДОВАННЫХ И	СТОЧНИКОВ		27

ВВЕДЕНИЕ

Учебно-методическое пособие разработано для направления подготовки 35.04.07 Водные биоресурсы и аквакультура (для очной формы обучения) по дисциплине «Аквабиотехнология», входящей в блок 1 обязательной части образовательной программы.

Целью освоения дисциплины «Аквабиотехнология» является формирование знаний, умений и навыков по эффективным технологическим решениям при выращивании различных объектов аквакультуры

В результате изучения дисциплины студент должен:

знать:

- структуру и технологии разведения и выращивания гидробионтов в различных типах аквакультурных хозяйств;
- особенности формирования и оптимизации абиотических и биотических условий выращивания гидробионтов в рыбоводных системах, относящихся к различным направлениям аквакультуры;
- технические решения, оптимизирующие производственные процессы и улучшающие условия содержания гидробионтов;
 - усовершенствованные и новые технологии в аквакультуре;
- биологическую потенцию перспективных объектов аквакультуры; методы статистической обработки экспериментальных данных.

уметь:

- правильно формировать и компоновать структуру хозяйств, относящихся к различным направлениям аквакультуры;
- применять на практике и совершенствовать биотехнику выращивания различных объектов аквакультуры;
- проводить контроль и уметь регулировать основные абиотические параметры технологической воды;
- пользоваться оборудованием, инвентарем, иными техническими средствами и проводить работы по их усовершенствованию;
 - планировать и проводить экспериментальные работы;
 - анализировать экспериментальные и производственные данные и выбирать наиболее оптимальные технологические решения;

владеть:

- навыками выполнения работы в области производственной, научно-исследовательской и проектной деятельности;
 - разработки технологической карты рыбоводных предприятий;
- навыками разработки рыбоводно-биологических обоснований разведения и выращивания гидробионтов;
- навыками оценки эффективности технологических схем выращивания гидробионтов;
 - анализа экспериментальных и производственных данных.

При изучении дисциплины используются компетенции, базовые знания, умения и навыки, полученные в процессе освоения следующих дисциплин образовательной программы бакалавриата: «Биологические основы рыбоводства», «Генетика и селекция рыб», «Аквакультура», «Техническое обеспечение предприятий аквакультуры», «Проектирование предприятий аквакультуры».

Студенты, приступающие к изучению данной дисциплины, для успешного ее освоения должны иметь представление об экологических группах рыб, способах стимулирования созревания и получения половых продуктов у производителей рыб, этапах биотехники, рыбоводном оборудовании предприятий аквакультуры, основах генетики и селекции рыб, отличиях тепловодного и холодноводного предприятий рыбоводства.

При преподавании дисциплины используются достижения науки и практики, передовой отечественный и зарубежный опыт в области аквакультуры.

Дисциплина «Аквабиотехнология» формирует компетенции, используемые студентами в дальнейшей профессиональной деятельности, при подготовке магистерской диссертации и при обучении в аспирантуре, а также при прохождении технологической практики и выполнении научно-исследовательской работы.

Для оценки результатов освоения дисциплины используются:

- оценочные средства текущего контроля успеваемости;
- оценочные средства для промежуточной аттестации по дисциплине.

К оценочным средствам текущего контроля успеваемости относятся:

- тестовые задания;
- контрольные вопросы по темам практических занятий;
- задания по темам контактной работы преподавателя в ЭИОС;

Текущий контроль знаний по дисциплине позволяет оценить понимание студентами основных базовых технологий культивирования гидробионтов и внести корректировки в методы преподавания, сделав акцент на сложных для усвоения темах.

Текущий контроль усвоения дисциплины осуществляется через опрос на практических занятиях, контактную работу преподавателя в электронной информационно-образовательной среде (ЭИОС) и систему тестирования. Тестовые задания используются для оценки освоения всех тем дисциплины студентами. Тесты сформированы на основе материалов лекций и вопросов, рассмотренных в рамках практических занятий и заданий, выполненных в рамках работы в ЭИОС. Тестирование обучающихся проводится на практических занятиях (в течение 10-15 минут, в зависимости от уровня сложности материала) после рассмотрения на лекциях соответствующих тем и выполненных заданий в ЭИОС. Тестирование проводится с помощью компьютерной программы Indigo (база тестов располагается на сервере кафедры).

Положительная оценка («отлично», «хорошо» или «удовлетворительно») выставляется программой автоматически, в зависимости от количества правильных ответов.

Градация оценок:

- «отлично» свыше 81 %;
- «хорошо» более 70 %, но не выше 80 %;
- «удовлетворительно» свыше 60 %, но не более 69 %.

Промежуточная аттестация по дисциплине предусмотрена в виде:

- типовые задания по курсовой работе;
- экзаменационные задания по дисциплине, представленные в виде тестовых заданий закрытого и открытого типов.

Условием допуска студента к экзамену является выполнение отчетности по практическим занятиям, выполнение курсовой работы на оценку не ниже «удовлетворительно», выполнение заданий в ЭИОС на оценку «зачтено», прохождение всех тестов текущего контроля на оценку не ниже «удовлетворительно», а также активное участие в работе на практических занятиях.

Экзаменационные задания по дисциплине представлены в виде тестовых заданий закрытого и открытого типов. Тестовые экзаменационные задания сформированы с учетом цели изучения дисциплины, изложенной в рабочей программе, и предусматривают проверку знаний разделов и тем, прочитанных в лекционном курсе и рассмотренных на практических занятиях.

Промежуточная аттестация по дисциплине «Аквабиотехнология» играет ключевую роль в оценке комплексных знаний и навыков студентов, приобретенных в течение семестра, и служит для объективной оценки уровня усвоения как теоретических, так и практических аспектов дисциплины.

Система оценивания результатов обучения при промежуточной аттестации включает в себя системы оценок: «отлично», «хорошо», «удовлетворительно», «неудовлетворительно» (таблица 1).

Таблица 1 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	0-40 %	41-60 %	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
Критерий	тельно»	тельно»		
	«не зачтено»	«зачтено»		
1 Системность	Обладает	Обладает	Обладает	Обладает
и полнота	частичными и	минимальным	набором знаний,	полнотой знаний
знаний в	разрозненными	набором знаний,	достаточным для	и системным
отношении	знаниями, которые	необходимым для	системного	взглядом на
изучаемых	не может научно	системного	взгляда на	изучаемый объект
объектов	корректно	взгляда на	изучаемый	
	связывать между	изучаемый объект	объект	
	собой (только			
	некоторые из			

Система	2	3	4	5
оценок	0-40 %	41-60 %	61-80 %	81-100 %
	«неудовлетвори-	«удовлетвори-	«хорошо»	«отлично»
Критерий	тельно»	тельно»		
	«не зачтено»		«зачтено»	
	которых может			
	связывать между			
	собой)			
2 Работа с	Не в состоянии	Может найти	Может найти,	Может найти,
информацией	находить	необходимую	интерпретировать	систематизировать
	необходимую	информацию в	и систематизиро-	необходимую
	информацию, либо	рамках	вать необходимую	информацию, а
	в состоянии	поставленной	информацию в	также выявить
	находить отдельные	задачи	рамках	новые,
	фрагменты		поставленной	дополнительные
	информации в		задачи	источники
	рамках			информации в
	поставленной			рамках
	задачи			поставленной
				задачи
3.Научное	Не может делать	В состоянии	В состоянии	В состоянии
осмысление	научно корректных	осуществлять	осуществлять	осуществлять
изучаемого	выводов из	научно	систематический	систематический
явления,	имеющихся у него	корректный	и научно	и научно
процесса,	сведений, в	анализ	корректный	корректный
объекта	состоянии	предоставленной	анализ	анализ
	проанализировать	информации	предоставленной	предоставленной
	только некоторые		информации,	информации,
	из имеющихся у		вовлекает в	вовлекает в
	него сведений		исследование	исследование
			новые	новые
			релевантные	релевантные
			задаче данные	поставленной
				задаче данные,
				предлагает новые
				ракурсы
				поставленной
				задачи
4. Освоение	В состоянии решать	В состоянии	В состоянии	Не только владеет
стандартных	только фрагменты	решать	решать	алгоритмом и
алгоритмов	поставленной	поставленные	поставленные	понимает его
решения	задачи в	задачи в	задачи в	основы, но и
профессиональ	соответствии с	соответствии с	соответствии с	предлагает новые
ных задач	заданным	заданным	заданным	решения в рамках
	алгоритмом, не	алгоритмом	алгоритмом,	поставленной
	освоил		понимает	задачи
	предложенный		основы	
	алгоритм,		предложенного	
	допускает ошибки		алгоритма	

Учебно-методическое пособие состоит из:

- введения, где указаны: шифр, наименование направления подготовки; учебного плана, для которой оно дисциплина изучения предназначено; цель и планируемые результаты освоения дисциплины; место ОПОП BO: структуре виды текущего контроля, дисциплины последовательности его проведения, критерии и нормы оценки (отметки); форма проведения промежуточной аттестации; условия допуска к экзамену, критерии и нормы оценки (текущей и промежуточной аттестации);
- основной части, которая содержит методические рекомендации к лекционным занятиям; тематический план лекционных занятий;
- основной части, которая содержит методические рекомендации к практическим занятиям; тематический план практических занятий;
- основной части, которая содержит методические рекомендации к контактной работе преподавателя в ЭИОС; тематический план контактной работе преподавателя в ЭИОС;
- основной части, которая содержит методические рекомендации к выполнению самостоятельной и курсовой работы; темы курсовых работ;
 - заключения;
 - списка рекомендованных источников.

1 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ИЗУЧЕНИЮ ЛЕКЦИОННОГО КУРСА

Осваивая курс «Аквабиотехнология», студент должен научиться работать на лекциях, практических занятиях и организовывать самостоятельную работу.

Методические рекомендации по организации и проведению лекций для студентов магистратуры по дисциплине «Аквабиотехнология» включают комплекс подходов, направленных на повышение эффективности образовательного процесса, усвоение теоретического материала и развитие профессиональных компетенций будущих специалистов.

Лекции являются одной из основных форм аудиторной работы студентов. В задачи лекционного курса дисциплины входит также развитие способности анализировать современные тенденции развития аквакультуры, внедрения инновационных технологий выращивания гидробионтов и формирование умения самостоятельно искать и оценивать научную литературу по заданной тематике.

Ha рассматриваются вопросы технологий лекциях выращивания гидробионтов различных типах рыбоводных систем, рыбоводно-В биотехнические нормативы, требования к условиям выращивания, вопросы функционирования систем замкнутого водоснабжения, водоподготовки, выращивания посадочного технологии материала рыб, полицикличные культивирования, технологии инновационные технологические Дается определение ключевых понятий и терминологии, обязательному изучению студентами.

Лекции в курсе являются мультимедийными с использованием наглядных иллюстраций (графики, схемы, фотографии). По своему содержанию лекции можно разделить на: вводную, обзорную, проблемные, информационные, заключительные. В лекционном материале используется актуальная научная литература, современные публикации по проблемам аквакультуры и биотехнологических процессов, данные научных журналов и материалы конференций.

В начале лекции необходимо уяснить цель, которую лектор ставит перед собой и студентами и введение в тему предстоящего занятия. Затем дается основная часть с последовательным раскрытием основных аспектов темы с использованием интерактивных методов подачи материала (опрос, дискуссия, демонстрация опытов и результатов исследований) и иллюстрации примеров реальных проектов и научных разработок. Использование мультимедийных ресурсов (видео, презентации, интерактивные карты) позволяет повысить интерес аудитории.

Для закрепления пройденного материала проводится обсуждение, включающее ответы на вопросы студентов, и разъяснение сложных моментов.

В завершении лекции дается обобщение изученной информации и формулировка выводов, сообщение студентам дополнительной литературы и ресурсов для самостоятельного изучения, задания для контактной работы в

ЭИОС, направленные на углубленное изучение темы и подготовку к следующему занятию.

На лекциях важно внимательно слушать, отмечать наиболее существенную информацию и кратко ее конспектировать; сравнивать то, что услышано на лекции с прочитанным и усвоенным ранее материалом в области выращивания гидробионтов, укладывать новую информацию в собственную, уже имеющуюся, систему знаний. По ходу лекции необходимо подчеркивать новые термины, определения, устанавливать их взаимосвязь с изученными ранее понятиями.

Конспект лекций для студентов помогает студенту осваивать и усваивать учебный материал, конспектирование является обязательным, т.к. необходимо для успешной защиты практических занятий и прохождения тестирования текущей и промежуточной аттестации.

Для активизации работы студентов и текущего контроля усвоения дисциплины на лекционных занятиях проводится устный опрос (беседа) нескольких студентов по теме текущего занятия и по материалам предыдущей лекции.

2 ТЕМАТИЧЕСКИЙ ПЛАН ЛЕКЦИОННОГО КУРСА ДИСЦИПЛИНЫ

Тема 1. Введение. Современное состояние технологий аквакультуры, проблемы, точки роста.

Форма проведения занятия: лекция, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Дисциплина Аквабиотехнология, ее содержание, цель и значение в подготовке магистров. Разнообразие направлений в товарном рыбоводстве, пути и методы их совершенствования. Технологии аквакультуры и их управленческие продуктивность. Нормативные И задачи. определяющие раскрытие ростовой, адаптогенной и репродуктивной потенции рыб. Оценка степени влияния генетического и экологического коэффициентов роста рыб в разнотипных рыбоводных хозяйствах. Обоснование потенциала улучшения продуктивных качеств разводимых и выращиваемых рыб. Разнообразие и современные подходы в выборе методов и способов разведения и выращивания рыб. Оценка эффективности применения прогрессивных выращивания рыб. Экологические требования методов водоисточников. Экологические требования к рыбоводным хозяйствам.

Тема 2. Технологии выращивания осетровых рыб.

Форма проведения занятия: лекция, практическое занятие, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Рыбоводно-биологическая характеристика сибирского осетра, достоинства как объекта товарного рыбоводства. Требования к прудам и гидротехническим сооружениям. Биотехника выращивания сибирского осетра – формирование И эксплуатация ремонтно-маточного стада, стимуляция созревания половых продуктов, получение зрелых половых продуктов, осеменение, обесклеивание и инкубация икры, выращивание посадочного материала и товарной рыбы.

Рыбоводно-биологическая характеристика веслоноса - объекта акклиматизации на территории РФ. Требования к прудам и гидротехническим сооружениям. Формирование ремонтно-маточных стад. Методы получения зрелых половых продуктов, осеменения, обесклеивания и инкубации икры, выдерживания предличинок, подращивания и выращивания личинок, выращивания посадочного материала и товарной рыбы.

Современные породы и породные группы осетрообразных. Альбиносы, меланисты, хромисты осетровых рыб. Их место и роль в современном товарном рыбоводстве. Технологические особенности использования осетровых рыб в качестве объектов рекреационного рыболовства.

Формирование продукционных стад осетрообразных и селекционно-племенная работа. Учет и паспортизация маточного стада осетровых рыб.

Генетический контроль за чистотой племенного материала. Икорно-товарное осетроводство.

Тема 3. Технологии выращивания лососевых и сиговых рыб.

Форма проведения занятия: лекция, практическое занятие, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Рыбоводно-биологическая характеристика тихоокеанских и благородных лососей, гольцов, пеляди. Их место и роль в современном рыбоводстве. Требования к прудам и гидротехническим сооружениям. Формирование и эксплуатация ремонтно-маточных стад лососевых и сиговых, получения зрелых половых продуктов, осеменения и инкубации икры, выращивания посадочного материала и товарной рыбы в различных типах хозяйств. Выращивание пеляди в карповых прудах.

Рыбоводно-биологические аспекты культивирования пород и экологических форм радужной форели. Биотехника разведения и выращивания радужной форели. Формирование и эксплуатация ремонтно-маточных стад. Методы получения зрелых половых продуктов, осеменения и инкубации икры, выращивания посадочного материала, товарных двух- и трехлетков. Выращивание форели в карповых прудах. Товарное выращивание радужной форели в режиме пастбищного нагула в открытых акваториях моря.

Товарное выращивание перспективных объектов лососеводства. Рыбоводно-биологическая характеристика арктического и американского гольцов. Размерно-весовые кондиции посадочного материала. Требования к прудам, бассейнам и гидрологическим условиям выращивания. Рыбоводно-биологическая характеристика кижуча, кумжи, симы, сахалинского тайменя. Система нормирования кормления лососевых рыб. Оценка скорости роста рыб на разных этапах производственного процесса. Экологические требования к лососевым хозяйствам. Товарное выращивание атлантического лосося, кижуча и кумжи в садках, установленных в море.

Тема 4. Выращивание нетрадиционных объектов прудового рыбоводства.

Форма проведения занятия: лекция, практическое занятие, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Группы рыб с различным спектром адаптационных возможностей. Механизмы раскрытия биологической потенции рыб на различных этапах производственного процесса. Рыбоводно-биологическая характеристика трех видов буффало, биотехника их разведения и выращивания, применяемая в РФ — формирование и эксплуатация ремонтно-маточного стада, стимуляция созревания половых продуктов, получение зрелых половых продуктов, осеменение, обесклеивание и инкубация икры, подращивание и выращивание личинок, выращивание сеголетков, зимовка сеголетков, выращивание товарных двухлетков в моно- и поликультуре.

Рыбоводно-биологическая характеристика черного амура. Место и роль черного амура в современном рыбоводстве. Требования к прудам и гидротехническим сооружениям. Биотехника выращивания черного амура формирование ремонтно-маточного стада, получение потомства и методы выращивания черного амура.

Тема 5. Методы выращивания хищных видов рыб.

Форма проведения занятия: лекция, практическое занятие, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Рыбоводно-биологическая характеристика судака и щуки. Требования к прудам и гидротехническим сооружениям. Биотехника разведения и выращивания судака и щуки в прудах. Формирование и эксплуатация ремонтно-маточных стад. Методы получения зрелых половых продуктов, осеменения, обесклеивания и инкубации икры, выдерживания предличинок, выращивания посадочного материала и товарной рыбы в прудах и озерах.

Тема 6. **Технологии выращивания гидробионтов в установках** замкнутого водоснабжения (УЗВ).

Форма проведения занятия: лекция, практическое занятие, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

История создания систем (установок) с замкнутым водоснабжением. Принципы эксплуатации установок. Их место в аквакультуре и задачи, решаемые ими. Перспективы развития данного направления аквакультуры.

Химический состав природной и технологической воды. Предельно допустимые концентрации неорганических и органических веществ в воде рыбоводных систем. Процессы нитрификации и денитрификации и их значение в процессе водоподготовки. Значение вторичного загрязнения в рыбоводных системах УЗВ. Методы определения предельной нагрузки биомассы рыб, очистительную способность биофильтра. искусственных кормов Методические особенности биофильтров рабочий вывода на режим эксплуатации.

Формирование и эксплуатация ремонтно-маточных стад в условиях УЗВ. Рыбоводно-биологические особенности ремонтно-маточных стад канального сома, осетровых, радужной форели, тюрбо, трески, ракообразных, содержащихся в УЗВ. Требования к отбору ремонта и производителей. Длительность эксплуатации маточных стад. Многоцикличная схема созревания Температурный, производителей. газовый, соленосный режимы содержании ремонта и производителей. Требования к содержанию азотистых соединений в воде. Плотности посадки. Рецептура комбикормов, нормы кормления. Методы получения зрелых половых продуктов, оплодотворения ее инкубации. Биотехнические нормативы формирования эксплуатации ремонтно-маточных стад гидробионтов.

Этапы производственных процессов выращивания товарной продукции в УЗВ. Требования к содержанию азотистых соединений в воде. Длительность выращивания товарной продукции. Полицикличная схема товарного Комбинированные выращивания В УЗВ. технологии выращивания гидробионтов. Биотехнические нормативы товарного выращивания различных гидробионтов в УЗВ.

Тема 7. Технологии выращивания посадочного материала.

Форма проведения занятия: лекция, практическое занятие, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

производственных Этапы процессов выращивания посадочного материала карповых, лососевых, осетровых рыб. Требования к качеству посадочного материала. Разнообразие абиотических условий выращивания посадочного материала. Требования к содержанию азотистых соединений в воде. Различия в схеме подачи воды и степени ее оксигенации на разных этапах производственного процесса. Методы ухода за молодью: учет, сортировка, санитарно-профилактическая обработка. Длительность кормление, выращивания посадочного материала. Назначение использования посадочного при многоцикличной схеме эксплуатации производителей. Биотехнические нормативы выращивания посадочного материала гидробионтов. Структура комплексов по воспроизводству и выращиванию жизнестойкой молоди.

Прудовый, бассейновый и садковый способы выращивания посадочного материала осетровых рыб. Специфика выращивания посадочного материала осетровых в УЗВ. Стандарт конечной массы посадочного материала различных видов осетровых рыб. Рыбопродуктивность и рыбопродукция посадочного материала осетровых рыб в прудах, бассейнах и садках. Факторы, влияющие на величину этих биотехнических показателей.

Рыбоводные требования к качеству смолтов. Подготовка посадочного материала к транспортировке к местам товарного выращивания. Требования к транспортировке и посадке молоди в садки. Подготовка посадочного материала к выращиванию в море. Содержание посадочного материала в садках и выпуск на пастбищный нагул. Методические аспекты разведения и выращивания посадочного материала для зарыбления морских и пресноводных садков.

Требования к качеству кормов и нормированию кормления посадочного материала. Жизнестойкость молоди рыб на различных этапах выращивания и аномалии ее развития. Методика расчета скорости роста молоди рыб, обосновывающая прогноз достижения массы посадочного материала.

Тема 8. Полицикличные технологии выращивания.

Форма проведения занятия: лекция, практическое занятие, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Понятие полицикла. Алгоритмы выращивания посадочного материала и товарной рыбы по полицикличной технологии.

Оптимальные режимы эксплуатации маточных стад рыб в режиме полицикла. Обоснование потенциала полицикличных технологий эксплуатации маточных стад разных видов рыб. Особенности формирования температурного режима. Реализация репродуктивной функции в заданные сроки, этапность созревания производителей рыб. Сроки зарыбления и облова посадочного материала и товарной рыбы.

Абиотические и биотические условия, обосновывающие применение полицикличных технологий выращивания посадочного материала и товарной рыбы. Разнообразие полицикличных схем выращивания посадочного материала и товарной рыбы. Структурные особенности бассейновых подразделений предприятия, работающего по полицикличной технологии. Алгоритмы выращивания рыб по полицикличным технологиям. Оценка экономической эффективности полицикличных и комбинированных технологий выращивания рыб. Перспективы ее повышения.

Тема 9. Комбинированные и нетрадиционные технологии выращивания рыбы.

Форма проведения занятия: лекция, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Выращивание рыбы по технологическим схемам: пруд \rightarrow индустриальное хозяйство; индустриальное хозяйство \rightarrow пруд - (озерное товарное хозяйство), хозяйства на сбросных водах \rightarrow открытые рыбоводные системы, УЗВ \rightarrow прудовое хозяйство (бассейновое, садковое, отгороженные участки водоемов). Выращивание рыбы в отгородках, в емкостях иного технологического назначения. Биотехнические особенности рыбоводных процессов. Техническое обеспечение производств. Оценка экономической эффективности процессов выращивания рыбы и сопутствующих объектов.

Тема 10. Технологические решения новых форм прудового рыбоводства.

Форма проведения занятия: лекция, контактная работа с преподавателем в ЭИОС.

Вопросы для обсуждения:

Современные ресурсосберегающие И низкозатратные технологии аквакультуры. Выращивание рыбы в поликультуре по высокоинтенсивной технологии в двух- и трехлетнем обороте. Выращивание рыбы в поликультуре технологии непрерывной В пресноводных прудовых рыбы В поликультуре ПО непрерывной солоноватоводных прудах. Выращивание карпа по сумской технологии.

3 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ ПРАКТИЧЕСКИХ РАБОТ

Осваивая курс «Аквабиотехнология», студент должен научиться работать на лекциях, практических занятиях, ЭИОС и организовывать самостоятельную работу. При подготовке к практическим занятиям студентам необходимо не только воспользоваться литературой, рекомендованной преподавателем, но и проявить самостоятельность в поиске новых источников, интересных фактов, статистических данных, связанных с темой практического занятия.

Во время практических занятий студент постоянно взаимодействует с преподавателями. Данный вид занятий позволяет студентам углубить теоретические знания, полученные на лекции и в ходе самостоятельной работы.

Практические занятия прививают студентам навыки усвоения биотехнических особенностей культивирования гидробионтов в различных типах хозяйств, разработке биологических обоснований при проектировании хозяйств, использующих разнообразные технологии выращивания, проведения рыбоводных расчетов по этапам технологических схем выращивания.

При выполнении практикума основной упор в освоении материала должен быть направлен на усвоение взаимосвязей биологических, биотехнических и конструкционных составляющих технологического процесса культивирования объектов аквакультуры.

Во время самостоятельной работы студенты знакомятся с первоисточниками, основной и дополнительной литературой, готовятся к защите заданий практических работ.

Выполнение практических работ включает:

- знакомство с темой занятия, его целью и заданиями;
- изучение рыбоводно-биологических особенностей выращиваемых объектов и особенностей биотехники их культивирования;
 - изучение этапов биотехники разведения и выращивания объекта;
- выполнение расчетной части работы в соответствии с указаниями преподавателя и порядком выполнения;
 - оформление отчета практического занятия;
 - подготовка ответов для самопроверки;
 - защита заданий практической работы.

На практических занятиях проводится устный опрос при защите практических работ и оценивается по критериям: «правильно» (демонстрирует понимание вопроса, корректно использует терминологию) или «неправильно» (не может сформулировать ответ, допускает существенные ошибки в понимании).

Проверка выполнения практических заданий осуществляется критерию: «зачтено» или «не зачтено». «Зачтено» выставляется, если задание выполнено В полном объеме, полученные результаты соответствуют поставленной цели верно интерпретированы, оформление занятия соответствует требованиям. «Не зачтено» выставляется, если задание выполнено не в полном объеме, в результатах допущены ошибки в расчетах, повлиявшие на итог, оформление не соответствует требованиям.

Оформленные задания практического занятия предъявляются преподавателю после проверки на наличие замечаний. Отчётами по практическим занятиям являются рабочие тетради с пояснительными записками и выполненными заданиями, включая необходимые рыбоводные расчеты в соответствии с индивидуальным вариантом задания.

Защита практической работы проходит при предъявлении рабочей тетради преподавателю и предусматривает ответы на вопросы по теоретической и практической теме занятия.

Практические работы проводятся во время аудиторных занятий.

4 ТЕМАТИЧЕСКИЙ ПЛАН ПРАКТИЧЕСКИХ ЗАНЯТИЙ ПО ДИСЦИПЛИНЕ

Тема 2. Технологии выращивания осетровых рыб.

Практическое занятие № 1.

Технология разведения и выращивания сибирского (ленского) осетра.

Цель — получить навык расчета параметров технологического цикла разведения ивыращивания сибирского осетра.

Практическое занятие № 2.

Технология разведения и выращивания веслоноса.

Uель — получить навыки расчета технологического цикла разведения и выращивания веслоноса в прудах.

Тема 3. Технологии выращивания лососевых и сиговых рыб.

Практическое занятие № 3.

Технология разведения и выращивания пеляди.

Цель — получить навык расчета биотехнических параметров технологического цикла разведения и выращивания пеляди в прудовых хозяйствах.

Практическое занятие № 4.

Технология разведения и выращивания радужной форели в прудах.

Цель — получить навык расчета биотехнических параметров технологического цикла разведения и выращивания радужной форели в прудах.

Практическое занятие № 5.

Построение биотехнической схемы выращивания объектов товарного лососеводства при учете экологических факторов.

Цель — получить навык построения биотехнических схем выращивания, расчета скорости роста и величины рыбопродукции в конце каждого вегетационного сезона при выращивании основных и перспективных объектов лососевых рыб в товарных хозяйствах.

Тема 4. Выращивание нетрадиционных объектов прудового рыбоводства.

Практическое занятие № 6.

Технология разведения и выращивания буффало.

Практическое занятие № 7.

Технология разведения и выращивания черного амура.

Uель — получить навык расчета технологических схем по разведению и выращиванию черного амура.

Практическое занятие № 8.

Технология разведения и выращивания канального сома.

 $\ensuremath{\textit{Цель}}$ — изучить технологические аспекты разведения и выращивания канального сома в прудах.

Практическое занятие № 9.

Технология товарного выращивания судака и щуки в прудах.

Uель — получить навык расчета технологических схем по разведению и выращиванию судака и щуки в прудовых хозяйствах.

Практическое занятие № 10.

Технология выращивания австралийского красноклешневого рака.

Цель — получить навыки рыбоводного расчета выращивания австралийского красноклешневого рака при прудовом способе получения товарной продукции.

Тема 6. **Технологии выращивания гидробионтов в установках** замкнутого водоснабжения (УЗВ).

Практическое занятие № 11.

Технология выращивания угря в установках замкнутого водоснабжения.

Цель – получить навыки составления биотехнологической схемы выращивания угря в установках замкнутого водоснабжения.

Практическое занятие № 12.

Технология выращивания тиляпии в индустриальных комплексах с замкнутым водоснабжением.

Цель — получить навыки расчета биотехнологических параметров выращивания тиляпии в установках замкнутого водоснабжения.

Практическое занятие № 13.

Выращивание гигантской пресноводной креветки в установках замкнутого водоснабжения.

Цель — получение навыков определения необходимого количества производителей гигантской пресноводной креветки при выращивании в УЗВ.

Практическое занятие № 14.

Выращивание камбалы-тюрбо в установках замкнутого водоснабжения.

Цель — получение навыков расчета биотехнологических параметров при выращивании камбалы-тюрбо в УЗВ.

Тема 7. Технологии выращивания посадочного материала.

Практическое занятие № 15.

Технология выращивания посадочного материала атлантического лосося в разных типах рыбопитомников.

Цель — получить навыки построения расчетного алгоритма технологического процесса выращивания посадочного материала атлантического лосося.

Практическое занятие № 16.

Технология выращивания посадочного материала радужной форели в садковом рыбопитомнике.

 $\ensuremath{\textit{Цель}}\xspace -$ получить навыки построения расчетного алгоритма технологического процесса выращивания посадочного материала радужной форели.

Практическое занятие № 17.

Технология выращивания посадочного материала стерляди в установках замкнутого водоснабжения.

Цель — овладеть навыками построения расчетного алгоритма технологического процесса выращивания посадочного материала осетровых рыб.

Тема 8. Полицикличные технологии выращивания

Практическое занятие № 18.

Технология выращивания клариевого сома в установках замкнутого водоснабжения в режиме полицикла.

Цель — овладеть навыками построения расчетного алгоритма технологического процесса выращивания клариевого сома в УЗВ.

Практическое занятие № 19.

Полицикличная технология выращивания радужной форели в установках замкнутого водоснабжения.

Цель – получить навыки определения биотехнологических параметров двухцикличной схемы выращивания радужной форели в УЗВ.

Практическое занятие № 20.

Технология полицикличного выращивания канального сома в установках замкнутого водоснабжения.

Цель – получить навыки определения потребности в производителях и составления календарного графика работы рыбоводного предприятия при выращивании канального сома в УЗВ по полицикличной технологии.

Практическое занятие № 21.

Построение полицикличной схемы выращивания разных видов рыб.

5 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТАКТНОЙ РАБОТЫ ПРЕПОДАВАТЕЛЯ В ЭИОС

Осваивая курс «Аквабиотехнология», студент должен научиться работать на лекциях, практических занятиях, ЭИОС и организовывать самостоятельную работу.

Интерактивная форма обучения в виде работы студента в ЭИОС позволяет студентам проявить самостоятельность в освоении теоретического материала и овладении практическими навыками, формирует интерес и позитивную мотивацию к учебе.

При подготовке к работе в ЭИОС студентам необходимо не только воспользоваться литературой, рекомендованной преподавателем, но и проявить самостоятельность в поиске новых источников, интересных фактов, статистических данных, связанных с темой практического занятия.

Во время выполнения данного вида работ студент постоянно взаимодействует с преподавателями через ЭИОС, выполняя задания. Данный вид занятий позволяет студентам углубить теоретические знания, полученные на лекции и в ходе самостоятельной работы.

Возможной формой работы в ЭИОС при изучении дисциплины «Аквабиотехнология» являются выполнение конкретных заданий, представленных в ЭИОС.

Подготовка к данному виду работ по дисциплине «Аквабиотехнология» включает написание развернутого ответа, основанного на проработке литературных и электронных источников и указанием данных источников.

6 ТЕМАТИЧЕСКИЙ ПЛАН КОНТАКТНОЙ РАБОТЫ ПРЕПОДАВАТЕЛЯ В ЭИОС ПО ДИСЦИПЛИНЕ

Тема 2. Технологии выращивания осетровых рыб.

Рыбоводно-биологические особенности представителей отряда осетрообразных.

История развития осетроводства. Мировая практика осетроводства.

Работа с производителями: морфологические особенности формирования половых желез, стадии зрелости; отбор зрелых производителей, стимулирование процесса созревания половых желез; графики созревания, признаки, диагностика.

Зависимость эмбриогенеза от температуры воды, прогноз вылупления предличинок.

Транспортировка свободных эмбрионов.

Зимовка рыбы в прудах и садках.

Тема 3. Технологии выращивания лососевых и сиговых рыб.

Рыбоводно-биологическая характеристика объектов лососеводства: тихоокеанские лососи, благородные лососи, гольцы, таймени, ленки.

История развития лососеводства.

Мировая практика лососеводства.

Перспективы развития мирового товарного лососеводства.

Зависимость скорости роста лососевых рыб от солености.

Тема 4. Выращивание нетрадиционных объектов прудового рыбоводства.

Товарное выращивание арктического и американского гольцов в прудовых хозяйствах.

Товарное выращивание тайменя в прудовых хозяйствах.

Тема 6. **Технологии выращивания гидробионтов в установках** замкнутого водоснабжения (УЗВ).

Технология выращивания бестера в установках замкнутого водоснабжения.

Биотехнические параметры выращивания атлантического лосося в установках замкнутого водоснабжения.

Незаразные болезни рыб в УЗВ.

Болезни, вызываемые несбалансированными кормами.

Болезни, вызываемые недоброкачественными кормами.

Тема 7. Технологии выращивания посадочного материала.

Значение смолтификации.

Шкала для определения степени серебрения молоди атлантического лосося.

Выращивание посадочного материала при нестабильном и стабильном температурном режиме.

Адаптация молоди к соленой воде.

Методы выращивания жизнестойкой молоди.

Направленное формирование кормовой базы.

Биотехнические параметры выращивания посадочного материала арктического и американского гольцов в прудовых и бассейновых хозяйствах.

Биотехнические параметры выращивания посадочного материала сахалинского тайменя.

Тема 8. Полицикличные технологии выращивания

Алгоритм выращивания молоди тиляпии по полицикличной технологии.

Алгоритм выращивания товарной тиляпии по полицикличной технологии.

Алгоритм выращивания молоди клариевого сома (1-4 циклы) по полицикличной технологии.

Алгоритм выращивания молоди клариевого сома (5-8 циклы) по полицикличной технологии.

Алгоритм выращивания молоди клариевого сома (9-12 циклы) по полицикличной технологии.

Алгоритм выращивания товарного клариевого сома (3-й этап) по полицикличной технологии.

Технологическая схема ускоренного выращивания товарного клариевого сома.

Алгоритм выращивания молоди судака (первый и второй год) по полицикличной технологии.

Технологическая схема выращивания угря по полицикличной технологии.

7 МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ САМОСТОЯТЕЛЬНОЙ И КУРСОВОЙ РАБОТЫ

В ходе освоения дисциплины «Аквабиотехнология» предусмотрена самостоятельная работа студентов (таблица 2).

Таблица 2 – Самостоятельная работа студентов

Вид (содержание) самостоятельной работы	Форма текущего контроля	
студента		
Освоение теоретического учебного материала,	Проверка отчетности по	
оформление результатов заданий по	практическим занятиям;	
практическим занятиям	тестирование	
Выполнение курсовой работы студентами	Проверка курсовой работы	

Учебным планом предусмотрено выполнение курсовой работы. Курсовая работа направлена на закрепление теоретического материала, углубление и обобщение полученных знаний, развивает умение работать со специальной литературой, дает возможности приобрести навыки самостоятельной творческой работы студентов, направленной на реализацию накопленных знаний в форме разработки технических и биотехнических основ современного предприятия аквакультуры. Данная работа относится к области современных интенсивных технологий выращивания рыбы.

В курсовой работе студент должен показать хорошее знание литературы по избранной теме, владение современными представлениями по данной теме, уметь анализировать собранный материал, используя последние достижения рыбоводной науки и практики. Выполнение курсовой работы позволит студентам выйти на уровень самостоятельной работы в практической области.

Курсовая работа является формой самостоятельной работы студента.

Цель курсовой работы: разработка технических и биотехнических основ современного рыбоводного предприятия.

Работа носит индивидуальный характер, что подтверждается разнообразием форм рыбоводного предприятия, расположенных в различных регионах и зонах рыбоводства.

Курсовая работа выполняется студентом по заданию, которое выдается преподавателем. В задании указывается вид рыбы, тип рыбоводного предприятия, мощность, площадь водоема.

Примерные темы курсовой работы:

Задание 1. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию радужной форели в садках, установленных в водоеме площадью:

- -500 га (проточное озеро, среднегодовой расход по стоку 2 м 3 /с);
- 2000 га (бессточное озеро);
- 10000 га (бессточное озеро).

Задание 2. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию сибирского осетра в бассейнах, снабжаемых сбросной водой ТЭЦ (АЭС) мощностью по товарной рыбе:

- 100 т
- 500 т
- 1000 т

Задание 3. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию стерляди в установках с замкнутым водоснабжением мощностью по товарной рыбе:

- 40 т
- 300 т
- 500 т

Задание 4. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию канального сома в установках с замкнутым водоснабжением мощностью по товарной рыбе:

- 50 T
- 200 т
- 500 т

Задание 5. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию клариевого сома в установках с замкнутым водоснабжением мощностью по товарной рыбе:

- 100 т
- 1000 т
- 5000 т

Задание 6. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию тиляпии в установках с замкнутым водоснабжением мощностью по товарной рыбе:

- 100 т
- 400 т
- 1000 т

Задание 7. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию угря в установках с замкнутым водоснабжением мощностью по товарной рыбе:

- 50 т
- 100 т
- 300 т

Задание 8. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию карпа в моно- или поликультуре с растительноядными рыбами в садках, расположенных в водоеме-охладителе ТЭЦ (АЭС) мощностью по товарной рыбе:

- 100 т
- 1000 т
- 2000 т

Задание 9. Рассчитать технические и биотехнические параметры рыбоводного предприятия по выращиванию в поликультуре веслоноса и

черного амура на земельном участке площадью га, находящемся в зоне прудового рыбоводства мощностью по товарной рыбе:

- 40 т
- 150 т
- 200 т
- 10. Рассчитать технические и биотехнические параметры садкового (бассейнового) индустриального рыбоводного хозяйства на теплых водах по выращиванию веслоноса мощностью по товарной рыбе:
 - 20 т
 - 50 т
 - 100 т

Требования к оформлению курсовой работы представлены в учебнометодическом пособии, размещенном в электронной среде.

Выполненная курсовая работа к установленному сроку сдается на кафедру и передается на рецензирование научному руководителю. При рецензировании отмечаются достоинства работы, указываются ошибки, недостатки и рекомендуются способы их устранения. После рецензирования руководитель определяет готовность работы к защите отметкой «допускается к защите» или «не допускается к защите».

В том случае, если выявленные ошибки и недостатки носят существенный характер, свидетельствующий о том, что основные вопросы темы не усвоены, плохо проработаны, на работе делается отметка «не допускается к защите» и работа возвращается студенту для полной или частичной переработки.

Завершающим этапом выполнения студентом курсовой работы является ее защита. Защита проводится в соответствии с утвержденным расписанием. По результатам защиты курсовой работы выставляется оценка («отлично», «хорошо», «неудовлетворительно»), в соответствии с таблицей 1.

ЗАКЛЮЧЕНИЕ

Данное учебно-методическое пособие по изучению дисциплины «Аквабиотехнология» определяет цель и планируемые результаты освоения дисциплины, характеризует её тематический план, описывает оценочные средства поэтапного формирования результатов освоения дисциплины и формы их контроля, содержит материалы по методике преподавания, изучения учебной дисциплины.

В ходе обучения студенты приобретают знания технологий разведения и выращивания объектов аквакультуры, способности к проектированию и планированию работы рыбоводных хозяйств различного профиля. Получают навыки по оптимизации абиотических и биотических условий выращивания гидробионтов в рыбоводных системах, относящихся к различным направлениям аквакультуры.

Студенты изучают возможности применения технических решений, направленных на улучшение производственных процессов и условий содержания гидробионтов, а также современные и инновационные подходы в области аквакультуры.

Полученные навыки могут быть использованы для исследования биологического потенциала перспективных объектов аквакультуры, включая методы статистического анализа результатов экспериментов.

В ходе изучения данной дисциплины студенты смогут осуществлять мониторинг и корректировать ключевые факторы окружающей среды в технологической воде рыбоводных предприятий, эксплуатировать инструменты, оборудование и другие технические ресурсы, а также заниматься их модернизацией, планировать и реализовывать эксперименты, оценивать результаты экспериментов и производственных процессов, подбирая самые эффективные технологические решения.

СПИСОК РЕКОМЕНДОВАННЫХ ИСТОЧНИКОВ

Основная литература:

- 1. Товарное осетроводство : Учебник для вузов / Е. И. Хрусталев, Т. М. Курапова, Э. В. Бубунец [и др.]. 2-е изд., стер. Санкт-Петербург: Лань, 2022. 300 с. ISBN 978-5-8114-9333-3.
- 2. Корма и кормление рыб в аквакультуре / Е. И. Хрусталев, Т. М. Курапова, О. Е. Гончаренок, К. А. Чебан. 3-е изд., стер. Санкт-Петербург: Лань, 2023. 388 с. ISBN 978-5-507-47288-8.
- 3. Современные проблемы и перспективы развития аквакультуры: учебник / Е. И. Хрусталев, Т. М. Курапова, О. Е. Гончаренок, К. А. Молчанова. Санкт-Петербург: Лань, 2022. 416 с. ISBN 978-5-8114-2607-2.
- 4. Технические средства аквакультуры. Осетровые хозяйства: учебник для вузов / Е. И. Хрусталев, В. Е. Хрисанфов, К. А. Чебан, С. А. Розенталь. 2-е изд., стер. Санкт-Петербург: Лань, 2024. 180 с. ISBN 978-5-507-49143-8.
- 5. Хрусталев, Е. И. Технические средства аквакультуры. Лососевые хозяйства / Е. И. Хрусталев, К. А. Чебан. 2-е изд., стер. Санкт-Петербург: Лань, 2023. 140 с. ISBN 978-5-507-47175-1.
- 6. Пономарев, С. В. Аквакультура: учебник для вузов / С. В. Пономарев, Ю. М. Баканева, Ю. В. Федоровых. 3-е изд., стер. Санкт-Петербург: Лань, 2021. 440 с. ISBN 978-5-8114-6994-9.

Дополнительная литература:

- 7. Козлов, В. И. Современное осетроводство: филогения, запасы, воспроизводство и товарное выращивание: учебное пособие для вузов / В. И. Козлов. Санкт-Петербург: Лань, 2025. 304 с. ISBN 978-5-507-52398-6.
- 8. Перспективы использования белка насекомых в комбикормах для птицы и рыб : монография / А. Ю. Медведев, С. Н. Фигурак, В. Г. Сметанкина [и др.] ;под редакцией А. Ю. Медведева. Санкт-Петербург: Лань, 2024. 188 с. ISBN 978-5-507-52209-5.
- 9. Планирование технологических процессов в аквакультуре: учебное пособие / А. А. Васильев, О. Н. Руднева, М. Ю. Руднев [и др.]. Москва: МГАВМиБ им. К.И. Скрябина, 2022. 134 с.
- 10. Пономарев, С. В. Лососеводство: учебник / С. В. Пономарев. 2-е изд., перераб. и доп. Санкт-Петербург: Лань, 2022. ISBN 978-5-8114-3131-1.
- 11. Власов, В. А. Технология производства продукции биоресурсов: учебник / В. А. Власов, А. В. Жигин. Санкт-Петербург: Лань, 2020. ISBN 978-5-8114-4595-0.
- 12. Нестерчук, С. Л. Технологические основы и эколого-паразитарные проблемы аквакультуры: учебное пособие / С. Л. Нестерчук, В. А. Остапенко, М. В. Новиков. Москва: МГАВМиБ им. К.И. Скрябина, 2023. ISBN 978-5-86341-490-4.
- 13. Власов, В. А. Рыбоводство: учебное пособие / В. А. Власов. 2-е изд., стер. Санкт-Петербург: Лань, 2022. ISBN 978-5-8114-1095-8.

- 14. Козлов, В. И. Лососеводство: экономические решения: учебное пособие для вузов / В. И. Козлов. Санкт-Петербург: Лань, 2025. 212 с. ISBN 978-5-507-50300-1.
- 15. Козлов, В. И. Прудовая аквакультура: учебное пособие для вузов / В. И. Козлов. Санкт-Петербург: Лань, 2025. 168 с. ISBN 978-5-507-51723-7.
- 16. Козлов, В. И. Аквакультура на полифункциональных водоемах: учебное пособие для вузов / В. И. Козлов. Санкт-Петербург: Лань, 2024. 292 с.
- 17. Козлов, В. И. Аквакультура в установках замкнутого водообмена (УЗВ): экономические решения: учебное пособие для вузов / В. И. Козлов. Санкт-Петербург: Лань, 2025. 344
- 18. Пономарев, С. В. Ихтиология: учебник для вузов / С. В. Пономарев, Ю. М. Баканева, Ю. В. Федоровых. 4-е изд., стер. Санкт-Петербург: Лань, 2025. ISBN 978-5-507-50459-6.
- 19. Пономарев, С. В. Индустриальное рыбоводство: учебник / С. В. Пономарев, Ю. Н. Грозеску, А. А. Бахарева. 2-е изд., испр. и доп.- Санкт Петербург: Лань, 2021. 448 с.
- 20. Основы индустриальной аквакультуры: учебник / Е. И. Хрусталев, К. Б. Хайновский, О. Е. Гончаренок, К. А. Молчанова. 2-е изд., перераб. и доп. Санкт-Петербург: Лань, 2022. 280 с. ISBN 978-5-8114-3229-5.

Локальный электронный методический материал

Гончаренок Ольга Евгеньевна

АКВАБИОТЕХНОЛОГИЯ

Редактор И. Голубева

Уч.-изд. л. 2,3. Печ. л. 1,9.