

Федеральное агентство по рыболовству Федеральное государственное бюджетное образовательное учреждение высшего образования «Калининградский государственный технический университет» (ФГБОУ ВО «КГТУ»)

УТВЕРЖДАЮ И.о. директора института

Фонд оценочных средств (приложение к рабочей программе модуля)

«<u>МАТЕМАТИЧЕСКИЕ ОСНОВЫ ВЫЧИСЛИТЕЛЬНОЙ ТЕХНИКИ И</u> <u>ПРОГРАММИРОВАНИЯ</u>»

основной профессиональной образовательной программы бакалавриата по направлению подготовки

09.03.01 «ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА»

Профиль программы «ПРОМЫШЛЕННАЯ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»

ИНСТИТУТ цифровых технологий

РАЗРАБОТЧИК кафедра прикладной математики и информационных технологий

1 РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ, ПЕРЕЧЕНЬ ОЦЕНОЧНЫХ СРЕДСТВ И КРИТЕРИИ ОЦЕНИВАНИЯ

1.1 Результаты освоения дисциплины

Таблица 1 – Планируемые результаты обучения по дисциплине, соотнесенные с установленными компетенциями

Код и наименование	Дисциплина	Результаты обучения (владения, умения и
компетенции	A	знания), соотнесенные с компетенциями
ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности	Математические основы вычислительной техники и программирования	Зиать: основные булевы функции; основные положения теории множеств, теории графов, основные свойства алгебраических дискретных структур; методы работы с булевыми функциями; базовые законы и формулы логики высказываний, пропозиционального исчисления, исчисления предикатов, методы построения и анализа логических функций, упрощения и преобразования плоских графов, оптимизации сетевых потоков, построения сетевых планов; типы цифровых автоматов; методы разработки и минимизации конечного автомата; этапы синтеза дискретного устройства с памятью; понятие транспортной сети. Уметь: строить логический вывод булевых формул, составлять и упрощать логические функции; разрабатывать функциональные и структурные модели дискретных устройств; применять теорию графов и автоматов для моделирования дискретных процессов, строить простые модели сетевых планов и потоков. Владеть: навыками доказательства утверждений на множествах путём сведения задачи к проверке тождественной истинности булевой формулы; навыками проверки полноты системы булевых функций; специальной терминологией дисциплины, базовыми методами логического анализа, моделирования реальных ситуаций в терминах графов и сетей; навыками логического синтеза и тестирования дискретных устройств.

- 1.2 К оценочным средствам текущего контроля успеваемости относятся:
- тестовые задания открытого и закрытого типов;
- задания по расчетно-графической работе.

Промежуточная аттестация в форме зачета в третьем семестре проходит по результатам прохождения всех видов текущего контроля успеваемости. В отдельных случаях (при не прохождении всех видов текущего контроля) зачет может быть проведен в виде тестирования.

К оценочным средствам для промежуточной аттестации в форме экзамена в четвертом семестре относятся:

- экзаменационные задания по дисциплине, представленные в виде тестовых заданий закрытого и открытого типов.

1.3 Критерии оценки результатов освоения дисциплины

Универсальная система оценивания результатов обучения включает в себя системы оценок: 1) «отлично», «хорошо», «удовлетворительно», «неудовлетворительно»; 2) «зачтено», «не зачтено»; 3) 100 — балльную/процентную систему и правило перевода оценок в пятибалльную систему (табл. 2).

Таблица 2 – Система оценок и критерии выставления оценки

Система	2	3	4	5
оценок	оценок 0-40%		61-80 %	81-100 %
	«неудовлетворите	«удовлетворител	«хорошо»	«отлично»
	льно»	PH0»		
Критерий	«не зачтено»		«зачтено»	
1 Системность и	Обладает	Обладает	Обладает	Обладает
полнота знаний	частичными и	минимальным	набором знаний,	полнотой знаний и
в отношении	разрозненными	набором знаний,	достаточным для	системным
изучаемых	знаниями, которые	необходимым для	системного	взглядом на
объектов	не может научно-	системного	взгляда на	изучаемый объект
	корректно	взгляда на	изучаемый	
	связывать между	изучаемый объект	объект	
	собой (только			
	некоторые из			
	которых может			
	связывать между			
	собой)			
2 Работа с	Не в состоянии	Может найти	Может найти,	Может найти,
информацией	находить	необходимую	интерпретироват	систематизироват
	необходимую	информацию в	ь и	ь необходимую
	информацию, либо	рамках	систематизирова	информацию, а
	в состоянии	поставленной	ть необходимую	также выявить
	находить отдельные	задачи	информацию в	новые,
	фрагменты		рамках	дополнительные
	информации в			источники

Система	2	3	4	5
оценок	0-40%	41-60%	61-80 %	81-100 %
	«неудовлетворите	«удовлетворител	«хорошо»	«отлично»
	льно»	PH0»		
Критерий	«не зачтено»		«зачтено»	
	рамках		поставленной	информации в
	поставленной		задачи	рамках
	задачи			поставленной
				задачи
3 Научное	Не может делать	В состоянии	В состоянии	В состоянии
осмысление	научно корректных	осуществлять	осуществлять	осуществлять
изучаемого	выводов из	научно	систематический	систематический и
явления,	имеющихся у него	корректный	и научно	научно-
процесса,	сведений, в	анализ	корректный	корректный
объекта	состоянии	предоставленной	анализ	анализ
	проанализировать	информации	предоставленной	предоставленной
	только некоторые		информации,	информации,
	из имеющихся у		вовлекает в	вовлекает в
	него сведений		исследование	исследование
			новые	новые
			релевантные	релевантные
			задаче данные	поставленной
				задаче данные,
				предлагает новые
				ракурсы
				поставленной
4 Освоение	В осолодини возноли	В состоянии	В состоянии	задачи
стандартных	В состоянии решать только фрагменты	В состоянии решать	В состоянии решать	Не только владеет алгоритмом и
алгоритмов	поставленной	поставленные	поставленные	понимает его
решения	задачи в	задачи в	задачи в	основы, но и
профессиональ	соответствии с	соответствии с	соответствии с	предлагает новые
ных задач	заданным	заданным	заданным	решения в рамках
	алгоритмом, не	алгоритмом	алгоритмом,	поставленной
	освоил	F	понимает основы	задачи
	предложенный		предложенного	, · ·
	алгоритм,		алгоритма	
	допускает ошибки		*	
	<u> </u>	L	<u> </u>	l

1.4 Оценивание тестовых заданий закрытого типа осуществляется по системе зачтено/ не зачтено («зачтено» — 41-100% правильных ответов; «не зачтено» — менее 40% правильных ответов) или пятибалльной системе (оценка «неудовлетворительно» - менее 40% правильных ответов; оценка «удовлетворительно» - от 41 до 60% правильных ответов; оценка «хорошо» - от 61 до 80% правильных ответов; оценка «отлично» - от 81 до 100% правильных ответов).

Тестовые задания открытого типа оцениваются по системе «зачтено/ не зачтено». Оценивается верность ответа по существу вопроса, при этом не учитывается порядок слов в словосочетании, верность окончаний, падежи.

Ответ: тупиковые

2 ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕЙ И ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ

3 семестр

ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

Тестовые задания открытого типа:
1. Высказыванию: «Число четное тогда и только тогда, когда оно делится на два» соответствует логическая операция
Ответ: эквивалентность (равнозначность)
2. Единственной унарной операцией в логике высказываний является
Ответ: инверсия (отрицание)
3. Количество элементов в множестве области определения функции алгебры логики, зависящей от 4 аргументов, равно:
Ответ: 16
4. Для набора (0,0) импликация, штрих Шеффера и стрелка Пирса дают значение:
Ответ: 1
5. Количество слагаемых в СДНФ функции $f(x,y)=x+\overline{y}z$ равно:
Ответ: 5
6. Полиномом Жегалкина называется, если его степень не больше 1.
Ответ: линейным
7. Алгебраической нормальной формой представления логической функции является
Ответ: полином Жегалкина
8. Для получения минимальной ДНФ необходимо построить все её ДНФ и выбрать те из них, которые содержат наименьшее количество переменных.

ФОНД ОЦЕНОЧНЫХ СРЕДСТВ	U
9. Прием, используемый при минимизации ЛФ, когда элементарная конъюнкция мень	шего
ранга с наличием в ней переменной (либо ее отрицания) убирает отрицание этой переме	нной
(либо ее саму) в элементарной конъюнкции большего ранка – это	
Ответ: склейка	
10 функция принимает противоположные значения на противополож	кных

Ответ: самодвойственная

11. Дана таблица Поста:

Функции	ТО	T1	S	L	М
f1	+	+	-	-	-
f2	+	-	+	+	-

Для полноты системы $\{f1,f2,f3\}$ f3 <u>HE</u> должна принадлежать классу:_____

Ответ: Т0

наборах.

12. Максимальная мощность множества логических функций, составляющих базис, равна:

Ответ: 4

13. Схема из функциональных элементов (в произвольном базисе), реализующая систему из двух функций $f(x, y, p) = xy \lor yp \lor px$ и $g(x, y, p) = x \oplus y \oplus p$ – это _____

Ответ: одноразрядный сумматор (одноразрядный двоичный сумматор)

14. Для полного дешифратора с 4 входами количество выходов равно: _____

Ответ: 16

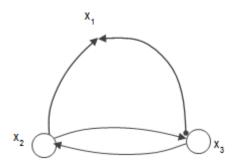
15. _____ - это устройство, имеющее два устойчивых состояния, являющееся простейшей ячейкой памяти.

Ответ: триггер

16. Один из способов построения контактных схем, реализующих булевы функции, состоит в том, что функция представляется в виде ДНФ, и для каждой элементарной конъюнкции

$K(x_i,\ldots,x_k)$ строится схема из соединенных контактов x_i,\ldots,x_k , а полученные схемь
соединяются (вид соединения через запятую, без пробелов)
Ответ: последовательно, параллельно
17. Дано: $U=\{0,1,2,3,4,5,6,7,8,9\}$, $A=\{0,2,3\}$, $B=\{2,3,4,5\}$. Количество элементов в множестве $\overline{A\setminus B}$ равно:
Ответ: 9
18. Закон теории множеств вида $A \cup (B \cup C) = (A \cup B) \cup C$ носит название
Ответ: ассоциативность
19. Число элементов множества – это его
Ответ: мощность
20. Даны множества A и B. Если известно, что $ A $ =5, $ B $ =7, $ A \cap B $ =3, тогда значение $ A \cup B $ равно:
Ответ: 9
21. При выполнении операций алгебры отношений исходных множеств должна быть равной.
Ответ: мощность
22. Отношение, если для любого кортежа $(x_i, x_j) \in R$ при $i \neq j \ R(x_i, x_j) = R(x_i, x_i)$.

23.


Ответ: симметрично

Отношение	Множество
P	$\{(x, y): x = y \pmod{3}\}$ на любом подмножестве целых чисел
Q	$\{(x,x),(z,z),(z,y),(z,t),(y,z),(y,y),(y,t),(t,z),(t,t)\}$ на множестве $M=\{x,y,z,t\}$
R	$ \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} $
G	

Отношениями эквивалентности являются:_____ (имена отношений через запятую, без пробелов)

Ответ: P,R

24. Отношение, представленное графом

из свойств A (рефлексивность), Б (симметричность), С (транзитивность) обладает: _____ (обозначения свойств, через запятую, без пробелов)

Ответ: Б,С

Тестовые задания закрытого типа:

25. Установление соответствия:

	Законы логики		Формула
1	противоречия	a	$A \wedge \overline{A} = 0$
2	исключенного третьего	б	$A \lor \overline{A} = 1$
3	де Моргана	В	$\overline{A \vee B} = \overline{A} \wedge \overline{B}$
4	идемпотентности	Γ	$A \wedge A = A$

Ответ: 1а, 26, 3в,4г

26. Установление соответствия функции и дизъюнкции, входящей в ее СКНФ:

	Функция		СКНФ функции
1	$x \rightarrow y$	a	$\overline{x} \vee y$
2	x y	б	$\overline{x} \vee \overline{y}$
3	$\overline{x} \to \overline{y}$	В	$x \vee \overline{y}$

4	$\overline{\overline{x}} \wedge \overline{y}$	Γ	$x \vee y$

Ответ: 1а, 26, 3в,4г

27. Функция f(x,y,x) задана таблицей истинности (1111 1110). По карте Карно ее минимальной ДНФ является:

- 1. x + y + z
- $2. \ \overline{x} + \overline{y} + \overline{z}$
- $3. \, \overline{x}y + \overline{y} + y\overline{z}$
- 4. $\overline{x} \overline{y} + x \overline{y} + xz$

28. Установление соответствия:

	Класс		Множество функций
1	ТО	a	$\{f \in P_2 \mid f(0,0,,0) = 0\}$
2	T1	б	$\{f \in P_2 \mid f(1,1,,1) = 1\}$
3	M	В	$\{f \in P_2 \forall_{\alpha} \forall_{\beta} \ \alpha \leq \beta \longrightarrow f(\alpha) \leq f(\beta)\}\$
4	S	Γ	$\{f \in P_2 \mid \forall_{(a_1,,a_n)} \ f(a_1,,a_n) = f(a_1,,a_n)\}$
5	L	Д	$\{f \in P_2 \mid f(x_1, x_{2,,} x_n) = a_0 + a_1 x_1 + + a_n x_n\}$

Ответ: 1а, 26, 3в, 4г, 5д

29. Установление соответствия:

	Контактная схема	Булева функция		
1	$a \circ \overline{\overline{x}_1} \circ b$	a $f(x1, x2, x3) = \overline{x2} \vee \overline{x1}x3$		
2	a x_1 x_2 x_3 x_2 x_3 x_4 x_4 x_4	$f(x_1, x_2, x_3) = x_1x_2 \lor x_2x_3 \lor x_3x_1$		

3	a x_1 x_3 x_3 x_3 x_4 x_3 x_4 x_3 x_4	В	$f(x1, x2, x3) = x1\overline{x2} \lor x2(x3\overline{x2} \lor \overline{x3}x2) \lor \overline{x1}x2$
4	$a \xrightarrow{\overline{x_1}} \xrightarrow{x_2} \xrightarrow{\overline{x_2}} \xrightarrow{x_3} b$	Γ	$f(x1, x2, x3) = x1 \oplus x2 \oplus x3 + 1$

Ответ: 1а, 26, 3в, 4г

30. Расположение произвольных множеств в таком порядке, чтобы каждое предыдущее множество было подмножеством последующего:

	Множество									
1	$A \cap B$									
2	$A \cap B \cap C$									
3	$(A \cap B) \cup C$									
4	$A \cup B \cup C$									
5	$A \cup C$									

Ответ: 2,1,3,5,4

- 31. Дана матрица бинарного отношения $\|R_2\|=\begin{pmatrix}1&0&1\\1&1&1\\0&1&1\end{pmatrix}$. Данное отношение обладает свойством:
- 1. рефлексивность
- 2. симметричность
- 3. транзитивность
- 4. антисимметричность
- 32. Установление соответствия:

Отношение	Утверждение

			·
1	$P = \{(a,a), (b,b), (c,c), (d,d), (a,c),$ (b,c), (c,d), (a,d), ((b,d)} на множестве $A = \{a,b,c,d\}$	a	отношение частичного порядка
2	Q:	б	граф отношения предпорядка
3	$R = \{(a,a), (b,b), (c,c), (a,b), (a,c), (b,c)\}$ на множестве $A = \{a,b,c\}$	В	отношение линейного порядка
4	T:	Γ	диаграмма Хассе отношения частичного порядка
5	H:	Д	граф отношения, не являющегося отношением порядка

Ответ: 1а, 26, 3в, 4г,5д

4 семестр

ОПК-1 Способен применять естественнонаучные и общеинженерные знания, методы математического анализа и моделирования, теоретического и экспериментального исследования в профессиональной деятельности

Тестовые задания открытого типа:

1. Множество целых чисел и операция сложения	образуют алге	ебраическую структуру:
--	---------------	------------------------

Ответ: абелева группа
2 взаимно однозначное соответствие между носителями алгебраических структур
сохраняющее все операции сигнатуры.
Ответ: изоморфизм
3. Z_p – это тогда и только тогда, когда р – простое число
Ответ: поле
4 это универсальная алгебра с двумя бинарными операциями ∧ и ∨, такая, что
$\forall a, b \in L$ операции V, Λ коммутативны и ассоциативны и выполнены законы поглощения (а Λ
$(a \lor b) = a; a \lor (a \land b) = a).$
Ответ: решётка (решетка)
5. Степень висячей вершины графа равна:
Ответ: 1
6 число графа – это наименьшее число ребер, удаление которых приводит
к графу без циклов и петель.
Ответ: цикломатическое
7число графа – это наименьшее число подмножеств попарно несмежных вершин
графа.
Ответ: хроматическое
8. При выполнении операции некоторого графа в результат включаются все
вершины исходного графа и отсутствующие в нем линии.
Ответ: дополнения
9. Число всех остовов связного графа равно алгебраическому дополнению любого элемента матрицы
Ответ: Кирхгофа
10. Матрицаграфа содержит информацию о различных путях в графе
Ответ: достижимости
11. Неориентированный граф задан матрицей расстояний

$$A = \begin{matrix} x_1 & x_2 & x_3 x_4 & x_5 \\ x_2 & 0 & 1 & 3 & 1 & 2 \\ x_2 & 1 & 0 & 2 & 1 & 1 \\ x_3 & 2 & 0 & 2 & 1 \\ x_5 & 1 & 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 & 0 \end{matrix}$$

Периферийными вершинами являются: (номера вершин через запятую, без пробелов)

Ответ: 1,3

12. Неориентированный граф задан матрицей расстояний

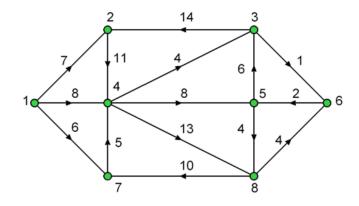
$$A = \begin{bmatrix} x_1 & x_2 & x_3 x_4 & x_5 \\ x_2 & 0 & 1 & 3 & 1 & 2 \\ x_2 & 1 & 0 & 2 & 1 & 1 \\ x_3 & 2 & 0 & 2 & 1 \\ x_5 & 1 & 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 & 0 \end{bmatrix}$$

Эксцентриситет первой вершины равен: _____

Ответ: 3

13. Неориентированный граф задан матрицей расстояний

$$A = \begin{matrix} x_1 & x_2 & x_3 x_4 & x_5 \\ x_2 & 0 & 1 & 3 & 1 & 2 \\ x_2 & 1 & 0 & 2 & 1 & 1 \\ x_3 & 2 & 0 & 2 & 1 \\ x_5 & 1 & 1 & 2 & 0 & 1 \\ 2 & 1 & 1 & 1 & 0 \end{matrix}$$


Диаметр данного графа равен:_____

Ответ: 3

14. Поиск гамильтонова цикла минимального веса во взвешенном полном графе - это задача

Ответ: коммивояжера

15. Для графа

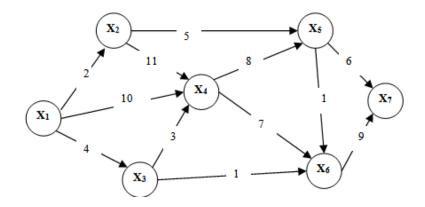
кратчайший путь от вершины 1 к вершине 5 равен:

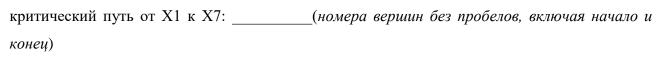
Ответ: 16

16. Исходя из матрицы смежности, возведенной в третью степень,

$$A_G^3 = \begin{array}{c} x_1 & x_2 & x_3 x_4 \\ x_2 & 1 & 0 & 1 & 2 \\ x_3 & 1 & 2 & 3 \\ x_4 & 2 & 0 & 1 \\ 2 & 3 & 0 & 1 \end{array}$$

число маршрутов (2,1) длины 3 равно: _____


Ответ: 3


17. Для матрицы сильной связности
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$
 число компонент сильной связности
$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

равно: _____

Ответ: 3

18. Для ориентированного графа

Ответ: 124567

19. Поиск _____ графа минимального веса по алгоритму Дейкстры начинается с задания начальной вершины дерева

Ответ: остова

20. Согласно теореме Форда-Фалкерсона, величина максимального _____ равна величине минимального _____

Ответ: потока, разреза (поток, разрез)

21. Количество элементов в множестве для задания конечного автомата равно: _____

Ответ: 6

22. Наличие памяти в конечном автомате определяется количеством его______.

Ответ: состояний

23. Независимость выходного сигнала от входных сигналов и отсутствие влияния сигналов по цепям обратных связей позволяет в качестве элемента памяти использовать абстрактный автомат ______

Ответ: Мура

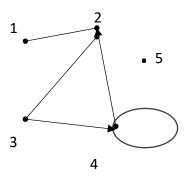
24. Конечный автомат – преобразователь

$$A = \langle \Sigma_X = \{0, 1\} \Sigma_Y = \{A, P, T\}, Q = \{0, 1, 2, 3\}, 0, \Phi, \Psi \rangle$$
, где

Φ / Ψ :							
$Q \setminus \Sigma_X$	0	1					
0	0/T	1/A					
1	2/P	3/T					
2	1/A	2/T					
3	1/A	3/P					

, входное слово 010000 перерабатывает в выходное слово:_____

Ответ: ТАРАРА


Тестовые задания закрытого типа:

25. Установление соответствия:

	Вид графа		Изображение				
1	подграф	a	X2				
2	частичный подграф	б	X2 X3 V4 V4 X5 X4				
3	частичный граф	В	V1 X2 V2 X3 V4 V4 X5 X5				

Ответ: 1а, 26, 3в

26. Для графа

расположение вершин в порядке возрастания валентности:______(последовательность номеров вершин без пробелов)

Ответ: 51324

- 27. Граф с весовой матрицей, <u>HE</u> симметричной относительно главной диагонали, обязательно обладает свойствами:
- 1. имеет циклы
- 2. взвешенный

3. ориентированный

- 4. без циклов
- 5. связный

28. Установление соответствия:

Алгоритм			Задача			
1	Дейкстры	а Поиск кратчайшего пути для взвешенного гра имеющего отрицательного веса ребер				
2	Форда - Беллмана	б	Поиск кратчайшего пути для графа, имеющего отрицательный вес ребер			
3	Форда - Фалкерсона	В	Поиск максимального потока в транспортной сети			

Ответ: 1а, 26, 3в

- 29. Конечный автомат НЕЛЬЗЯ задать:
- 1. таблицей
- 2. графом
- 3. матрицей
- 4. таблицей истинности
- 30. Число вершин в графе переходов автомата Мура определяется:
- 1. мощностью входного алфавита
- 2. мощностью выходного алфавита
- 3. мощностью множества состояний
- 4. функцией выходов
- 5. функцией переходов
- 31. Минимизацию числа состояний абстрактного конечного автомата <u>**НЕЛЬЗЯ**</u> выполнить методом:
- 1. Хаффмена
- 2. Петрика
- 3. карт Карно
- 4. неопределенных коэффициентов
- 32. Установление порядка возрастания:

	Этапы синтеза дискретного устройства с памятью
1	Построение таблицы переходов и таблицы выходов по словесному описанию работы
2	Минимизация числа строк таблицы переходов и таблицы выходов
3	Определение минимально необходимого числа внутренних элементов памяти
4	Кодирование строк таблицы переходов
5	Построение кодированных таблицы переходов и таблицы выходов
6	Построение таблиц истинности для функций включения внутренних элементов памяти и выходных функций
7	Минимизация функций
8	Построение схемы дискретного устройства

Ответ: 1,2,3,4,5,6,7,8

З ТИПОВЫЕ ЗАДАНИЯ НА КОНТРОЛЬНУЮ РАБОТУ, КУРСОВУЮ РАБОТУ/ КУРСОВОЙ ПРОЕКТ, РАСЧЕТНО-ГРАФИЧЕСКУЮ РАБОТУ

Учебным планом предусмотрено выполнение расчетно-графической работы.

Целью расчетно-графической работы является приобретение практических навыков использования математических методов при решении задач профессиональной деятельности.

Типовой вариант заданий расчетно-графической работы включает 30 заданий.

Задача 1. Упростить формулу: $\overline{(A \land B) \land C} \rightarrow (A \land C)$.

Задача 2. Составить таблицу истинности функции двух переменных $f(x, y) = (x \oplus y)|(y \downarrow \bar{x})$

Задача 3. Привести к ДНФ формулу: $f(x, y, z) = ((x \to y) \lor \neg (y \to z))$.

Задача 4. Привести к КНФ формулу: $f(x, y, z) = (x \to y) \cdot ((\bar{y} \to z) \to \bar{x})$

Задача 5. Пусть логическая функция f(x, y, z) представлена формулой $x \lor z \to \bar{x}y$. Получить СДНФ двумя способами: с помощью эквивалентных преобразований и используя табличное представление функции f(x, y, z).

Задача 6. Минимизировать функцию, записанную в СДНФ:

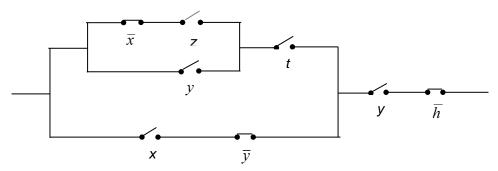
$$f(x, y, z) = \overline{xy}z \lor x\overline{y}z \lor xy\overline{z} \lor xyz$$
.

Задача 7. Пусть функция задана вектором $f(x_1, x_2, x_3) = (0, 0, 0, 1, 1, 1, 1, 1)$. Найти ее сокращенную ДНФ.

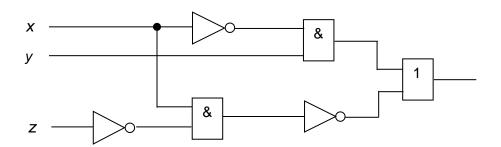
Задача 8. Используя карты Карно, найти сокращенную ДНФ функций:

$$f_1(x_1, x_2, x_3) = (0, 0, 0, 1, 1, 1, 1, 1),$$

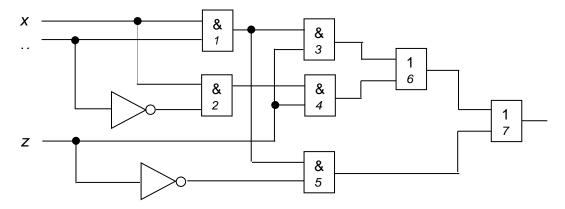
$$f_2(x_1, x_2, x_3, x_4) = (1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1).$$


Задача 9. Доказать, что следующие системы булевых функций: $\{\land, \oplus, 1\}$ $\{\neg, \land\}$, $\{\neg, \lor\}$, $\{$

Задача 10. Представить формулу $xy \lor \overline{y}(z \lor t)$ в базисе $\{\neg, \land\}$ и $\{\neg, \lor\}$.


Задача 11. Представить функцию $f(x, y) = x \to y$ в базисе Жегалкина $\{\land, \oplus, 1\}$.

Задача 12. Методом неопределенных коэффициентов построить полином Жегалкина для функции $f(x, y) = x \vee y$.


Задача 13. Построить функцию проводимости следующей π - схемы:

Задача 14. Для функциональной схемы записать соответствующую булеву функцию.

Задача 15. Упростить функциональную схему.

Задача 16. Разработать логическую схему для реализации частично определенной булевой функции четырех аргументов, заданной таблицей. Каждая комбинация значений аргументов двоичных переменных x, y, z, t отображается числом N, равным $2^3t + 2^2z + 2^1y + 2^0x$:

N	4	6	7	8	9	11	12	13	14	15
f	0	1	1	0	1	1	0	0	0	1

Значения функции при неуказанных комбинациях значений аргументов необходимо доопределить до получения схемы с минимальным числом элементов. Минимизацию булевой функции провести с помощью карт Карно.

Задача 17. Решить задачу синтеза логической схемы сумматора - главного компонента арифметического устройства компьютера (цифрового автомата) с использованием базиса $\{\neg, \land, \lor\}$.

Задача 18. Пусть в некотором конкурсе решается вопрос о допуске того или иного участника к следующему туру тремя членами жюри. Решение положительно тогда и только тогда, когда большинство членов жюри высказались за допуск. Построить соответствующие контактную и электронную схемы работы жюри.

Задача 19. Доказать справедливость соотношения $(A \setminus B) \setminus C = A \setminus (B \cup C)$:

- а) используя определения операций над множествами;
- б) используя основные законы алгебры множеств;
- в) с помощью характеристических функций.

Проиллюстрировать справедливость этого соотношения на примере конкретных множеств и с помощью диаграмм Венна.

Задача 20. На множествах $A = \{a,b,c\}$ и $B = \{1,2,3,4\}$ заданы отношения $P_1 \subseteq A \times B$, $P_2 \subseteq B^2$:

$$P_1 = \{(a,1),(a,2),(a,4),(b,1),(b,4),(c,3)\}, P_2 = \{(1,1),(2,1),(2,4),(3,3),(4,1),(4,2)\}$$

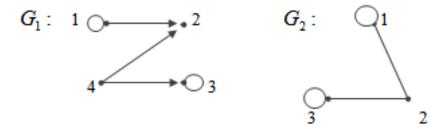
Представить эти отношения графами, матрицами. Найти граф и матрицу отношения $(P_1 \circ P_2)^{-1}$. Проверить, является ли отношение P_2 рефлексивным, симметричным, антисимметричным, транзитивным.

Задача 21. Пусть отношение $P = \{(x, y): x \text{ начальник } y\}, A - \text{множество людей:}$

 $A = \{a, b, c, d, e, f, g, h\}$, где a — начальник фирмы, b, c — начальники отделов фирмы, d, e, f работают под руководством b, а g и h — под руководством c.

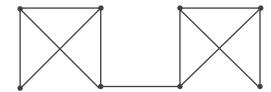
- а) показать, является ли отношение P отношением эквивалентности или отношением порядка (линейного, частичного, полного, строгого, нестрогого) на множестве A;
- б) составить матрицу и граф отношения;
- в) составить диаграмму Хассе, если P отношение порядка. Составить фактор-множество $[A]_P$ и найти индекс разбиения, если P отношение эквивалентности.

Задача 22. Для множества
$$M=\{1,2,3,4\},\ x*y=\begin{cases} x+y+1,\ \text{если}\ x+y<4\\ x+y-3,\ \text{если}\ x+y\geq 4\\ 1,\ \text{если}\ x=y=4 \end{cases}$$


построить таблицу Кэли с заданной операцией; найти левые (правые) единицы и нули. В случае бесконечного множества M для заданной операции выясните, будет ли она ассоциативна, коммутативна.

Задача 23. Решить уравнение $x^3 + x + 2 = 0$ в поле Z_5 .

Задача 24. Изобразить граф, заданный матрицей смежности Р (инцидентности R).


$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$

Составить матрицу инцидентности R (смежности P). Построить матрицы достижимости C и сильной связности F. Найдти все компоненты сильной связности.

Найти $G_1 \cup G_2$, $G_1 \cap G_2$, $G_1 \oplus G_2$, $G_1 \times G_2$. Для графа $G_1 \cup G_2$ найдти матрицы смежности, инцидентности, сильных компонент, маршрутов длины 2 и все маршруты длины 2, исходящие из вершины 1.

$\it 3adaчa~26.$ Для заданного графа $\it G$:

составить матрицу расстояний, найти эксцентриситеты вершин, радиус и диаметр этого графа. Составить матрицу фундаментальных циклов. Определить, является ли изображенный граф эйлеровым, является ли этот граф планарным.

Задача 27. По заданной матрице весов Ω графа G:

$$\begin{pmatrix} - & 5 & 10 & 13 & \infty & \infty \\ \infty & - & 8 & 9 & 13 & \infty \\ \infty & \infty & - & 5 & 3 & 6 \\ \infty & \infty & \infty & - & 8 & 10 \\ \infty & \infty & \infty & \infty & - & 9 \\ \infty & \infty & \infty & \infty & \infty & - \end{pmatrix}$$

найти величину минимального пути и сам путь от вершины $s=x_1$ до вершины $t=x_6$ или $t=x_7$. Реализовать алгоритм Дейкстры на компьютере.

 $\it 3ada4a$ 28. Для графа $\it G$, заданного матрицей весов:

$$\begin{pmatrix}
- & 10 & \infty & 5 & \infty & \infty & 14 \\
10 & - & 6 & 2 & 4 & 8 & \infty \\
\infty & 6 & - & 3 & 1 & 1 & \infty \\
5 & 2 & 3 & - & 6 & \infty & 3 \\
\infty & 4 & 1 & 6 & - & 5 & \infty \\
\infty & 8 & 1 & \infty & 5 & - & 2 \\
14 & \infty & \infty & 3 & \infty & 2 & -
\end{pmatrix}$$

построить минимальный по весу остов G' и найти его вес $\omega(G')$. Реализовать алгоритм Прима на компьютере.

Задача 29. Задана матрица пропускных способностей дуг сети и стоимости транспортировки единичного потока вдоль всех дуг:

Построить максимальный поток от вершины $s=x_1$ до вершины $t=x_7$ и указать минимальный разрез, отделяющий s от t. Реализовать алгоритм Форда-Фалкерсона на компьютере.

Задача 30. Для автомата, заданного таблицей:

$\begin{array}{ c c c }\hline q \\ x \\ \hline \end{array}$	0	1	2	3
0	1;1	3;0	2;0	2;0
1	2;1	2;0	3;0	3;0

построить диаграмму Мура. Задать этот автомат системой булевых функций. Построить канонические уравнения автомата.

4 СВЕДЕНИЯ О ФОНДЕ ОЦЕНОЧНЫХ СРЕДСТВ И ЕГО СОГЛАСОВАНИИ

Фонд оценочных средств для аттестации по дисциплине «Математические основы вычислительной техники и программирования» представляет собой компонент основной профессиональной образовательной программы бакалавриата по направлению подготовки 09.03.01 Информатика и вычислительная техника (профиль Промышленная информатика и системы управления).

Преподаватель-разработчик – Руденко А.И., к.ф.-м.н.

Фонд оценочных средств рассмотрен и одобрен и.о. заведующим кафедрой прикладной математики и информационных технологий.

Agreef

И.о. заведующего кафедрой

А.И. Руденко

Фонд оценочных средств рассмотрен и одобрен заведующим кафедрой цифровых систем автоматики

И.о. заведующего кафедрой

В.И. Устич

Фонд оценочных средств рассмотрен и одобрен методической комиссией института цифровых технологий (протокол №5 от 29 августа 2024 г).

Председатель методической комиссии

О.С. Витренко