

Федеральное агентство по рыболовству БГАРФ ФГБОУ ВО «КГТУ» Калининградский морской рыбопромышленный колледж

Утверждаю Заместитель начальника колледжа по учебно-методической работе А.И.Колесниченко

ОП.02 ТЕХНИЧЕСКАЯ МЕХАНИКА

Методическое пособие для выполнения практических занятий по специальности

15.02.17 Монтаж, техническое обслуживание, эксплуатация и ремонт промышленного оборудования (по отраслям)

МО-15 02 17-ОП.02.ПЗ

РАЗРАБОТЧИК Лаптев С.Ю. ЗАВЕДУЮЩИЙ ОТДЕЛЕНИЕМ Судьбина Н.А.

 ГОД РАЗРАБОТКИ
 2024

 ГОД ОБНОВЛЕНИЯ
 2025

МО-15 02 17-ОП.02.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.2/20

Введение

Рабочей программой дисциплины «Техническая механика» предусмотрено проведение практических работ по специальности 15.02.17 Монтаж, техническое обслуживание, эксплуатация и ремонт промышленного оборудования (по отраслям.

)Целью проведения практических занятий является закрепление теоретических знаний и приобретение необходимых практических умений в применении теории для решения задач по данной дисциплине, а также работе с нормативными документами.

Перед проведением практических занятий обучающиеся должны проработать соответствующий теоретический материал, ознакомиться с содержанием и последовательностью выполнения практической работы.

Преподаватель проверяет знания и готовность к выполнению практических работ. Оформление отчетов в соответствии с установленными требованиями.

После каждого практического занятия принимается зачет по теоретическому материалу и умениям, обретенным в ходе выполнения работы.

MO-15 02 17-ОП.02.ПЗКМРК БГАРФ ФГБОУ ВО «КГТУ»ТЕХНИЧЕСКАЯ МЕХАНИКАС.3/20

Перечень практических занятий

№ п/п	Наименование практических занятий	Кол-во часов
1	Практическое занятие № 1 Определение центра тяжести простых	2
	геометрических фигур.	
2	Практическое занятие № 2 Построение эпюр продольных сил и нормальных растяжений по длине бруса	2
3	Практическое занятие № 3 Расчет болтовых соединений на срез и смятие	3
4	Практическое занятие № 4 Построение эпюр. Расчет на прочность и	3
	жесткость при кручении.	0
5	Практическое занятие № 5 Построение эпюр поперечных сил и изгибающих	3
	моментов по характерным точкам	Ŭ
6	Практическое занятие № 6 Расчет стандартных балок на изгиб	3
7	Практическое занятие 7 Определение передаточного числа многоступенчатой	3
	передачи	0
8	Практическое занятие № 8 Расчет прямозубой передачи	3
9	Практическое занятие № 9 Определение параметров червячной пары	3
10	Практическое занятие № 10 Расчет прямых валов и осей. Составление расчетной схемы.	3
Итого	растепной оложы.	28

Раздел 1. Теоретическая механика

Тема 1.1 Статика

Практическое занятие №1 Определение центра тяжести простых геометрических фигур.

Цель занятия:

Уметь определять положение центра тяжести сложных геометрических фигур.

Исходные материалы:

Варианты заданий (табл.1, рис.1)

Использованные источники: [1], [3]

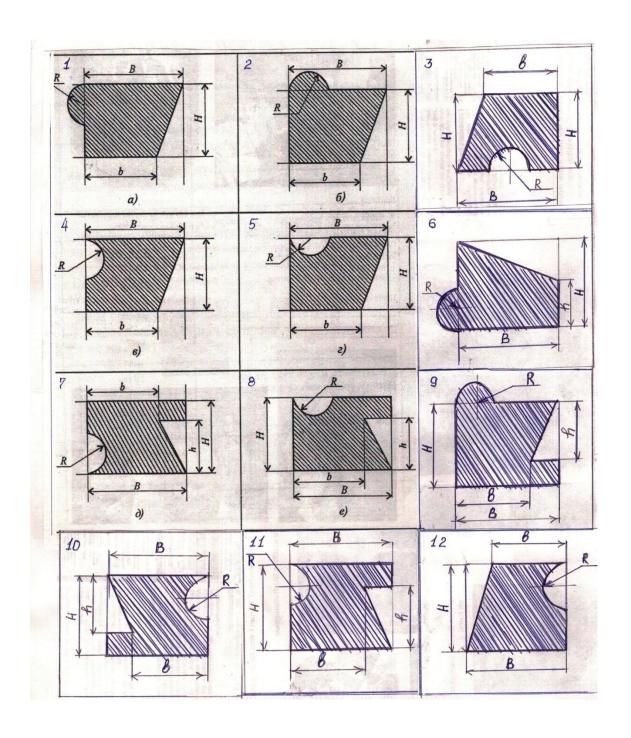
Содержание и порядок выполнения работы:

При выполнении задания следует придерживаться следующего плана:

- 1. Вычертить фигуру в масштабе.
- 2. Разбить фигуру на простые сечения (прямоугольник, треугольник, квадрат, окружность).
 - 3. Определить площади и положение центра тяжести каждой из фигур.
- 4. Провести оси координат. Если фигура симметричная, то рационально оси координат совместить с осями симметрии, а начало координат поместить в центр тяжести какой-нибудь части.
 - 5. Определить координаты центров тяжести каждой фигуры.
 - 6. Подсчитать координаты центра тяжести всей фигуры по формулам

$$X_C \frac{\sum Aixi}{\sum Ai}; \quad Y_C \frac{\sum Aixi}{\sum Ai};$$

7. По найденным значениям координат центра тяжести определить его положение на чертеже.


Выводы и предложения.

Содержание отчета:

- 1. Наименование практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсанта и преподавателя.

КМРК БГАРФ ФГБОУ ВО «КГТУ»	
ТЕХНИЧЕСКАЯ МЕХАНИКА	C.5/20

- 1. Дать определение центра тяжести параллельных сил и указать его основные свойства.
- 2. Какая теорема используется для доказательства и определения центра параллельных сил.
 - 3. Указать положение центра тяжести прямоугольника и треугольника.

Параметр					Bapı	иант						
	1	2	3	4	5	6	7	8	9	10	11	12
B, MM	100	110	120	130	140	150	160	170	180	190	100	110
b, мм	60	70	80	90	100	110	120	130	140	150	60	70
Н, мм	80	90	100	110	120	130	140	150	160	170	80	90
h, mm	50	60	70	80	90	100	110	120	130	140	50	60
R, MM	20	25	25	30	30	40	40	50	50	60	20	25

Раздел 2 Сопротивление материалов

Тема 2.1 Основные положения. Растяжение, сжатие, срез и смятие

Практическое занятие № 2.Построение эпюр продольных сил и нормальных напряжений по длине бруса

Практическое занятие проводится после изучения темы «Растяжение и сжатие», включающей понятия о нормальных напряжениях в поперечном сечении, продольных силах, пределах и допустимых напряжениях, коэффициента запаса прочности.

Цель занятия:

Научиться проводить проектировочные и проверочные расчеты на прочность и жесткость при растяжении и сжатии.

Исходные материалы:

Варианты заданий (табл.3; рис.3)

Используемые источники: [1], [3]

Содержание и порядок выполнения работы:

- 1. Разбить заданную схему на участки.
- 2. Определить продольные силы и нормальные напряжения по участкам нагружения. Использовать формулы:

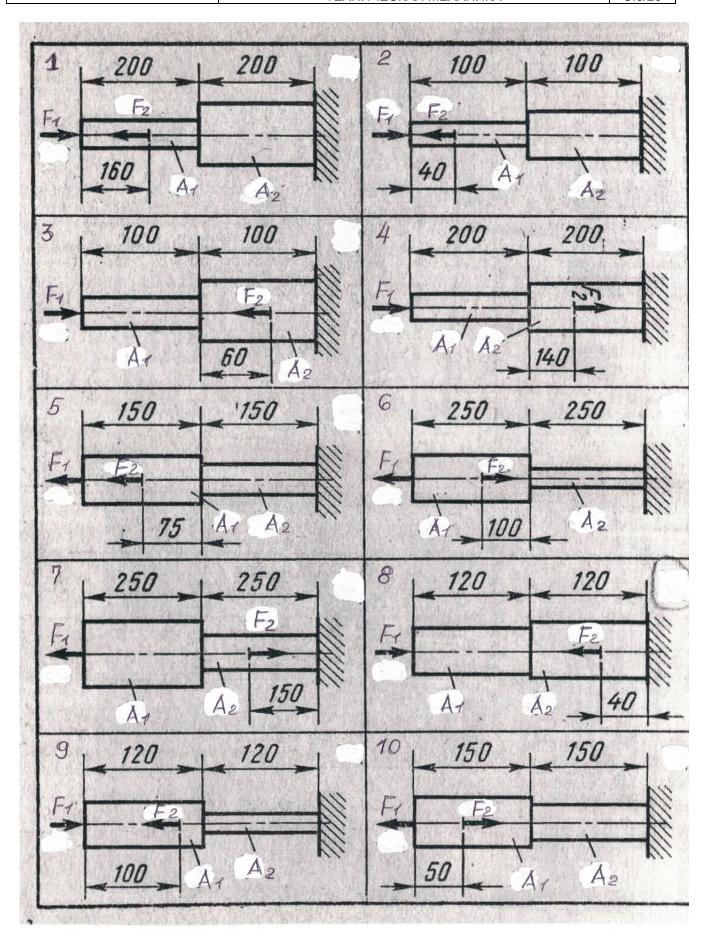
$$A = \frac{N}{|\mathcal{S}|};$$
 [N]=[6]·A

Примечание: длины участков даны в мм.

- 1. Построить эпюры продольных сил и нормальных напряжений.
- 2. Определить размеры поперечных сечений бруса для каждого участка нагружения.

MO-15 02 17-OΠ.02.Π3	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.7/20

3. Проверить прочность бруса и указать, насколько (в процентах) брус недогружен или перегружен. Принять [σ] = 160 МПа


Выводы и предложения.

Содержание отчета:

- 1. Наименование практического занятия.
- 2.Цель занятия.
- 3.Вариант задания.
- 4.Список используемой литературы.
- 5.Выводы и предложения.
- 6.Дата и подписи курсанта и преподавателя.

Таблица – 3

Nº	F ₁	F ₂	A^1	A^2
задачи	kH	kH	CM ²	CM ²
1	12	30	0,8	1,5
2	22	4	1,4	1,2
3	20	3	1,65	1,4
4	11	29	0,9	1,2
5	19	43	1,55	1,9
6	26	46	2,2	1,7
7	23	4	1,3	1,9
8	15	35	1,4	1,5
9	19	36	1,6	1,7
10	35	10	2,4	2,1

Практическое занятие № 3 Расчет болтовых соединений на срез и смятие

Практическое занятие выполняется после изучения тем «Срез» и «Смятие». Предусматривает знания по темам внутренних факторов, напряжения и деформации при сдвиге и смятия деталей, работающих на срез и смятие.

Цель занятия:

Изучение пользоваться расчетными формулами; проводить проектные и проверочные расчеты деталей, работающих на срезе и смятие.

Исходные материалы:

Практическое занятие проводится по вариантам заданий (рис.5;табл.5)

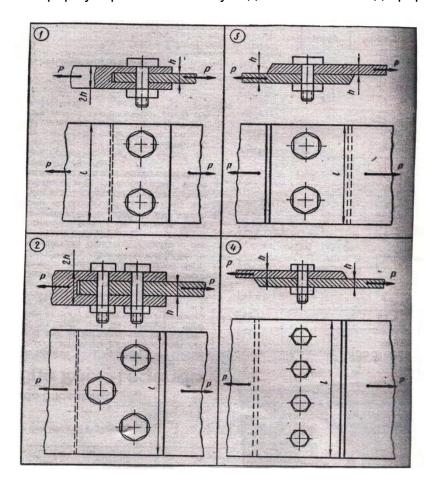
Решить задачу:

Стальные листы соединены между собой при помощи болтов, плотно вставленных в отверстия. К листам приложены растягивающие силы Р. Материал болтов – Ст 3 ,допускаемое напряжение на срез [σ]_{ср} = 80 МПа ,материал листов – Ст 2, допускаемое напряжение на растяжение [σ]_р = 140 МПа, на смятие – [σ]_{см} = 160 МПа. Определить диаметр болтов и проверить прочность листов.

Используемые источники: [2],[3]

Содержание и порядок выполнения работы:

- 1. При решении задачи определяем основные расчетные предпосылки и расчетные формулы.
- 2. Если известно количество заклепок, определяем напряжение на срез и смятие и сравниваем с допускаемым для данного материала.
- 3. При расчете сварных соединений учитываем расположение швов (фланговые, лобовые); в зависимости от этого выбрать для расчета соответствующие деформации напряжения.


Выводы и предложения

Содержание отчета:

- 1. Наименования практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.

- 5. Выводы и предложения.
- 6. Дата и подписи курсантов и преподавателя.

- 1. В деталях из одинакового материала (сталь) оказалось, что напряжение растяжение σ_n среза τ_{cp} и смятия σ_{cm} численно равны. Какие из этих напряжений наиболее опасны?
- 2. Какую механическую характеристику материала листа надо знать, что бы определить силу, необходимую для продавливания отверстия?
 - 3. Сформулировать закон Гука для абсолютной деформации при срезе.

Nº	№ схемы	Р	L	h
варианта	INE OXCIVIDI	kH	MM	MM
1	1	160	380	8
2	2	180	320	103
3	3	200	260	12
4	4	290	240	14
5	1	140	230	15
6	2	165	220	16

МО-15 02 17-ОП.02.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.11/20

7	3	150	340	10
8	4	170	250	12
9	1	185	220	14
10	4	175	230	16

Тема 2.2 Кручение

Практическое занятие № 4 Построение эпюр крутящих моментов.

Расчет валов на прочность и жесткость при кручении

Практическое занятие выполняется после изучения темы «Кручение», рассматривается кручение прямого бруса круглого поперечного сечения, а также расчет вала на прочность и жесткость.

Цель занятия:

Подготовка к выполнению расчетно-графической работы по теме «Кручение». Исследование внутренних силовых факторов при кручении. Деформация при кручении.

Исходные материалы:

1. Варианты заданий.

Содержание и порядок выполнения работы:

- 1. Вычислить момент внешних пар сил (крутящих моментов), передаваемых от шкивов на вал.
 - 2. Изобразить схему вала с указанием направления крутящих моментов.
 - 3. Разбить схему на участки (пользуясь методом сечений).
- 4. Вычислить крутящие моменты на каждом из участков и построить эпюры крутящих моментов.
 - 5. Определить максимальный крутящий момент $M_{\kappa\,\mathrm{max}}$
 - 6. Подобрать необходимый диаметр вала, исходя из условия прочности

$$\tau_{\kappa} = \frac{M_{\kappa \max}}{Wp} \qquad Wp = 0.2d^{3} \qquad d = \sqrt[3]{\frac{M_{\kappa \max}}{0.2[\tau]}}$$

- 7. Определить значение d по ГОСТ,
- 8. Находим угол закручивания «ф» и сравниваем с допускаемым для данного материала

$$\varphi = \frac{M_{\max} \cdot \ell}{G \cdot Jp} \leq [\varphi]$$

Выводы и предложения

Содержание отчета:

- 1. Наименования практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсантов и преподавателя.

Вопросы для самопроверки:

- 1. Какие внутренние силовые факторы возникают при кручении?
- 2. Что такое рациональное расположение колес на валу?
- 3. Как определяется знак крутящего момента?

Тема 2.3 Изгиб. Расчеты на усталость

Практическое занятие № 5 Расчеты на прочность и жесткость при изгибе

Практическое занятие проводится после изучения темы «изгиб».

Цель занятия:

Получение навыков построения эпюр изгибающих моментов, подбор из условия прочности различных поперечных сечений балок.

Исходные материалы и данные:

Практические занятия проводятся по вариантам задания.

Используемые источники:[2], [3]

Содержание и порядок выполнения работы:

- 1. Строим эпюру изгибающих моментов
- 2. Определяем максимальный изгибающий момент
- 3. Из условия прочности подбираем сечения балки в виде прямоугольника с соотношением сторон h = 2b, швеллера или круга.
- 4. Рассчитав площади подобранных сечений, делаем вывод о целесообразности применения того или иного сечения.

Выводы и предложения

Содержание отчета

- 1. Наименования практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсантов и преподавателя.

Вопросы для самопроверки:

- 1. Если эпюра поперечной силы ограничена наклонной линией, как выглядит эпюра изгибающего момента?
 - 2. Какие перемещения при изгибе имеют поперечные сечение балки?
- 3. Какие формы поперечного сечения следует применять, для балок из материалов, неодинакового работающих на растяжение и сжатие?

Практическое занятие № 6.Расчет балки стандартных прокатных профилей на изгиб

Практическое занятие проводится после изучения темы «изгиб».

Цель занятия:

Получение навыков построения эпюр изгибающих моментов, расчетов на прочность и жесткость в опасном сечении ,проверки прочности балок.

Исходные материалы и данные:

Практические занятия проводятся по вариантам задания

В вариантах 1-5 использован двутавр № 20.

В вариантах 6-10 – двутавр № 30.

Используемые источники:[1], [3]

Содержание и порядок выполнения работы:

Сечение балок-сдвоенный двутавр. Материал-сталь, допускаемое напряжение изгиба - [σ] = 160 МПа.

- 1. Строим эпюру изгибающих моментов
- 2. Определяем максимальный изгибающий момент

МО-15 02 17-ОП.02.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.14/20

- 3. Проверяем прочность балок.
- В случае, если прочность не обеспечена, подбираем сечение большего размера.

Выводы и предложения

Содержание отчета

- 1. Наименования практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4.. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсантов и преподавателя.

Вопросы для самопроверки:

- 1. Назовите условие прочности при изгибе.
- 2. Какие виды расчетов вытекают из условия прочности?

Выводы и предложения

Раздел 3 Детали машин

Тема 3.1 Зубчатые и червячные передачи

Практическое занятие № 7.Определение передаточного числа многоступенчатой передачи

Практическое занятие проводится после изучения темы «Общие сведения о передачах», дающей понятие о назначении и классификации передач, о передачах используемых в технологическом оборудовании, о формулах для определения передаточного отношения и К.П.Д. многоступенчатой передачи.

Цель:

Определение передаточного числа многоступенчатых передач.

Исходные материалы:

Практическое занятие проводится по вариантам заданий.

Используемые источники: [1], [2]

Содержание и порядок выполнения:

МО-15 02 17-ОП.02.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.15/20

- 1. Зарисовать кинематическую схему передачи по ступеням, сделать описание передачи.
 - 2. Рассчитать «і» данной передачи, данные свести в таблицу.
 - 3. Выполнить рисунок валов

Выводы и предложения о проделанной работе

Содержание отчета:

- 1. Наименование практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсанта и преподавателя

Вопросы для самопроверки:

- 1. Всегда ли возможно прямое соединение вала двигателя с валом машины?
- 2. Передаточное число больше единицы [i>1]. Какая это передача?
- 3. Какую роль играют промежуточные колёса для изменения направления вращения ведомого вала?

Практическое занятие № 8.Расчет прямозубой передачи

Практическое занятие проводится после изучения темы «Зубчатые передачи», дающей представление об основах теории зубчатого зацепления; о материалах и допускаемых напряжениях; основах расчета на контактную прочность и изгиб.

Цель:

- 1. Получить навыки расчета основных параметров зубчатых передач; выполнять кинематические, геометрические и силовые расчеты.
- 2. Подготовка к курсовому проектированию по «Технической механике» (раздел «Детали машин»).

Исходные материалы:

Практическое занятие проводится по вариантам заданий.

Используемые источники: [2], [3], [1]

Содержание и порядок выполнения:

MO-15 02 17-OΠ.02.Π3	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.16/20

- 1. По данным материала для шестерни и колеса определяем допускаемые контактные напряжения [бн] и [бн] 2
 - 2. Рассчитываем номинальный и расчетный моменты Т_{1 ном}; Т_{1 расч.}
- 3. Определяем межосевое расстояние a_W , выбрав предварительно коэффициент $\Psi_{\mbox{\scriptsize Ba}}$
- 4. Находим модуль зацепления «m» m=(0,01...0,02) а_w, выбираем из стандартного ряда.
 - 5. Находим число зубьев шестерни и колеса.
 - 6. Рассчитываем параметры шестерни и колеса:
 - а) делительные диаметры d₁, d₂.
 - б) диаметры окружностей выступов da1, da2
 - в) диаметры окружностей впадин dt1; dt2
 - г) ширину шестерни и колеса в1; в2
 - 7. Проверяем а_w межосевое расстояние.

Выводы и предложения о проделанной работе

Содержание отчета:

- 1. Наименование практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсанта и преподавателя

Вопросы для самопроверки:

- 1. Что называют «шестернёй» и «колесом»?
- 2. Что такое модуль зубчатого зацепления?
- 3. От каких параметров зависит а_w межосевое расстояние

Практическое занятие № 9.Определение геометрических параметров червячной пары редуктора и КПД редуктора

Практическое занятие проводится после изучения темы «Червячные передачи, получения представления об особенностях червячных передач и применении их в технологическом оборудовании; материалах червяка и червячного колеса; об основах расчета на контактную прочность и изгиб.

Цель:

Получение навыков расчета основных параметров червячной пары, определения геометрических соотношений, передаточного числа, КПД; сил в зацеплении.

Исходные материалы:

Практическое занятие проводится по вариантам заданий.

Используемые источники: [2], [3]

Содержание и порядок выполнения:

- 1. По данным задания определяем:
- а) число заходов червяка;
- б) передаточное число;
- с) определяем q число модулей в делительном диаметре червяка;
- д) определяем номинальный и расчетный моменты Тном и Трасч;
- е) определяем [б]н контактное напряжение [марка бронзы известна];
- ж) рассчитываем межосевое расстояние а_w;
- 8. Уточняем qw по ГОСТ 2141-78
- 9. Находим угол подъёма витка червяка λ.
- 10 Определяем основные размеры червяка и червячного колеса.

11 Определяем КПД
$$\eta = (0.95...0.96) \frac{tg\lambda}{tg(\lambda + \rho^1)} \cdot 100\%$$

Выводы и предложения о проделанной работе

Содержание отчета:

- 1. Наименование практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсанта и преподавателя

- 1. Какое звено червячной передачи обычно бывает ведущим?
- 2. Как изменится передаточное число червячной передачи, если при одном и том же числе зубьев колеса число заходов червяка увеличить с 2 до 4?
 - 3. Какой модуль зацепления червячного колеса назначают по стандарту?
 - а) нормальный модуль;

б) торцевой модуль.

Тема 3.3 Валы и оси. Разъемные и неразъемные

Практическое занятие № 10.Расчет прямых валов и осей. Составление расчетной схемы

Практическое занятие проводится после изучения темы «Валы и оси» и предусматривает умение составлять расчетные схемы, выполнять расчет прямых валов и осей на прочность и жесткость.

Цель:

Овладеть навыками расчета валов и осей, производить проверочный и проектировочный расчеты, что является подготовкой к курсовому проектированию по «Технической механике» (раздел «Детали машин»).

Исходные материалы:

Практическое занятие проводится по вариантам задания.

Используемые источники: [2], [3]

Содержание и порядок выполнения:

По заданным параметрам:

1. Вычисляем вращающие моменты, приложенные к валу:

$$T_{sp} = \frac{P}{W}$$

- 2. Строим эпюру крутящих моментов
- 3 Определяем силы, действующие на вал

$$F_1 = \frac{2T_{ep}}{\mathcal{I}_1}; \quad T_1 = 0.364 \cdot F_1; \qquad \qquad F_2 = \frac{2T_{ep}}{\mathcal{I}_1}; \quad T_2 = 0.364 \cdot F_2;$$

- 4. Строим эпюры, изгибающих моментов в вертикальной и горизонтальной плоскостях.
 - 5. Определяем суммарный изгибающий момент в опасном сечении:

$$M_{\scriptscriptstyle H} = \sqrt{M_{\scriptscriptstyle H}^2 + M_{\scriptscriptstyle H}^{\scriptscriptstyle g}};$$

6. Определяем эквивалентный момент по гипотезе удельной потенциальной энергии формоизменения

$$M_{_{2K6}} = \sqrt{M_{_H}^2 + 0.75 M_{_K}^2}$$

7. Находим диаметр вала

МО-15 02 17-ОП.02.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.19/20

$$d = \sqrt[3]{\frac{M \max}{0,1[\delta]}};$$

Выводы и предложения о проделанной работе

Содержание отчета:

- 1. Наименование практического занятия.
- 2. Цель занятия.
- 3. Вариант задания.
- 4. Список используемой литературы.
- 5. Выводы и предложения.
- 6. Дата и подписи курсанта и преподавателя

- 1. Как называется деталь соединяющая электродвигатель с машиной и работающая только на кручение?
 - 2. По какому условию прочности следует рассчитывать оси?
 - 3. Может ли быть ось закреплена неподвижно?

МО-15 02 17-ОП.02.ПЗ	КМРК БГАРФ ФГБОУ ВО «КГТУ»	
	ТЕХНИЧЕСКАЯ МЕХАНИКА	C.20/20

Основные печатные издания

1. Гребенкин, *В. З.* Техническая механика: учебник и практикум для среднего профессионального образования / В. З. Гребенкин, Р. П. Заднепровский, В. А. Летягин; под редакцией В. З. Гребенкина, Р. П. Заднепровского. — Москва: Издательство Юрайт, 2023. — 390 с. — (Профессиональное образование).

Основные электронные издания

- 1. ЭБС «Book.ru», https://www.book.ru
- 2. ЭБС « ЮРАЙТ»https://www.biblio-online.ru
- 3.ЭБС «Академия», https://www.academia-moscow.ru
- 4.Издательство «Лань», https://e.lanbook.com
- 5.Электронно-библиотечная система «Университетская библиотека онлайн»,https://www.biblioclub.ru

Дополнительные источники

1. В. 3. Гребенкин, Р. П. Заднепровский, В. А. Летягин ТЕХНИЧЕСКАЯ МЕХАНИКА УЧЕБНИК И ПРАКТИКУМ ДЛЯ СПО, Москва Юрайт, 2020